# Supporting Information for High-Efficiency, Visible-Light-Induced Direct Dehydrogenative Phosphonylation by Bismuth Quantum Dots under Ambient Conditions

You Zi,<sup>a</sup><sup>†</sup> Songrui Wei,<sup>b</sup><sup>†</sup> Zhihui Huang,<sup>a</sup> Jun Zhu,<sup>a</sup> Yi Hu,<sup>a</sup> Mengke Wang,<sup>\*a</sup> Han Zhang<sup>b</sup> and Weichun Huang<sup>\*a</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China

<sup>b</sup>Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China

*E-mail address*: <u>mengkewang@ntu.edu.cn</u> (M. Wang); <u>huangweichun@ntu.edu.cn</u> (W. Huang)

<sup>†</sup>The authors contributed equally to this work.

Keywords: bismuth; quantum dots; thiophosphinates; P-S bond formation; photocatalysis

| Specimen | Elements | Charge<br>transfer | Specimen | Elements | Charge<br>transfer | Gain (+) and<br>loss (-) electron<br>level |
|----------|----------|--------------------|----------|----------|--------------------|--------------------------------------------|
|          | Bi1      | 14.617             |          | Bi1      | 14.080             | -0.537                                     |
|          | Bi2      | 14.784             |          | Bi2      | 14.700             | -0.084                                     |
|          | Bi3      | 15.423             |          | Bi3      | 16.805             | <u>1.382</u>                               |
|          | Bi4      | 15.176             |          | Bi4      | 14.800             | -0.376                                     |
|          | Bi5      | 14.617             |          | Bi5      | 14.082             | -0.535                                     |
|          | Bi6      | 14.784             |          | Bi6      | 15.144             | 0.360                                      |
|          | Bi7      | 15.423             |          | Bi7      | 16.200             | <u>0.777</u>                               |
| 0D Bi    | Bi8      | 15.176             |          | Bi8      | 14.925             | -0.251                                     |
| QDs      | Bi9      | 14.617             |          | Bi9      | 14.062             | -0.555                                     |
|          | Bi10     | 14.784             |          | Bi10     | 14.041             | <u>-0.743</u>                              |
|          | Bi11     | 15.423             |          | Bi11     | 17.110             | <u>1.687</u>                               |
|          | Bi12     | 15.176             |          | Bi12     | 14.447             | -0.729                                     |
|          | Bi13     | 14.617             |          | Bi13     | 14.037             | -0.580                                     |
|          | Bi14     | 14.783             |          | Bi14     | 14.368             | -0.415                                     |
|          | Bi15     | 15.423             |          | Bi15     | 16.320             | <u>0.897</u>                               |
|          | Bi16     | 15.176             | _        | Bi16     | 14.978             | -0.198                                     |
|          | S1       | 6.000              | 0D Bi    | S1       | 6.351              | 0.351                                      |
|          | C1       | 4.043              |          | C1       | 3.586              | -0.457                                     |
|          | C2       | 4.040              | QD@III   | C2       | 3.972              | -0.068                                     |
|          | C3       | 3.990              |          | C3       | 3.878              | -0.112                                     |
|          | C4       | 3.991              |          | C4       | 3.919              | -0.072                                     |
|          | C5       | 4.167              |          | C5       | 4.207              | 0.040                                      |
|          | C6       | 4.020              |          | C6       | 3.474              | -0.546                                     |
|          | C7       | 4.075              |          | C7       | 3.426              | -0.649                                     |
|          | C8       | 4.037              |          | C8       | 3.675              | -0.362                                     |
| 1n       | H1       | 0.950              |          | H1       | 1.299              | 0.349                                      |
|          | H2       | 0.975              |          | H2       | 1.570              | 0.595                                      |
|          | H3       | 0.969              |          | H3       | 1.374              | 0.405                                      |
|          | H4       | 0.981              |          | H4       | 0.993              | 0.012                                      |
|          | H5       | 0.925              |          | H5       | 0.960              | 0.035                                      |
|          | H6       | 0.963              |          | H6       | 1.010              | 0.047                                      |
|          | H7       | 0.971              |          | H7       | 1.057              | 0.086                                      |
|          | H8       | 0.993              |          | H8       | 0.942              | -0.051                                     |
|          | H9       | 0.950              |          | H9       | 1.356              | 0.406                                      |
|          | H10      | 0.960              |          | H10      | 0.853              | -0.107                                     |

 Table S1. The partial electron transfer property of 0D Bi QDs to substrate 1n and its schematic diagram.



| Constitution | Elementa Charg | Charge   | Sussimon  | Elemente | Charge   | Gain (+) and loss (-) |
|--------------|----------------|----------|-----------|----------|----------|-----------------------|
| specifien    | Elements       | transfer | specifien | Elements | transfer | electron level        |
|              | Bi1            | 14.734   |           | Bi1      | 14.909   | 0.175                 |
|              | Bi2            | 15.266   |           | Bi2      | 15.077   | -0.189                |
|              | Bi3            | 14.734   |           | Bi3      | 14.905   | 0.171                 |
|              | Bi4            | 15.266   |           | Bi4      | 15.099   | -0.167                |
|              | Bi5            | 14.734   |           | Bi5      | 14.916   | 0.182                 |
|              | Bi6            | 15.266   |           | Bi6      | 15.095   | -0.171                |
|              | Bi7            | 14.734   |           | Bi7      | 14.921   | 0.187                 |
|              | Bi8            | 15.266   |           | Bi8      | 15.096   | -0.174                |
|              | Bi9            | 14.734   |           | Bi9      | 14.909   | 0.175                 |
|              | Bi10           | 15.266   |           | Bi10     | 15.084   | -0.182                |
|              | Bil1           | 14.734   |           | Bil1     | 14.966   | 0.232                 |
|              | Bi12           | 15.267   |           | Bi12     | 15.052   | <u>-0.215</u>         |
|              | Bi13           | 14.734   |           | Bi13     | 14.819   | 0.086                 |
|              | Bi14           | 15.266   |           | Bi14     | 15.050   | <u>-0.216</u>         |
|              | Bi15           | 14.734   |           | Bi15     | 14.925   | 0.191                 |
| 2D Bi        | Bi16           | 15.266   |           | Bi16     | 15.101   | -0.165                |
| NSs          | Bi17           | 14.733   |           | Bi17     | 14.919   | 0.186                 |
|              | Bi18           | 15.266   |           | Bi18     | 15.088   | -0.178                |
|              | Bi19           | 14.733   |           | Bi19     | 14.918   | 0.185                 |
|              | Bi20           | 15.266   |           | Bi20     | 15.072   | -0.194                |
|              | Bi21           | 14.733   |           | Bi21     | 14.956   | <u>0.223</u>          |
|              | Bi22           | 15.266   |           | Bi22     | 15.085   | -0.181                |
|              | Bi23           | 14.733   |           | Bi23     | 14.944   | 0.211                 |
|              | Bi24           | 15.266   |           | Bi24     | 15.072   | -0.194                |
|              | Bi25           | 14.733   | 1D D:     | Bi25     | 14.944   | 0.211                 |
|              | Bi26           | 15.266   | ZD BI     | Bi26     | 15.084   | -0.182                |
|              | Bi27           | 14.733   | NS@11     | Bi27     | 14.905   | 0.172                 |
|              | Bi28           | 15.266   |           | Bi28     | 15.095   | -0.171                |
|              | Bi29           | 14.733   |           | Bi29     | 14.908   | 0.175                 |
|              | Bi30           | 15.266   |           | Bi30     | 15.081   | -0.185                |
|              | Bi31           | 14.733   |           | Bi31     | 14.910   | 0.177                 |
|              | Bi32           | 15.266   | _         | Bi32     | 15.077   | -0.189                |
|              | <b>S</b> 1     | 6.000    |           | S1       | 5.913    | -0.087                |
|              | C1             | 4.043    |           | C1       | 3.859    | -0.184                |
|              | C2             | 4.040    |           | C2       | 3.948    | -0.092                |
|              | C3             | 3.990    |           | C3       | 3.886    | -0.104                |
|              | C4             | 3.990    |           | C4       | 3.970    | -0.020                |
|              | C5             | 4.166    |           | C5       | 4.174    | 0.008                 |
|              | C6             | 4.019    |           | C6       | 4.076    | 0.057                 |
|              | C7             | 4.075    |           | C7       | 4.072    | -0.003                |
|              | C8             | 4.037    |           | C8       | 3.961    | -0.076                |
| 1n           | H1             | 0.951    |           | H1       | 1.021    | 0.070                 |
|              | H2             | 0.975    |           | H2       | 0.994    | 0.019                 |
|              | H3             | 0.969    |           | H3       | 0.990    | 0.021                 |
|              | H4             | 0.981    |           | H4       | 1.001    | 0.020                 |
|              | H5             | 0.925    |           | H5       | 0.940    | 0.015                 |
|              | H6             | 0.963    |           | H6       | 0.977    | 0.014                 |
|              | H7             | 0.970    |           | H7       | 1.006    | 0.036                 |
|              | H8             | 0.993    |           | H8       | 1.005    | 0.012                 |
|              | H9             | 0.950    |           | H9       | 1.205    | <u>0.255</u>          |
|              | H10            | 0.960    |           | H10      | 1.012    | 0.052                 |

