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1. Experimental

1.2 Chemical and reagents

Iron(Il) sulfate heptahydrate (FeSO4-7H,0, 99 wt%), nickel(Il) sulfate hexahydrate
(NiSO4:6H,0, 99 wt%), urea (99 wt%), sodium citrate dihydrate (Na;CsHs07:2H,0,
99 wt%.), lead (II) bromide (PbBr,, 99 wt%), cesium bromide (CsBr, 99 wt%), N, N-
Dimethylmethanamide (DMF, 99 wt%), oleic acid (OA, 99 wt%), oleylamine (OAm,
98 wt%), toluene (99 wt%), ethyl acetate (EA, 99 wt%), and isopropanol (IPA, 70 wt%

in H,O) were purchase from Sigma-Aldrich.

1.3 Characterization

The morphology was recorded on the Zeiss Auriga scanning electron microscopy
(SEM) and JEOL 2200FS transmission electron microscopy (TEM). The X-ray
diffraction (XRD) patterns were collected on a Rigaku D max-3C diffractometer using
Cu Ko radiation. X-ray photoelectron spectroscopy (XPS) was performed on an
ESCALAB 250Xi spectrometer (Thermo Fisher Scientific). Peaks fitting of the high-
resolution data was carried out by Thermo Avantage 5.992 surface chemical analysis
software. UV-vis absorption spectra were recorded with a UV-vis-NIR
spectrophotometer (Shimadzu UV-3600). The steady-state photoluminescence (ss-PL)
spectra of the samples were measured on a fluorescence spectrophotometer (Horiba
Scientific). Time-resolved photoluminescence (TR-PL) spectra were measured using a
2x Single-Photon Avalanche Diodes detector (PicoQuant Microtime 200). The
electrochemical test was studied on a standard three-electrode configuration, with the
samples coated on FTO substrate as the working electrode, platinum plate as the counter
electrode, and Ag/AgCl electrode as the reference electrode. A solution of 0.01 M
tetrabutylammonium hexafluorophosphate (TBAPF6) was used as the electrolyte. The
anodic and cathodic photocurrent tests were recorded on a CHI 660D electrochemical
station under the illumination of a 150 W Xe lamp (Lamphouse CX-05E, A > 420 nm)
at a potential of +0.3 V and -0.3 V vs. Ag/AgCl.



1.4 Catalytic test and product analysis

During the photocatalytic reduction, 5 mg as-synthesized catalysts powders were
dispersed in 30 mL ethyl acetate and 460 pL isopropanol was added as a sacrificial
agent. The mixture was carried out in a 100 mL sealed autoclave and then vacuumed
and filled with purity CO, gas to reach a 0.2 kPa pressure at an ambient temperature
(298 K). A 300 W Xenon lamp (Lamphouse CX-05E) coupled with a 420 nm cut-off
filter (A>420 nm) was used as the light source to simulate the solar light irradiation. The
gaseous products were sampled by a gas-tight syringe and analyzed by a gas
chromatograph (GC-2060, Shanghai Ruimin Instrument Co., Ltd.) equipped with a
thermal conductivity detector (TCD) and a flame ionization detector (FID). High purity
Argon (99.99%) was used as the carrier gas. To assess the stability of the catalysts,
three consecutive runs of photocatalytic CO, reduction (6 h in each run) were

conducted. Between each run, the reactor was vacuumed and refilled with CO,.



2. Supporting figures

Figure S1. Characterization of TEM image of NiFe-LDH.



