Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Pd/N, S co-doped activated carbon as a highly-efficient catalyst for the one-pot synthesis of meropenem

Yuefeng Li,^{a, b,c} Fengmei Xiong,^d Jiangmei Yan,^{b,c} Zhaowen Wang,^{b,c} Tao Hong,^a

Zhixiang Zhang,^{b,c} Yu Li^{a*} and Xinli Jing^{a*}

^a School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China;

^b Department of Technology, Kaili Catalyst & New Materials Co., Ltd., Xi'an, Shaanxi, 710201, P. R. China;

^c Shaanxi Key Laboratory of Catalytic Materials and Technology, Xi'an, Shaanxi, 710201, P. R. China

^d Department of Pharmacy, Xi'an Children's Hospital, Xi'an, Shaanxi, 710004, P. R. China.

* Corresponding authors:

Email: xljing@mail.xjtu.edu.cn, yuli2012@mail.xjtu.edu.cn

6 pages, 5 figures, 4 tables

Contents

1. Fig	I. Fig. S1. The high-resolution TEM images of the Pd/C catalysts							S.	3			
2. Fig	2. Fig. S2. N 1s and S 2p XPS spectra of the C1-2N and C5-0N samples								S	3		
3. Ta	3. Table S1. XPS spectral line fitting for the C1-2N and C5-0N samples									S	4	
4. Fig. S3. XPS spectra of the Pd/C1-2N and Pd/C5-0N catalyst								S	4			
5. Ta	ble	S2.	XPS	spectral	line	fitting	for	the	the	Pd/C	catalys	ts
S4												
6. Table S3. Meropenem yield under different Pd/C catalysts S5								5				
7. Fig. S4. XPS spectra of Pd/C4-unreduced and Pd/C4-H ₂ -reactivated catalyst S5								5				
8. Fig	8. Fig. S5. S 2p and Pd 3d XPS spectra of the Pd/C4-used catalyst S6								6			
9. Ta	ble S	4. Imp	ourity co	ontents, Pd	conter	nt, and co	lor of	merop	enem	product	S	
obt	obtained over different Pd/C catalyst								ts			

Analysis of impurities in meropenem

Based on the analysis method, ^{32,49} the contents of impurities were determined via high-performance liquid chromatography (Shimadzu Prominence LC-20A). Chromatography was performed on a Shim-pack CLC-ODS C18 (150 mm × 4.6 mm, 5 μ m) analytical column with 0.1% triethylamine solution–acetonitrile (100:7) as the mobile phase. The column was maintained at a constant temperature of 40°. The flow rate was about 1.6 mL·min⁻¹, and the ultraviolet (UV) detection wavelength was 220 nm. Here, the triethylamine solution was prepared by adding 900 mL of distilled water to 1.0 mL of triethylamine; the solution was adjusted with diluted phosphoric acid to a pH of 5.0 ± 0.1, then diluted with water to 1000 mL. Crude meropenem (0.05 g) was dissolved in a 0.1% triethylamine solution to obtain the test solution, 10 μ L of which was injected for chromatography, and the chromatogram was recorded.

Fig. S1 The high-resolution TEM images of the Pd/C catalysts: (a) Pd/C0, (b) Pd/C1,(c) Pd/C2, (d) Pd/C3, (e) Pd/C4, and (f) Pd/C5.

Fig. S2 N 1s and S 2p XPS spectra of the C1-2N (a) and C5-0N (b) samples

AC	Mass fraction of N (%)	Mass fraction of S (%)	Relative atomic percentage (%)						
			N (398.5eV)	N (400.1eV)	N (401.2eV)	S (164.1eV)	S (165.2eV)		
C1-2N	2.53	0	46.08	26.09	27.83	-	-		
C5-0N	0	0.52	-	-	-	39.79	60.21		

Table S1 N 1s and S 2p XPS spectral line fitting for the C1-2N and C5-0N samples

Fig. S3 XPS spectra of the Pd/C1-2N (a) and Pd/C5-0N (b) catalyst.

Catalyst	Pd ⁰ (%)	Pd ²⁺ (%)
Pd/C1-2N	61.31	38.69
Pd/C5-0N	52.46	47.54

Table S2 XPS spectral line fitting for the Pd/C1-2N and Pd/C5-0N catalyst

Entry	Yield of meropenem* (%)						
Enu y	Pd/C2	Pd/C3	Pd/C4	Pd/C5			
1	48.52	49.25	50.33	49.70			
2	48.60	49.30	50.43	49.74			
3	48.68	49.36	50.48	49.78			
4	48.61	49.39	50.52	49.85			
5	48.73	49.43	50.48	49.65			
Average value (%)	48.628	49.346	50.448	49.744			
Standard deviation (%)	0.080	0.072	0.073	0.076			

 Table S3 Meropenem yield under different Pd/C catalysts under the repeat experiments

* Yield of meropenem: reaction under 0.15 g of the side chain

Fig. S4 XPS spectra of the Pd/C4-unreduced (a) and Pd/C4-H₂-reactivated (b) catalyst.

Fig. S5 S 2p and Pd 3d XPS spectra of the Pd/C4-used catalyst

Table S4 Impurity contents, Pd content	, and color of r	meropenem]	products	obtained
over differe	nt Pd/C catalys	sts		

Sample*	Color	Ring-opening compound (%)	Dimers (%)	Total impurity content (%)	Pd content (ppm)
Pd/C2	White	0.11	0.13	0.63	7
Pd/C3	White	0.13	0.14	0.61	7
Pd/C4	White	0.10	0.11	0.60	6
Pd/C5	White	0.12	0.12	0.60	7
Pd/C1-2N	White	0.18	0.16	0.65	8
Pd/C5-0N	White	0.16	0.17	0.68	7
Pd/C4-unreduced	White	0.13	0.13	0.64	8
Pd/C4-H ₂ -reactivated	White	0.12	0.15	0.69	6

* meropenem product: reaction under 0.15 g of the side chain