**Table S2**. The partial electron transfer property of 2D Bi NSs to substrate 1n and its schematic diagram.



| Specimen | Flements | Charge   | Specimen | Flements | Charge   | Gain (+) and loss  |
|----------|----------|----------|----------|----------|----------|--------------------|
|          | Liements | transfer | Speeimen | Liements | transfer | (-) electron level |
|          | Bi1      | 14.617   |          | Bi1      | 15.493   | 0.876              |
|          | Bi2      | 14.784   |          | Bi2      | 14.507   | -0.277             |
|          | Bi3      | 15.423   |          | Bi3      | 16.455   | <u>1.032</u>       |
|          | Bi4      | 15.176   |          | Bi4      | 14.711   | -0.465             |
|          | Bi5      | 14.617   |          | Bi5      | 15.311   | <u>0.694</u>       |
|          | Bi6      | 14.783   |          | Bi6      | 14.327   | -0.456             |
|          | Bi7      | 15.423   |          | Bi7      | 14.775   | -0.648             |
| 0D Bi    | Bi8      | 15.176   |          | Bi8      | 15.425   | 0.249              |
| QDs      | Bi9      | 14.617   |          | Bi9      | 14.433   | -0.184             |
|          | Bi10     | 14.783   |          | Bi10     | 15.061   | 0.278              |
|          | Bi11     | 15.423   |          | Bi11     | 15.256   | -0.167             |
|          | Bi12     | 15.176   |          | Bi12     | 15.595   | 0.419              |
|          | Bi13     | 14.617   |          | Bi13     | 15.022   | 0.405              |
|          | Bi14     | 14.783   |          | Bi14     | 14.125   | -0.658             |
|          | Bi15     | 15.423   |          | Bi15     | 14.722   | <u>-0.701</u>      |
|          | Bi16     | 15.176   | _        | Bi16     | 14.720   | -0.456             |
|          | P1       | 2.287    |          | P1       | 3.102    | <u>0.815</u>       |
|          | 01       | 7.423    |          | O1       | 7.087    | -0.336             |
|          | C1       | 4.608    |          | C1       | 4.023    | -0.585             |
|          | C2       | 3.968    | AD D:    | C2       | 3.812    | -0.156             |
|          | C3       | 4.100    |          | C3       | 4.072    | -0.028             |
|          | C4       | 4.053    | QD@2a    | C4       | 3.758    | -0.295             |
|          | C5       | 3.926    |          | C5       | 3.632    | -0.294             |
|          | C6       | 4.056    |          | C6       | 4.171    | 0.115              |
|          | C7       | 4.519    |          | C7       | 3.850    | -0.669             |
|          | C8       | 4.004    |          | C8       | 3.589    | -0.415             |
|          | C9       | 4.095    |          | C9       | 4.035    | -0.060             |
|          | C10      | 4.056    |          | C10      | 3.938    | -0.118             |
| 2a       | C11      | 3.976    |          | C11      | 3.994    | 0.018              |
|          | C12      | 4.114    |          | C12      | 3.955    | -0.159             |
|          | H1       | 0.960    |          | H1       | 1.220    | 0.260              |
|          | H2       | 0.957    |          | H2       | 1.174    | 0.217              |
|          | H3       | 0.934    |          | Н3       | 1.220    | 0.286              |
|          | H4       | 0.949    |          | H4       | 1.394    | 0.445              |
|          | H5       | 0.928    |          | Н5       | 0.949    | 0.021              |
|          | H6       | 0.952    |          | H6       | 1.231    | 0.279              |
|          | H7       | 0.948    |          | H7       | 1.290    | 0.342              |
|          | H8       | 0.930    |          | H8       | 0.899    | -0.031             |
|          | H9       | 0.908    |          | Н9       | 1.018    | 0.110              |
|          | H10      | 0.891    |          | H10      | 1.190    | 0.299              |
|          | H11      | 1.455    |          | H11      | 1.455    | -0.000             |

**Table S3**. The partial electron transfer property of 0D Bi QDs to substrate 2a and its schematic diagram.



| Specimen   | Elements   | Charge   | Specimen | Elements   | Charge   | Gain (+) and loss (- |
|------------|------------|----------|----------|------------|----------|----------------------|
| speemien   | Liements   | transfer | speemien | Liements   | transfer | ) electron level     |
|            | Bi1        | 14.734   |          | Bi1        | 15.087   | 0.353                |
|            | Bi2        | 15.266   |          | Bi2        | 14.820   | -0.446               |
|            | Bi3        | 14.733   |          | Bi3        | 15.217   | 0.484                |
|            | Bi4        | 15.266   |          | Bi4        | 15.034   | -0.232               |
|            | Bi5        | 14.733   |          | Bi5        | 15.285   | <u>0.552</u>         |
|            | Bi6        | 15.266   |          | Bi6        | 14.748   | -0.518               |
|            | Bi7        | 14.734   |          | Bi7        | 15.220   | 0.486                |
|            | Bi8        | 15.266   |          | Bi8        | 14.683   | <u>-0.583</u>        |
|            | Bi9        | 14.734   |          | Bi9        | 15.280   | 0.546                |
|            | Bi10       | 15.266   |          | Bi10       | 14.784   | -0.482               |
|            | Bi11       | 14.734   |          | Bi11       | 15.066   | 0.332                |
|            | Bi12       | 15.266   |          | Bi12       | 15.239   | -0.027               |
|            | Bi13       | 14.733   |          | Bi13       | 14.980   | 0.247                |
|            | Bi14       | 15.266   |          | Bi14       | 15.222   | -0.044               |
|            | Bi15       | 14.734   |          | Bi15       | 15.428   | <u>0.694</u>         |
| ID D: NG   | Bi16       | 15.266   |          | Bi16       | 14.742   | -0.524               |
| 2D DI 1158 | Bi17       | 14.733   |          | Bi17       | 15.360   | 0.627                |
|            | Bi18       | 15.266   |          | Bi18       | 14.733   | -0.533               |
|            | Bi19       | 14.733   |          | Bi19       | 14.843   | 0.110                |
|            | Bi20       | 15.266   |          | Bi20       | 14.790   | -0.476               |
|            | Bi21       | 14.733   |          | Bi21       | 14.791   | 0.058                |
|            | Bi22       | 15.266   |          | Bi22       | 15.458   | 0.192                |
|            | Bi23       | 14.733   |          | Bi23       | 14.929   | 0.196                |
|            | Bi24       | 15.266   |          | Bi24       | 15.003   | -0.263               |
|            | Bi25       | 14.733   |          | Bi25       | 15.060   | 0.327                |
|            | Bi26       | 15.266   |          | Bi26       | 14.765   | -0.501               |
|            | Bi27       | 14.733   |          | Bi27       | 15.267   | 0.534                |
|            | Bi28       | 15.266   |          | Bi28       | 14.726   | -0.540               |
|            | Bi29       | 14.734   | 2D Bi    | Bi29       | 14.880   | 0.146                |
|            | Bi30       | 15.266   | NS@2a    | Bi30       | 14.755   | -0.511               |
|            | Bi31       | 14.733   |          | Bi31       | 14.862   | 0.129                |
|            | Bi32       | 15.266   |          | Bi32       | 14.891   | -0.375               |
| -          | P1         | 2.287    | -        | P1         | 3.317    | 1.030                |
|            | 01         | 7.423    |          | 01         | 6.888    | -0.535               |
|            | C1         | 4.607    |          | C1         | 4.370    | -0.237               |
|            | C2         | 3.968    |          | C2         | 4.023    | 0.055                |
|            | C3         | 4.100    |          | C3         | 3.775    | -0.325               |
|            | C4         | 4.053    |          | C4         | 4.072    | 0.019                |
|            | C5         | 3.926    |          | C5         | 3.593    | -0.333               |
|            | C6         | 4.056    |          | C6         | 4.064    | 0.008                |
|            | C7         | 4.519    |          | C7         | 4.392    | -0.127               |
|            | C8         | 4.004    |          | C8         | 3.982    | -0.022               |
|            | C9         | 4.096    |          | C9         | 3.890    | -0.206               |
|            | C10        | 4.057    |          | C10        | 3.896    | -0.161               |
| 2a         | C11        | 3.976    |          | C11        | 3.861    | -0.115               |
|            | C12        | 4 1 1 4  |          | C12        | 3 927    | -0.187               |
|            | H1         | 0.960    |          | H1         | 0.949    | -0.011               |
|            | H2         | 0.957    |          | H2         | 1.174    | 0.217                |
|            | H3         | 0.934    |          | H3         | 1.069    | 0.135                |
|            | H4         | 0.949    |          | H4         | 1.051    | 0.102                |
|            | H5         | 0.928    |          | H5         | 1 115    | 0.187                |
|            | H6         | 0.920    |          | H6         | 1 013    | 0.061                |
|            | H7         | 0.932    |          | H7         | 1 050    | 0 111                |
|            | 11/<br>ЦQ  | 0.040    |          | ну<br>Н8   | 1 1 1 6  | 0.111                |
|            | но<br>110  | 0.950    |          | 110<br>H0  | 1.110    | 0.100                |
|            | 119<br>H10 | 0.909    |          | 119<br>Ц10 | 1.100    | 0.199                |
|            | H11        | 1.455    |          | H11        | 1.258    | -0.197               |