Figure S2. (A-B) TEM and HR-TEM images of CsPbBr; nanocrystals.
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Figure S3. (A-B) SEM images CPB/NiFe-LDH-1 and CPB/NiFe-LDH-3 catalysts.
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Figure S4. (A-B) TEM image and HR-TEM images of CPB/NiFe-LDH-2. The marked
d-spacing of 2.88 A and 2.47 A can be indexed to the (200) plane of CPB and the (012)

plane of NiFe-LDH, respectively.
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Figure S5. (A) XPS survey spectra of CPB/NiFe-LDH-1, CPB/NiFe-LDH-2 and
CPB/NiFe-LDH-3. High-resolution XPS spectra of (B) Ni 2p, (C) Fe 2p, (D) Cs 3d, (E)
Pb 4f, and (F) Br 3d.
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Figure S6. UV-vis absorption spectra of CPB.
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Figure S7. Scheme of the possible charge transfer direction in CPB/NiFe-LDH.
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Figure S8. EIS plots of NiFe-LDH and CPB/NiFe-LDH-x (x=1, 2, 3).
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Figure S9. Time-online for photocatalytic CO, reduction of NiFe-LDH, CPB and

CPB/NiFe-LDH-2.
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Figure S10. Recycling stability test of CPB/NiFe-LDH-2.
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Figure S11. XRD pattern of CPB/NiFe-LDH-2 after 3 recycles and CPB/NiFe-LDH-2
fresh.
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Figure S12. (A) XPS survey spectra of CPB/NiFe-LDH-2 and high-resolution XPS
spectra of (B) Ni 2p, (C) Fe 2p, (D) Cs 3d, (E) Pb 4f, and (F) Br 3d after 3 cycles.
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Figure S13. (A)SEM image, (B-F) EDS elements mapping images of CPB/NiFe-LDH-
2 after 3 cycles, (G) SEM image, (H-L) EDS elements mapping images of CPB/NiFe-
LDH-2 fresh.
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3. Supporting Tables

Table S1. XPS atomic percentage analysis based on the survey spectra.

Atomic%
Sample
Ni Br Br/Ni
CPB/NiFe-LDH-1 591 2.71 0.46
CPB/NiFe-LDH-2 5.93 3.33 0.56
CPB/NiFe-LDH-3 5.92 3.65 0.62
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Table S2. ICP analysis of CPB/NiFe-LDH-x.

wt%
Sample
Fe Pb Pb/Fe
CPB/NiFe-LDH-1 14.54 4.34 0.29
CPB/NiFe-LDH-2 15.69 5.42 0.35
CPB/NiFe-LDH-3 12.68 5.79 0.46
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Table S3. Photogenerated charge lifetimes of NiFe-LDH, CPB/NiFe-LDH-x.

Sample T1(ns) To(ns) T3(ns) Tave
NiFe-LDH 0.33 0.12 3.89 0.59
CPB/NiFe-LDH-1 0.34 0.10 4.75 1.55
CPB/NiFe-LDH-2 1.60 0.34 6.99 3.89
CPB/NiFe-LDH-3 0.60 0.13 6.83 3.41
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Table S4. Comparison study of photocatalytic CO, reduction performance in this work
and some latest reported perovskite-based photocatalysts towards CO, reduction.

CO, Conversion Selectivity

Catalyst Rate (umol b ') CO o, 1, Reference
0.1-Pt/ex-LDH 2.64 >99% - - Ref.[1]
20 wt% P25@CoAl-LDH 2.21 94 % - 6 % Ref. [2]
NiAl-LDH/CdS-2 12.45 9% % 4% - Ref. [3]
5% GO-LDH 8.40 55%  45% - Ref. [4]
CPB/MS (1.0 wt%) 37.8 66%  34% - Ref. [5]
CsPbBr;-GO NHSs 25.5 91.5% - 8.5% Ref.[6]
Ti0O,/CsPbBr; 6.72 95% - 5% Ref. [7]
CsPbBr;/GO 29.78 65% 33% 2% Ref. [8]
CsPbBr; @ZIF-67 29.63 18%  82% - Ref. [9]
CPB/NiFe-LDH-2 39.58 83 % 17% - This work
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Table SS. Performance of photocatalysts towards CO, reduction.

