Electronic supporting Information

Interfacial Anion Vacancies Engineered Graphitic Carbon Nitride Photoelectrode for Promoting Charge Separation

P.V.R.K. Ramacharyulu ^a and Chang Woo Kim ^{a,b,*}

^a Department of Nanotechnology Engineering, College of Engineering, Pukyong National University, Busan, 48513, Republic of Korea.

^b Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea.

Correspondence and requests for materials should be addressed to Chang Woo Kim (kimcw@pknu.ac.kr)

Figure S1. Top viewed (a) and cross-sectional SEM images (b) of ZnO nanorod.

Figure S2. EDS results of ZnO@ZnSe in Figure 2(a). The EDS images recorded on a scale of 10 μ m.

Figure S3. EDS of ZnO@ZnSe@g-C₃N₄ in Figure 2(b). The EDS images recorded on a scale of 10 μ m.

Figure S4. XRD result of FTO (green), ZnO (black), ZnO@ZnSe (blue) and ZnO@ZnSe@g-C₃N₄ (red).

Figure S5. XPS spectra of wide range (a) and binding energy of Zn (b) in ZnO (black), ZnO@ZnSe (blue) and ZnO@ZnSe@g-C₃N₄ (red).

Figure S6. LSV of ZnO (black), ZnO@ZnSe (blue) and ZnO@ZnSe@g-C₃N₄ (red) under dark (empty mark) and under illumination (filled mark).

Figure S7. LSV of ZnO@ZnSe@g-C₃N₄ in N₂ treatment (red) and in air treatment (black).

Figure S8. Band diagram of ZnO, ZnSe and $g-C_3N_4$ of Figure 8(b).