**Table S4**. The partial electron transfer property of 2D Bi NSs to substrate 2a and its schematic diagram.



| Spaaiman   | Flomonto ( | Charge   | Charge Service | Flaments   | Charge   | Gain (+) and loss  |
|------------|------------|----------|----------------|------------|----------|--------------------|
| specificit | Liements   | transfer | specifien      | Liements   | transfer | (-) electron level |
|            | Te1        | 5.969    |                | Te1        | 5.964    | -0.005             |
|            | Te2        | 5.956    |                | Te2        | 5.959    | 0.003              |
|            | Te3        | 6.082    |                | Te3        | 6.084    | 0.002              |
|            | Te4        | 5.969    |                | Te4        | 5.964    | -0.005             |
|            | Te5        | 5.956    |                | Te5        | 5.959    | 0.003              |
|            | Te6        | 6.081    |                | Te6        | 6.083    | 0.002              |
|            | Te7        | 5.969    |                | Te7        | 5.963    | -0.006             |
|            | Te8        | 5.956    |                | Te8        | 5.959    | 0.003              |
|            | Te9        | 6.081    |                | Te9        | 6.083    | 0.002              |
|            | Te10       | 5.969    |                | Te10       | 5.963    | -0.006             |
|            | Te11       | 5.956    |                | Te11       | 5.959    | 0.003              |
|            | Te12       | 6.082    |                | Te12       | 6.083    | 0.001              |
|            | Te13       | 6.006    |                | Te13       | 6.000    | -0.006             |
|            | Te14       | 5.982    |                | Te14       | 5.990    | 0.008              |
|            | Te15       | 5,997    |                | Te15       | 5.998    | 0.001              |
|            | Te16       | 6.090    |                | Te16       | 6.090    | 0.000              |
|            | Te17       | 5.949    |                | Te17       | 5.937    | -0.012             |
| 0D Te      | Te18       | 5.968    |                | Te18       | 5.979    | 0.011              |
| ODs        | Te19       | 6.006    |                | Te19       | 6.000    | -0.006             |
| 225        | Te20       | 5.981    |                | Te20       | 5.990    | 0.009              |
|            | Te21       | 5.997    |                | Te21       | 5.998    | 0.001              |
|            | Te22       | 6 091    |                | Te22       | 6.088    | -0.003             |
|            | Te23       | 5 949    |                | Te23       | 5 937    | -0.012             |
|            | Te24       | 5 968    |                | Te24       | 5 980    | 0.012              |
|            | Te25       | 6.006    |                | Te25       | 6,000    | -0.006             |
|            | Te26       | 5 982    |                | Te26       | 5 990    | 0.008              |
|            | Te27       | 5 997    |                | Te27       | 5 998    | 0.000              |
|            | Te28       | 6.091    | 0D Te          | Te28       | 6.085    | -0.006             |
|            | Te20       | 5 949    | QD@1n          | Te20       | 5 941    | -0.008             |
|            | Te30       | 5.968    |                | Te30       | 5.978    | 0.000              |
|            | Te31       | 6.006    |                | Te31       | 6,000    | -0.006             |
|            | Te32       | 5 981    |                | Te32       | 5 990    | 0.000              |
|            | Te33       | 5 997    |                | Te32       | 5 998    | 0.009              |
|            | Te34       | 6.091    |                | Te34       | 6.086    | -0.004             |
|            | Te35       | 5 949    |                | Te35       | 5 941    | -0.004             |
|            | Te36       | 5 968    |                | Te36       | 5 979    | 0.011              |
|            | <u>S1</u>  | 6.000    | _              | <u></u>    | 5.977    | 0.011              |
|            | C1         | 4.043    |                | C1         | 4.013    | -0.025             |
|            | $C^2$      | 4.043    |                | $C^2$      | 4.013    | 0.050              |
|            | $C_2$      | 3 990    |                | $C_2$      | 3 927    | -0.063             |
|            | C4         | 3.001    |                | C4         | 3.027    | 0.063              |
|            | C5         | 1 167    |                | C5         | 1 227    | 0.060              |
|            | C6         | 4.020    |                | C5         | 4 108    | 0.000              |
|            | C0<br>C7   | 4.020    |                | C0<br>C7   | 4.108    | 0.038              |
|            | C8         | 4.037    |                | C8         | 4.038    | 0.014              |
| 1n         | U0<br>Ц1   | 0.051    |                | U0<br>Ц1   | 0.053    | 0.042              |
| 111        | H2         | 0.951    |                | H2         | 0.955    | _0.002             |
|            | H2         | 0.975    |                | 112<br>112 | 0.950    | -0.017             |
|            | 115<br>ЦЛ  | 0.202    |                | 115<br>117 | 0.273    | 0.004              |
|            | 114<br>115 | 0.901    |                | 114<br>115 | 0.927    | -0.034             |
|            | пэ<br>ц2   | 0.923    |                | ПЭ<br>Ц4   | 0.935    | 0.028              |
|            | 10<br>117  | 0.905    |                | 110<br>117 | 0.903    | 0.002              |
|            | П/<br>Ц9   | 0.970    |                | П/<br>Ц0   | 0.903    | -0.007             |
|            | Пð<br>110  | 0.993    |                | Пð<br>110  | 0.904    | -0.029             |
|            | ПУ<br>Ц10  | 0.930    |                | ПУ<br>Ц10  | 0.911    | -0.039             |
|            | 1110       | 0.700    |                | 1110       | 0.700    | 0.020              |

**Table S5**. The partial electron transfer property of 0D Te QDs to substrate 1n and its schematic diagram.



| Specimen   | Floments | Charge   | Specimen   | Flaments | Charge   | Gain (+) and loss  |
|------------|----------|----------|------------|----------|----------|--------------------|
| specificit | Elements | transfer | Specificit | Elements | transfer | (-) electron level |
|            | Sb1      | 5.016    |            | Sb1      | 5.020    | 0.004              |
|            | Sb2      | 4.980    |            | Sb2      | 4.980    | 0.000              |
|            | Sb3      | 4.990    |            | Sb3      | 4.986    | -0.004             |
|            | Sb4      | 5.014    |            | Sb4      | 5.008    | -0.006             |
|            | Sb5      | 5.016    |            | Sb5      | 5.019    | 0.003              |
|            | Sb6      | 4.980    |            | Sb6      | 4.980    | 0.000              |
|            | Sb7      | 4.989    |            | Sb7      | 4.982    | -0.007             |
| 0D Sb      | Sb8      | 5.014    |            | Sb8      | 5.016    | 0.002              |
| QDs        | Sb9      | 5.016    |            | Sb9      | 5.019    | 0.003              |
|            | Sb10     | 4.980    |            | Sb10     | 4.978    | -0.002             |
|            | Sb11     | 4.990    |            | Sb11     | 4.983    | -0.007             |
|            | Sb12     | 5.014    |            | Sb12     | 5.031    | 0.017              |
|            | Sb13     | 5.016    |            | Sb13     | 5.018    | 0.002              |
|            | Sb14     | 4.980    |            | Sb14     | 4.982    | 0.002              |
|            | Sb15     | 4.990    |            | Sb15     | 4.980    | -0.010             |
|            | Sb16     | 5.014    |            | Sb16     | 4.970    | -0.044             |
|            | S1       | 6.000    | -          | S1       | 5.990    | -0.010             |
|            | C1       | 4.042    |            | C1       | 4.021    | -0.021             |
|            | C2       | 4.040    |            | C2       | 4.028    | -0.012             |
|            | C3       | 3.990    | 0D Sh      | C3       | 3.957    | -0.033             |
|            | C4       | 3.991    |            | C4       | 3.946    | <u>-0.045</u>      |
|            | C5       | 4.166    | QD@III     | C5       | 4.216    | <u>0.050</u>       |
|            | C6       | 4.020    |            | C6       | 4.102    | 0.082              |
|            | C7       | 4.075    |            | C7       | 4.077    | 0.002              |
|            | C8       | 4.037    |            | C8       | 4.092    | 0.055              |
|            | H1       | 0.951    |            | H1       | 0.964    | 0.013              |
|            | H2       | 0.975    |            | H2       | 0.960    | -0.015             |
|            | H3       | 0.969    |            | Н3       | 1.006    | 0.037              |
| 1n         | H4       | 0.981    |            | H4       | 0.943    | -0.038             |
|            | H5       | 0.925    |            | H5       | 0.935    | 0.010              |
|            | H6       | 0.963    |            | H6       | 0.953    | -0.010             |
|            | H7       | 0.971    |            | H7       | 0.967    | -0.004             |
|            | H8       | 0.993    |            | H8       | 0.956    | -0.037             |
|            | H9       | 0.950    |            | H9       | 0.954    | 0.004              |
|            | H10      | 0.960    |            | H10      | 0.978    | 0.018              |
|            | Sb1      | 5.016    |            | Sb1      | 5.020    | 0.004              |
|            | Sb2      | 4.980    |            | Sb2      | 4.980    | 0.000              |
|            | Sb3      | 4.990    |            | Sb3      | 4.986    | -0.004             |
|            | Sb4      | 5.014    |            | Sb4      | 5.008    | -0.006             |
|            | Sb5      | 5.016    |            | Sb5      | 5.019    | 0.003              |
|            | Sb6      | 4.980    |            | Sb6      | 4.980    | 0.000              |