Catalysts AQY (%)
NiFe-LDH 0.38
CPB 0.35
CPB/ NiFe-LDH-1 0.42
CPB/ NiFe-LDH-2 0.70
CPB/ NiFe-LDH-3 0.47

The photocatalytic performance of pure Nife-LDH, CPB and CPB/Nife-LDH-x
composites for CO, reduction were using a 300 W Xenon-arc lamp with a 420 nm cut-
off filter (A>420 nm) to simulate visible-light irradiation. For a typical test in
photocatalytic CO, reduction, 5 mg photocatalyst was suspended in 30 mL ethyl acetate
and 460 pL isopropanol. The obtained solution was vacuum-treated for 10 min. Then
the suspension was filled with CO, for 10 min to reach the equilibrium of adsorption-
desorption. The catalyst suspension was illuminated for 6 h. The average power
intensity of the incident light was measured to be 1.5W by a photometer. The number
of incident photos (N) is calculated by Equation 1 The gas chromatograph (GC-2010,
SHIMADZU, Japan) was used to test the products in our test. The apparent quantum
yield (AQY) at 420 nm wavelength was estimated via the following Equation 2:

EA  15x6x 3600 x 420 x 10~° ’
N=—"= =6.85x 10

he 6626 x1073* x 3 x 10® (Equation

1)

AQYCOZ Reduction(%) =

2 X number of CO + 8 X number of CH,

number of incident photons (Equation 2)

21



4. Reference

[1]J. Xu, X. Liu, Z. Zhou, L. Deng, L. Liu, M. Xu, Platinum Nanoparticles with Low
Content and High Dispersion over Exfoliated Layered Double Hydroxide for
Photocatalytic CO, Reduction, Energy Fuels, 35 (2021) 10820-10831.

[2] S. Kumar, M.A. Isaacs, R. Trofimovaite, L. Durndell, C.M.A. Parlett, R.E.
Douthwaite, B. Coulson, M.C.R. Cockett, K. Wilson, A.F. Lee, P25@CoAl layered
double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction,
Appl. Catal. B ., 209 (2017) 394-404.

[3] X. Zhang, Y. Yang, L. Xiong, T. Wang, Z. Tang, P. Li, N. Yin, A. Sun, J. Shen, 3D
dahlia-like NiAI-LDH/CdS heterosystem coordinating with 2D/2D interface for
efficient and selective conversion of CO,, Chin. Chem. Lett., (2021).

[4] K. Wang, C. Miao, Y. Liu, L. Cai, W. Jones, J. Fan, D. Li, J. Feng, Vacancy enriched
ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly
efficient visible-light catalysts for CO, reduction, Appl. Catal. B, 270 (2020) 118878.
[5] X. Wang, J. He, L. Mao, X. Cai, C. Sun, M. Zhu, CsPbBr; perovskite nanocrystals
anchoring on monolayer MoS; nanosheets for efficient photocatalytic CO, reduction,
Chem. Eng. J., 416 (2021) 128077.

[6] Y.-H. Chen, J.-K. Ye, Y.-J. Chang, T.-W. Liu, Y.-H. Chuang, W.-R. Liu, S.-H. Liu,
Y .-C. Pu, Mechanisms behind photocatalytic CO, reduction by CsPbBr; perovskite-
graphene-based nanoheterostructures, Appl. Catal. B, 284 (2021) 119751.

[7]F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Unique S-scheme heterojunctions
in self-assembled TiO,/CsPbBr; hybrids for CO, photoreduction, Nat. Commun., 11
(2020) 4613.

[8] Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen, D.-B. Kuang, C.-Y.
Su, A CsPbBr; Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic
CO; Reduction, JACS, 139 (2017) 5660-5663.

[9] Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su,
Core@Shell CsPbBrj@Zeolitic Imidazolate Framework Nanocomposite for Efficient
Photocatalytic CO, Reduction, ACS Energy Lett., 3 (2018) 2656-2662.

22