**Table S6**. The partial electron transfer property of 0D Sb QDs to substrate 1n and its schematic diagram.



| Specimen  | Flements   | Charge   | harge Specimen | Flements   | Charge   | Gain (+) and loss  |
|-----------|------------|----------|----------------|------------|----------|--------------------|
| Speeinien | Elements   | transfer | Speemien       | Elements   | transfer | (-) electron level |
|           | Se1        | 5.995    |                | Se1        | 5.984    | -0.011             |
|           | Se2        | 5.972    |                | Se2        | 5.985    | 0.013              |
|           | Se3        | 6.035    |                | Se3        | 6.032    | -0.003             |
|           | Se4        | 5.995    |                | Se4        | 5.984    | -0.011             |
|           | Se5        | 5.972    |                | Se5        | 5.9857   | 0.013              |
|           | Se6        | 6.035    |                | Se6        | 6.032    | -0.003             |
|           | Se7        | 5.995    |                | Se7        | 5.984    | -0.011             |
|           | Se8        | 5.972    |                | Se8        | 5.985    | 0.013              |
|           | Se9        | 6.035    |                | Se9        | 6.032    | -0.003             |
|           | Se10       | 5.995    |                | Se10       | 5.984    | -0.011             |
|           | Se11       | 5.972    |                | Se11       | 5.985    | 0.013              |
|           | Se12       | 6.035    |                | Se12       | 6.032    | -0.003             |
|           | Se13       | 6.012    |                | Se13       | 6.010    | -0.002             |
|           | Se14       | 5.993    |                | Se14       | 5.992    | -0.001             |
|           | Se15       | 5.989    |                | Se15       | 5.993    | 0.004              |
|           | Se16       | 6.035    |                | Se16       | 6.043    | 0.008              |
|           | Se17       | 5.969    |                | Se17       | 5.970    | 0.001              |
| 0D Se     | Se18       | 5.999    |                | Se18       | 5.987    | -0.012             |
| QDs       | Se19       | 6.012    |                | Se19       | 6.010    | -0.002             |
|           | Se20       | 5.993    |                | Se20       | 5.992    | -0.001             |
|           | Se21       | 5.989    |                | Se21       | 5.993    | 0.004              |
|           | Se22       | 6.035    |                | Se22       | 6.043    | 0.008              |
|           | Se23       | 5.969    |                | Se23       | 5.969    | 0.000              |
|           | Se24       | 5.998    |                | Se24       | 5.987    | -0.011             |
|           | Se25       | 6.012    |                | Se25       | 6.010    | -0.002             |
|           | Se26       | 5.993    |                | Se26       | 5.992    | -0.001             |
|           | Se27       | 5.989    | 0D Se          | Se27       | 5.993    | 0.004              |
|           | Se28       | 6.035    | OD@1n          | Se28       | 6.043    | 0.008              |
|           | Se29       | 5.969    | <b>VD</b> @III | Se29       | 5.974    | 0.005              |
|           | Se30       | 5.999    |                | Se30       | 5.987    | -0.012             |
|           | Se31       | 6.012    |                | Se31       | 6.010    | -0.002             |
|           | Se32       | 5.993    |                | Se32       | 5.992    | -0.001             |
|           | Se33       | 5.989    |                | Se33       | 5.993    | 0.004              |
|           | Se34       | 6.035    |                | Se34       | 6.047    | 0.008              |
|           | Se35       | 5.969    |                | Se35       | 5.974    | 0.005              |
|           | Se36       | 5.998    | _              | Se36       | 5.987    | -0.011             |
|           | SI         | 6.000    |                | SI         | 5.956    | <u>-0.044</u>      |
|           |            | 4.042    |                |            | 4.073    | 0.031              |
|           | C2<br>C2   | 4.040    |                | C2<br>C2   | 4.024    | -0.016             |
|           | 03         | 3.990    |                | C3         | 4.007    | 0.017              |
|           | C4         | 3.990    |                | C4         | 3.968    | -0.022             |
|           | C5         | 4.166    |                | C5         | 4.1/8    | 0.012              |
|           | C6         | 4.019    |                | C6         | 4.031    | 0.012              |
|           | C/         | 4.074    |                | C/         | 4.106    | 0.032              |
|           | C8         | 4.037    |                | C8         | 4.034    | -0.003             |
| In        |            | 0.950    |                |            | 0.948    | -0.002             |
|           | H2         | 0.975    |                | H2         | 0.943    | <u>-0.032</u>      |
|           | H3         | 0.969    |                | H3         | 0.94/    | -0.022             |
|           | H4         | 0.981    |                | H4         | 0.943    | <u>-0.038</u>      |
|           | НЭ         | 0.925    |                | НЭ         | 0.959    | 0.034              |
|           | H6         | 0.963    |                | H6         | 0.959    | -0.004             |
|           | H/         | 0.970    |                | H/         | 0.992    | 0.022              |
|           | H8<br>110  | 0.993    |                | H8         | 0.975    | -0.018             |
|           | H9<br>1110 | 0.950    |                | H9<br>1110 | 0.950    | 0.000              |
|           |            | 0.979    |                | E 10       | 1.000    | 0.041              |

**Table S7**. The partial electron transfer property of 0D Se QDs to substrate 1n and its schematic diagram.



| Specimen  | Flements   | Charge   | Specimen                 | Flements   | Charge   | Gain (+) and loss  |
|-----------|------------|----------|--------------------------|------------|----------|--------------------|
| specifien | Elements   | transfer | specifien                | Elements   | transfer | (-) electron level |
|           | Te1        | 5.969    |                          | Te1        | 5.981    | 0.012              |
|           | Te2        | 5.956    |                          | Te2        | 5.949    | -0.007             |
|           | Te3        | 6.082    |                          | Te3        | 6.070    | -0.012             |
|           | Te4        | 5.969    |                          | Te4        | 5.981    | 0.012              |
|           | Te5        | 5.956    |                          | Te5        | 5.949    | -0.007             |
|           | Te6        | 6.081    |                          | Te6        | 6.069    | -0.012             |
|           | Te7        | 5.969    |                          | Te7        | 5.981    | 0.012              |
|           | Te8        | 5.956    |                          | Te8        | 5.949    | -0.007             |
|           | Te9        | 6.082    |                          | Te9        | 6.070    | -0.012             |
|           | Te10       | 5.969    |                          | Te10       | 5.981    | 0.012              |
|           | Te11       | 5.956    |                          | Te11       | 5.949    | -0.007             |
|           | Te12       | 6.081    |                          | Te12       | 6.069    | -0.012             |
|           | Te13       | 6.006    |                          | Te13       | 6.003    | -0.003             |
|           | Te14       | 5.981    |                          | Te14       | 5.981    | 0.000              |
|           | Te15       | 5.997    |                          | Te15       | 6.002    | 0.005              |
|           | Te16       | 6.090    |                          | Te16       | 6.100    | 0.010              |
|           | Te17       | 5.949    |                          | Te17       | 5.953    | 0.004              |
| 0D Te     | Te18       | 5.968    |                          | Te18       | 5.960    | -0.008             |
| QDs       | Te19       | 6.006    |                          | Te19       | 6.003    | -0.003             |
|           | Te20       | 5.982    |                          | Te20       | 5.982    | 0.000              |
|           | Te21       | 5.996    |                          | Te21       | 6.002    | 0.006              |
|           | Te22       | 6.091    |                          | Te22       | 6.100    | 0.009              |
|           | Te23       | 5.949    |                          | Te23       | 5.953    | 0.004              |
|           | Te24       | 5.968    |                          | Te24       | 5.960    | -0.008             |
|           | Te25       | 6.006    |                          | Te25       | 6.003    | -0.003             |
|           | Te26       | 5.982    |                          | Te26       | 5.982    | 0.000              |
|           | Te27       | 5.996    | <b>0D</b> Τ <sub>Φ</sub> | Te27       | 6.002    | 0.006              |
|           | Te28       | 6.091    |                          | Te28       | 6.099    | 0.008              |
|           | Te29       | 5.949    | QD@2a                    | Te29       | 5.953    | 0.004              |
|           | Te30       | 5.968    |                          | Te30       | 5.959    | -0.008             |
|           | Te31       | 6.006    |                          | Te31       | 6.003    | -0.003             |
|           | Te32       | 5.982    |                          | Te32       | 5.982    | 0.000              |
|           | Te33       | 5.996    |                          | Te33       | 6.002    | 0.006              |
|           | Te34       | 6.091    |                          | Te34       | 6.099    | 0.008              |
|           | Te35       | 5.948    |                          | Te35       | 5.952    | 0.004              |
|           | Te36       | 5.968    | _                        | Te36       | 5.959    | -0.008             |
|           | <b>S</b> 1 | 2.286    |                          | <b>S</b> 1 | 2.275    | -0.011             |
|           | C1         | 7.423    |                          | C1         | 7.415    | -0.008             |
|           | C2         | 4.607    |                          | C2         | 4.566    | -0.041             |
|           | C3         | 3.968    |                          | C3         | 4.041    | <u>0.073</u>       |
|           | C4         | 4.100    |                          | C4         | 4.070    | -0.030             |
|           | C5         | 4.052    |                          | C5         | 4.082    | 0.030              |
|           | C6         | 3.926    |                          | C6         | 4.026    | <u>0.100</u>       |
|           | C7         | 4.056    |                          | C7         | 4.017    | -0.039             |
|           | C8         | 4.519    |                          | C8         | 4.547    | 0.028              |
| 2a        | H1         | 4.005    |                          | H1         | 4.079    | <u>0.074</u>       |
|           | H2         | 4.096    |                          | H2         | 4.030    | -0.066             |
|           | H3         | 4.057    |                          | H3         | 4.043    | -0.014             |
|           | H4         | 3.976    |                          | H4         | 4.074    | <u>0.098</u>       |
|           | H5         | 4.114    |                          | H5         | 4.040    | <u>-0.074</u>      |
|           | H6         | 0.960    |                          | H6         | 0.971    | 0.011              |
|           | H7         | 0.957    |                          | H7         | 0.918    | -0.039             |
|           | H8         | 0.933    |                          | H8         | 0.918    | -0.015             |
|           | H9         | 0.949    |                          | H9         | 0.940    | -0.009             |
|           | H10 0.928  |          | H10                      | 0.890      | -0.038   |                    |

**Table S8**. The partial electron transfer property of 0D Te QDs to substrate 2a and its schematic diagram.



| Specimen | Elements | Charge   | Specimen | Elements | Charge   | Gain (+) and loss  |
|----------|----------|----------|----------|----------|----------|--------------------|
|          | Liements | transfer | speeimen | Liements | transfer | (-) electron level |
|          | Sb1      | 5.015    |          | Sb1      | 5.011    | -0.004             |
|          | Sb2      | 4.980    |          | Sb2      | 4.985    | 0.005              |
|          | Sb3      | 4.990    |          | Sb3      | 4.975    | -0.015             |
|          | Sb4      | 5.014    |          | Sb4      | 5.028    | 0.014              |
|          | Sb5      | 5.016    |          | Sb5      | 5.011    | -0.005             |
|          | Sb6      | 4.980    |          | Sb6      | 4.985    | 0.005              |
|          | Sb7      | 4.990    |          | Sb7      | 4.977    | -0.013             |
| 0D Sb    | Sb8      | 5.014    |          | Sb8      | 5.022    | 0.008              |
| QDs      | Sb9      | 5.016    |          | Sb9      | 5.009    | -0.007             |
|          | Sb10     | 4.980    |          | Sb10     | 4.984    | 0.004              |
|          | Sb11     | 4.990    |          | Sb11     | 4.980    | -0.010             |
|          | Sb12     | 5.014    |          | Sb12     | 5.014    | 0.000              |
|          | Sb13     | 5.015    |          | Sb13     | 5.009    | -0.006             |
|          | Sb14     | 4.980    |          | Sb14     | 4.985    | 0.005              |
|          | Sb15     | 4.990    |          | Sb15     | 4.980    | -0.010             |
|          | Sb16     | 5.014    |          | Sb16     | 5.016    | 0.002              |
|          | S1       | 2.287    | -        | S1       | 2.294    | 0.007              |
|          | C1       | 7.423    |          | C1       | 7.411    | -0.012             |
|          | C2       | 4.608    |          | C2       | 4.603    | -0.005             |
|          | C3       | 3.968    | AD CL    | C3       | 4.015    | <u>0.047</u>       |
|          | C4       | 4.100    |          | C4       | 4.059    | -0.041             |
|          | C5       | 4.053    | QD@2a    | C5       | 4.036    | -0.017             |
|          | C6       | 3.926    |          | C6       | 4.048    | 0.122              |
|          | C7       | 4.056    |          | C7       | 4.038    | -0.018             |
|          | C8       | 4.519    |          | C8       | 4.560    | 0.041              |
|          | H1       | 4.005    |          | H1       | 4.060    | 0.055              |
|          | H2       | 4.096    |          | H2       | 4.015    | -0.081             |
|          | H3       | 4.057    |          | Н3       | 4.036    | -0.021             |
| 2a       | H4       | 3.976    |          | H4       | 4.069    | 0.093              |
|          | H5       | 4.114    |          | H5       | 4.012    | -0.102             |
|          | H6       | 0.960    |          | H6       | 0.942    | -0.018             |
|          | H7       | 0.957    |          | H7       | 0.948    | -0.009             |
|          | H8       | 0.933    |          | H8       | 0.940    | 0.007              |
|          | H9       | 0.949    |          | H9       | 0.913    | -0.036             |
|          | H10      | 0.928    |          | H10      | 0.895    | -0.033             |
|          | Sb1      | 0.952    |          | Sb1      | 0.935    | -0.017             |
|          | Sb2      | 0.948    |          | Sb2      | 0.968    | 0.020              |
|          | Sb3      | 0.930    |          | Sb3      | 0.941    | 0.011              |
|          | Sb4      | 0.909    |          | Sb4      | 0.939    | 0.030              |
|          | Sb5      | 0.890    |          | Sb5      | 0.922    | 0.032              |
|          | Sb6      | 1.455    |          | Sb6      | 1.427    | -0.028             |

**Table S9**. The partial electron transfer property of 0D Sb QDs to substrate 2a and its schematic diagram.



| Specimen | Elements               | Charge         | Specimen  | Elements   | Charge         | Gain (+) and loss      |
|----------|------------------------|----------------|-----------|------------|----------------|------------------------|
| speemien | Liements               | transfer       | Speeinien | Liements   | transfer       | (-) electron level     |
|          | Se1                    | 5.995          |           | Se1        | 5.982          | -0.013                 |
|          | Se2                    | 5.972          |           | Se2        | 5.981          | 0.009                  |
|          | Se3                    | 6.035          |           | Se3        | 6.033          | -0.002                 |
|          | Se4                    | 5.995          |           | Se4        | 5.983          | -0.012                 |
|          | Se5                    | 5.972          |           | Se5        | 5.981          | 0.009                  |
|          | Se6                    | 6.035          |           | Se6        | 6.032          | -0.003                 |
|          | Se7                    | 5.995          |           | Se7        | 5.982          | -0.013                 |
|          | Se8                    | 5.972          |           | Se8        | 5.981          | 0.009                  |
|          | Se9                    | 6.035          |           | Se9        | 6.033          | -0.002                 |
|          | Se10                   | 5.995          |           | Se10       | 5.982          | -0.013                 |
|          | Se11                   | 5.972          |           | Se11       | 5.981          | 0.009                  |
|          | Se12                   | 6.035          |           | Se12       | 6.033          | -0.002                 |
|          | Se13                   | 6.012          |           | Se13       | 6.004          | -0.008                 |
|          | Se14                   | 5.993          |           | Se14       | 5.997          | 0.004                  |
|          | Se15                   | 5,989          |           | Se15       | 5.995          | 0.006                  |
|          | Se16                   | 6.035          |           | Se16       | 6.035          | 0.000                  |
|          | Se17                   | 5.969          |           | Se17       | 5.980          | 0.011                  |
| 0D Se    | Se18                   | 5.998          |           | Se18       | 5.991          | -0.007                 |
| ODs      | Sel9                   | 6.012          |           | Sel9       | 6 004          | -0.008                 |
| QD5      | Se20                   | 5 993          |           | Se20       | 5 997          | 0.004                  |
|          | Se20                   | 5 989          |           | Se20       | 5 995          | 0.006                  |
|          | Se22                   | 6.035          |           | Se22       | 6.035          | 0.000                  |
|          | Se22                   | 5 968          |           | Se22       | 5 980          | 0.000                  |
|          | Se25                   | 5 998          |           | Se25       | 5,990          | -0.008                 |
|          | Se25                   | 6.012          |           | Se25       | 6.004          | -0.008                 |
|          | Se26                   | 5 993          |           | Se26       | 5 997          | -0.008                 |
|          | Se20                   | 5.080          |           | Se20       | 5.005          | 0.004                  |
|          | Se28                   | 6.035          | 0D Se     | Se28       | 6.033          | -0.002                 |
|          | Se20                   | 5.968          | QD@2a     | Se20       | 5 981          | -0.002                 |
|          | Se20                   | 5.008          |           | Se20       | 5.000          | 0.015                  |
|          | Se31                   | 6.012          |           | Se31       | 6.004          | -0.008                 |
|          | Se32                   | 5 993          |           | Se32       | 5 997          | -0.008                 |
|          | Se33                   | 5 989          |           | Se33       | 5 995          | 0.004                  |
|          | Se34                   | 6.035          |           | Se34       | 6.033          | -0.002                 |
|          | Se35                   | 5.968          |           | Se35       | 5.982          | -0.002                 |
|          | Se36                   | 5 998          |           | Se36       | 5 990          | -0.008                 |
|          | <u>State</u>           | 2.287          | -         | <u></u>    | 2 275          | -0.000                 |
|          | C1                     | 7 423          |           | C1         | 7.420          | -0.012                 |
|          | $C^2$                  | 1.423          |           | $C^2$      | 1.420          | -0.131                 |
|          | $C_2$                  | 3 967          |           | $C_2$      | 4.470          | 0.180                  |
|          | C4                     | 4 100          |           | C4         | 4.050          | 0.180                  |
|          | C5                     | 4.100          |           | C5         | 4.057          | -0.041                 |
|          | C6                     | 3 926          |           | C6         | 4.037          | 0.108                  |
|          | C0<br>C7               | 1.056          |           | C0<br>C7   | 4.025          | 0.031                  |
|          | C8                     | 4.050          |           | C8         | 4.025          | -0.031                 |
| 29       | U0<br>Н1               | 4.004          |           | U0<br>Н1   | 4.046          | $\frac{0.079}{0.042}$  |
| 24       | н1<br>11               | 4.004          |           | н1<br>11   | 4.071          | -0.024                 |
|          | H2                     | т.095<br>Д 056 |           | H2         | 1 020          | -0.024                 |
|          | 115<br>HA              | 3 075          |           | нл<br>ЦЛ   | 7.022          | -0.027                 |
|          | 11 <del>4</del><br>115 | 5.775<br>A 11A |           | 114<br>115 | 4.020          | -0.022                 |
|          | 115<br>Ц4              | +.114<br>0.060 |           | 115<br>Ц4  | +.020<br>0.010 | <u>-0.000</u><br>0.041 |
|          | 110<br>117             | 0.900          |           | 110<br>117 | 0.217          | -0.041                 |
|          | 11/<br>Ц0              | 0.237          |           | 11/<br>Ц0  | 0.932          | -0.003                 |
|          | 110<br>110             | 0.934          |           | 110<br>110 | 0.930          | -0.004                 |
|          | ПУ<br>Ц10              | 0.949          |           | ПУ<br>H10  | 0.934          | 0.003                  |
|          | 1110                   | 0.740          |           | 1110       | 0.075          | -0.033                 |

**Table S10**. The partial electron transfer property of 0D Se QDs to substrate 2a and its schematic diagram.



| Sample      | $ \Delta q /e^-$ |
|-------------|------------------|
| 0D Bi QD@1n | 1.097            |
| 2D Bi QD@1n | 0.228            |
| 0D Bi QD@2a | 0.824            |
| 2D Bi QD@2a | 0.697            |
| 0D Te QD@1n | 0.067            |
| 0D Sb QD@1n | 0.055            |
| 0D Se QD@1n | 0.037            |
| 0D Te QD@2a | 0.084            |
| 0D Sb QD@2a | 0.089            |
| 0D Se QD@2a | 0.117            |

**Table S11**. The average of the five biggest absolute change differences  $(|\Delta q|)$  between the photocatalyst surface and substrate.

The TEM images of all the obtained QDs (Sb QDs, Te QDs and Se QDs) exhibit a very uniform distribution with a narrow size of 3-5 nm (Figure S1a, Figure S2a and Figure S3a). The atomic arrangements of the obtained QDs are also confirmed by HRTEM image (Figure S1b, Figure S2b and Figure S3b). In addition, all the obtained QDs show strong adsorption in the UV-Vis region (Figure S1c, Figure S2c and Figure S3c).



Fig. S1. Structural characterization of 0D Sb QDs. (a) TEM image, (b) HRTEM image, and (c) UV-Vis spectrum.



Fig. S2. Structural characterization of 0D Te QDs. (a) TEM image, (b) HRTEM image, and (c) UV-Vis spectrum.



Fig. S3. Structural characterization of 0D Se QDs. (a) TEM image, (b) HRTEM image, and (c) UV-Vis spectrum.



**Fig. S4**. Structural characterization of 2D Bi NSs. (a) TEM image, (b) HRTEM image, and (c) UV-Vis spectrum.



Fig. S5. HRMS of radical quenching intermediate. (HRMS [ESI]: m/z calculated for  $C_{15}H_{22}CINOS [M+H]^+ 300.1183$ , found 300.1180.)

Synthesis of thiophosphinates:



To an oven dried reaction vessel equipped with a stirring bar was charged with phosphine oxide (0.4 mmol), 1,4-dioxane solution of Bi QDs (1 M, 1 ml) was added followed by the addition of thiol (0.2 mmol). The reaction vessel was then sealed and stirred at ambient temperature under blue light irradiation for 2 hours. The reaction was stopped when it completed, monitored by TLC. The crude product was purified by column chromatography using silica gel with ethyl acetate in petroleum ether as the eluent.

#### S-(4-chlorophenyl) diphenylphosphinothioate (3a)<sup>[1]</sup>



Yield: 87%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.83-7.72 (m, 4H), 7.49-7.43 (m, 2H), 7.42-7.36 (m, 4H), 7.32-7.27 (m, 2H), 7.14-7.07 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 136.57, 136.53, 135.58, 135.55, 132.67, 132.55, 132.52, 131.66, 131.60, 131.56, 129.36, 129.34, 128.73, 128.60, 124.67, 124.62.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.68.

**IR (ATR)**:  $\tilde{v}$ = 2922, 1674, 1588, 1438, 1129, 960, 728, 551 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{18}H_{14}CIOPS$  [M+H]<sup>+</sup> 345.0264, found 345.0266.

#### S-(4-chlorophenyl) bis(3,5-dimethylphenyl)phosphinothioate (3b)



Yield: 78%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 13.3 Hz, 4H), 7.32-7.28 (m, 2H), 7.13-7.09 (m, 2H), 7.06 (s, 2H), 2.25 (s, 12H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.44, 138.31, 136.56, 136.52, 135.40, 135.37, 134.24, 134.21, 132.44, 131.38, 129.28, 129.26, 129.16, 129.05, 125.16, 125.11, 21.32.

<sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>) δ 43.07.

**IR (ATR)**:  $\tilde{v}$ = 3433, 2920, 1598, 1471, 1385, 1202, 1085, 819, 692, 586 cm<sup>-1</sup>.

25/98

HRMS [ESI]: m/z calculated for  $C_{22}H_{22}CIOPS$  [M+H]<sup>+</sup> 401.0890, found 401.0897.

S-(4-chlorophenyl) di-p-tolylphosphinothioate (3c)<sup>[2]</sup>



Yield: 73%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.68-7.60 (m, 4H), 7.33-7.28 (m, 2H), 7.20-7.16 (m, 4H), 7.13-7.08 (m, 2H), 2.32 (s, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.12, 143.09, 136.42, 136.38, 135.35, 135.33, 131.67, 131.56, 129.62, 129.44, 129.30, 129.28, 128.53, 125.21, 125.16, 21.67, 21.66.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 42.26.

**IR (ATR)**:  $\tilde{v}$ = 3423, 2920, 1600, 1474, 1397, 1201, 1113, 964, 808, 661, 532 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{20}H_{18}CIOPS$  [M+H]<sup>+</sup> 373.0577, found 373.0580.

# S-(4-chlorophenyl) bis(4-methoxyphenyl)phosphinothioate (3d)



Yield: 83%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.80-7.72 (m, 4H), 7.41-7.36 (m, 2H), 7.21-7.15 (m, 2H), 6.99-6.92 (m, 4H), 3.84 (s, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 162.83, 162.80, 136.35, 136.31, 135.27, 135.24, 133.60, 133.48, 129.27, 129.25, 125.54, 125.49, 124.10, 122.96, 114.21, 114.07, 55.41.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.86.

**IR (ATR)**:  $\tilde{v}$ = 3404, 2925, 2838, 2308, 1595, 1501, 1439, 1255, 1116, 952, 817, 668, 546 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>20</sub>H<sub>18</sub>ClO<sub>3</sub>PS [M+H]<sup>+</sup> 405.0476, found 405.0475.

# S-(4-chlorophenyl) di-o-tolylphosphinothioate (3e)



Yield: 81%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 (ddd, *J* = 15.2, 7.7, 1.3 Hz, 2H), 7.47-7.39 (m, 4H), 7.29-7.19 (m, 6H), 2.42 (s, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.01, 141.91, 136.88, 136.85, 135.47, 135.44, 132.71, 132.59,

132.48, 132.45, 132.04, 131.92, 131.61, 130.59, 129.23, 129.21, 125.71, 125.58, 124.86, 124.81, 21.50, 21.46.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 44.04.

**IR (ATR)**:  $\tilde{v}$ = 3429, 3056, 2924, 2852, 1590, 1473, 1385, 1192, 1087, 1012, 748, 559 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>20</sub>H<sub>18</sub>ClOPS [M+H]<sup>+</sup> 373.0577, found 373.0579.

# S-(4-chlorophenyl) di(naphthalen-2-yl)phosphinothioate (3f)



Yield: 92%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.36 (dd, *J* = 15.0, 1.3 Hz, 2H), 7.86-7.70 (m, 8H), 7.51-7.39 (m, 4H), 7.35-7.29 (m, 2H), 7.05-6.98 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 136.60, 136.56, 135.65, 135.62, 134.93, 134.91, 134.13, 134.03, 132.49, 132.34, 129.75, 129.45, 129.43, 129.12, 128.69, 128.67, 128.56, 127.88, 127.87, 127.19, 127.18, 126.15, 126.03, 124.66, 124.61.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.78.

**IR (ATR)**:  $\tilde{v}$ = 3435, 3053, 2924, 2853, 1587, 1473, 1199, 1089, 819, 753, 643, 546 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>26</sub>H<sub>18</sub>ClOPS [M+H]<sup>+</sup> 445.0577, found 445.0580.

# S-(2-fluorophenyl) diphenylphosphinothioate (3g)<sup>[3]</sup>



Yield: 61%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.84-7.76 (m, 4H), 7.64-7.58 (m, 1H), 7.48-7.41 (m, 2H), 7.39-7.34 (m, 4H), 7.19-7.11 (m, 1H), 6.99-6.82 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.84, 163.80, 161.37, 161.33, 137.88, 137.84, 132.78, 132.54, 132.51, 131.71, 131.67, 131.62, 131.56, 131.36, 131.34, 131.28, 131.26, 131.18, 128.64, 128.51, 128.34, 128.20, 124.74, 124.72, 124.70, 124.68, 116.09, 116.08, 115.87, 115.85, 113.57, 113.52, 113.39, 113.34.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 42.14, 42.12.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -111.31, -111.32.

**IR (ATR)**:  $\tilde{v}$ = 3478, 2923, 1646, 1438, 1129, 959, 692, 551 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for C<sub>18</sub>H<sub>14</sub>FOPS [M+H]<sup>+</sup> 329.0560, found 329.0556.

## S-(4-fluorophenyl) diphenylphosphinothioate (3h)<sup>[4]</sup>



Yield: 88%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.83-7.70 (m, 4H), 7.48-7.41 (m, 2H), 7.40-7.29 (m, 6H), 6.86-6.77 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.66, 164.63, 162.17, 162.15, 137.51, 137.47, 137.42, 137.39, 132.48, 132.45, 131.66, 131.64, 131.59, 131.54, 128.69, 128.56, 121.16, 121.13, 121.11, 121.08, 116.48, 116.46, 116.26, 116.24.

<sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>) δ 41.69, 41.67.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -111.64, -111.65.

**IR (ATR)**:  $\tilde{v}$ = 3061, 2922, 1585, 1487, 1397, 1206, 1094, 961, 836, 695, 558 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for C<sub>18</sub>H<sub>14</sub>FOPS [M+H]<sup>+</sup> 329.0560, found 329.0566.

#### S-(p-tolyl) diphenylphosphinothioate (3i)<sup>[4]</sup>



Yield: 80%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.83-7.72 (m, 4H), 7.47-7.40 (m, 2H), 7.40-7.33 (m, 4H), 7.28-7.21 (m, 2H), 6.93 (d, *J* = 7.9 Hz, 2H), 2.17 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 139.23, 139.21, 135.40, 135.37, 133.14, 132.29, 132.26, 132.08, 131.70, 131.60, 129.99, 129.97, 128.59, 128.46, 122.22, 122.17, 21.19.

<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 41.46.

**IR (ATR)**:  $\tilde{v}$ = 3445, 3049, 1645, 1437, 1209, 996, 810, 695, 557 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for C<sub>19</sub>H<sub>17</sub>OPS [M+H]<sup>+</sup> 325.0810, found 325.0811.

#### S-(4-(tert-butyl)phenyl) diphenylphosphinothioate (3j)<sup>[4]</sup>



Yield: 79%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.81-7.73 (m, 4H), 7.47-7.41 (m, 2H), 7.40-7.34 (m, 4H), 7.30-7.25 (m, 2H), 7.17-7.12 (m, 2H), 1.16 (s, 9H).

28/98

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.30, 152.27, 135.25, 135.22, 133.17, 132.27, 132.24, 132.11, 131.70, 131.60, 128.57, 128.43, 126.33, 126.31, 122.24, 122.19, 34.61, 31.15.
<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 41.71.
IR (ATR): ṽ= 3444, 2950, 1586, 1436, 1208, 1112, 828, 695, 524 cm<sup>-1</sup>.
HRMS [ESI]: m/z calculated for C22H23OPS [M+H]<sup>+</sup> 367.1280, found 367.1279.

# S-(m-tolyl) diphenylphosphinothioate (3k)<sup>[1]</sup>



Yield: 80%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.82-7.72 (m, 4H), 7.47-7.40 (m, 2H), 7.40-7.33 (m, 4H), 7.19-7.13 (m, 2H), 7.04-6.94 (m, 2H), 2.14 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.99, 138.97, 136.10, 136.06, 133.16, 132.39, 132.35, 132.28, 132.25, 132.10, 131.71, 131.61, 129.82, 129.80, 128.90, 128.88, 128.56, 128.43, 125.70, 125.65, 21.20.
 <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 41.32.

**IR (ATR)**:  $\tilde{v}$ = 3440, 3057, 2921, 1590, 1436, 1207, 1112, 781, 695, 568 cm<sup>-1</sup>.

**HRMS [ESI]**: m/z calculated for  $C_{19}H_{17}OPS$  [M+H]<sup>+</sup> 325.0810, found 325.0806.

# S-(o-tolyl) diphenylphosphinothioate (31)<sup>[4]</sup>



Yield: 75%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.90-7.79 (m, 4H), 7.58-7.50 (m, 2H), 7.50-7.42 (m, 5H), 7.23-7.13 (m, 2H), 7.03 (td, *J* = 7.4, 1.9 Hz, 1H), 2.36 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.93, 142.89, 136.81, 136.77, 133.28, 132.32, 132.29, 132.22, 131.55, 131.45, 130.73, 130.71, 129.33, 129.30, 128.55, 128.42, 126.49, 126.47, 125.38, 125.33, 21.45.
<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 41.13.

**IR (ATR)**:  $\tilde{v}$ = 3435, 3076, 2923, 1644, 1588, 1438, 1129, 959, 692, 525 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{19}H_{17}OPS$  [M+H]<sup>+</sup> 325.0810, found 325.0811.

## S-(2,4-dimethylphenyl) diphenylphosphinothioate (3m)<sup>[5]</sup>



Yield: 95%, pale yellow solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.89-7.81 (m, 4H), 7.55-7.50 (m, 2H), 7.48-7.42 (m, 4H), 7.34-7.30 (m, 1H), 6.98 (s, 1H), 6.84 (dd, *J* = 8.0, 1.9 Hz, 1H), 2.33 (s, 3H), 2.25 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 142.78, 142.75, 139.52, 139.49, 136.77, 136.74, 133.45, 132.39, 132.26, 132.23, 131.67, 131.65, 131.58, 131.48, 128.52, 128.39, 127.36, 127.34, 121.52, 121.47, 21.39, 21.12.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 40.95.

**IR (ATR)**:  $\tilde{v}$ = 3075, 2920, 1587, 1436, 1276, 1198, 1109, 961, 832, 695, 546 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>20</sub>H<sub>19</sub>OPS [M+H]<sup>+</sup> 339.0967, found 339.0969.

## S-(2,6-dimethylphenyl) diphenylphosphinothioate (3n)<sup>[6]</sup>



Yield: 89%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.83-7.73 (m, 4H), 7.59-7.52 (m, 2H), 7.49-7.41 (m, 4H), 7.17-7.11 (m, 1H), 7.07-7.01 (m, 2H), 2.31 (s, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 145.15, 145.12, 133.64, 132.59, 132.29, 132.26, 131.38, 131.27, 129.32, 129.29, 128.48, 128.40, 128.38, 128.35, 124.49, 124.43, 22.57.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 39.89.

**IR (ATR)**:  $\tilde{v}$ = 3445, 3050, 2923, 1581, 1437, 1191, 1111, 777, 698, 567 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{20}H_{19}OPS$  [M+H]<sup>+</sup> 339.0967, found 339.0964.

#### S-(4-methoxyphenyl) diphenylphosphinothioate (30)<sup>[1]</sup>



Yield: 74%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.91-7.82 (m, 4H), 7.56-7.50 (m, 2H), 7.49-7.43 (m, 4H), 7.39-7.32 (m, 2H), 6.78-6.72 (m, 2H), 3.75 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.46, 160.44, 137.09, 137.05, 133.13, 132.26, 132.23, 132.07,

131.69, 131.59, 128.58, 128.45, 116.00, 115.94, 114.81, 114.80, 55.29. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  41.41. **IR (ATR)**:  $\tilde{\nu}$ = 3431, 2930, 1590, 1494, 1437, 1249, 1197, 1025, 827, 698, 566 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>19</sub>H<sub>17</sub>O<sub>2</sub>PS [M+H]<sup>+</sup> 341.0760, found 341.0761.

#### S-(2-methoxyphenyl) diphenylphosphinothioate (3p)<sup>[1]</sup>



Yield: 63%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.95-7.85 (m, 4H), 7.71 (dt, *J* = 7.7, 1.7 Hz, 1H), 7.55-7.48 (m, 2H), 7.47-7.40 (m, 4H), 7.25 (ddt, *J* = 8.9, 7.7, 1.6 Hz, 1H), 6.89 (td, *J* = 7.6, 1.2 Hz, 1H), 6.73 (dd, *J* = 8.3, 1.1 Hz, 1H), 3.65 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.43, 159.39, 137.66, 137.62, 133.55, 132.48, 132.15, 132.12, 131.70, 131.60, 130.73, 130.71, 128.36, 128.23, 121.22, 121.20, 114.09, 114.04, 111.10, 111.08, 55.51.
<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 41.56.

**IR (ATR)**:  $\tilde{v}$ = 3450, 3057, 2923, 1581, 1479, 1436, 1201, 1114, 1023, 750, 696, 563, 524 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>19</sub>H<sub>17</sub>O<sub>2</sub>PS [M+H]<sup>+</sup> 341.0760, found 341.0762.

# S-(naphthalen-2-yl) diphenylphosphinothioate (3q)<sup>[4]</sup>



Yield: 85%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.04-8.00 (m, 1H), 7.94-7.86 (m, 4H), 7.78-7.71 (m, 2H), 7.68 (d, *J* = 8.6 Hz, 1H), 7.55-7.42 (m, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 135.46, 135.41, 133.52, 133.50, 133.02, 133.02, 133.00, 132.99, 132.40, 132.37, 131.72, 131.61, 131.58, 131.55, 128.71, 128.70, 128.65, 128.52, 127.83, 127.62, 126.91, 126.46, 123.47, 123.41.

<sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>) δ 41.62.

**IR (ATR)**:  $\tilde{v}$ = 3423, 3053, 2921, 1586, 1438, 1353, 1203, 1108, 817, 694, 558 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{22}H_{17}OPS$  [M+H]<sup>+</sup> 361.0810, found 361.0816.

#### S-(2-methylfuran-3-yl) diphenylphosphinothioate (3r)



Yield: 66%, brown solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.91-7.84 (m, 4H), 7.59-7.53 (m, 2H), 7.52-7.46 (m, 4H), 7.18 (d, J = 1.9 Hz, 1H), 6.19 (d, J = 1.9 Hz, 1H), 2.18 (d, J = 2.6 Hz, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 157.76, 157.70, 140.70, 133.12, 132.40, 132.37, 132.08, 131.61, 131.50, 128.60, 128.47, 115.62, 115.61, 100.97, 100.92, 11.85, 11.83. <sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.59. **IR** (**ATR**):  $\tilde{\nu}$ = 3444, 3052, 2916, 1587, 1439, 1193, 1115, 943, 697, 560 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>17</sub>H<sub>15</sub>O<sub>2</sub>PS [M+H]<sup>+</sup> 315.0603, found 315.0605.

#### S-benzyl diphenylphosphinothioate (3s)<sup>[4]</sup>



Yield: 21%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.94-7.84 (m, 4H), 7.59-7.52 (m, 2H), 7.52-7.45 (m, 4H), 7.24 (d, *J* = 4.1 Hz, 4H), 4.05 (d, *J* = 9.1 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 136.82, 136.76, 133.53, 132.47, 132.36, 132.33, 131.60, 131.50, 129.04, 128.74, 128.61, 128.59, 127.45, 127.45, 33.20, 33.18.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 42.80.

**IR (ATR)**:  $\tilde{v}$ = 3433, 2923, 1437, 1195, 1092, 994, 693, 570, 486 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{19}H_{17}OPS$  [M+H]<sup>+</sup> 325.0810, found 325.0808.

#### S-(4-chlorobenzyl) diphenylphosphinothioate (3t)<sup>[7]</sup>



**Yield**: 21%, white solid. <sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.81-7.72 (m, 4H), 7.51-7.44 (m, 2H), 7.42-7.35 (m, 4H), 7.117.02 (m, 4H), 3.92 (d, J = 10.1 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  135.49, 135.45, 133.36, 133.25, 132.42, 132.39, 131.58, 131.47, 130.42, 128.76, 128.64, 128.64, 32.55, 32.53. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  42.84. IR (ATR):  $\tilde{\nu}$ = 3434, 2923, 1489, 1436, 1246, 1191, 1089, 818, 568 cm<sup>-1</sup>. HRMS [ESI]: m/z calculated for C<sub>19</sub>H<sub>16</sub>ClOPS [M+H]<sup>+</sup> 359.0421, found 359.0426.

## S-(2,4-dimethylphenyl) di-o-tolylphosphinothioate (3y)



Yield: 64%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.90-7.77 (m, 2H), 7.47-7.38 (m, 2H), 7.30-7.17 (m, 5H), 7.01 (s, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 2.33 (s, 6H), 2.31 (s, 3H), 2.27 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.35, 143.32, 141.77, 141.67, 139.43, 139.40, 137.32, 137.29, 132.58, 132.53, 132.47, 132.16, 132.13, 131.83, 131.71, 131.58, 131.56, 131.51, 127.22, 127.20, 125.61, 125.47, 121.18, 121.13, 21.35, 21.31, 21.13.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 42.51.

**IR (ATR)**:  $\tilde{v}$ = 3418, 3054, 2920, 2852, 1943, 1591, 1453, 1275, 1190, 1081, 759, 553 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>22</sub>H<sub>23</sub>OPS [M+H]<sup>+</sup> 367.1280, found 367.1273.

#### S-(o-tolyl) di-o-tolylphosphinothioate (3z)<sup>[8]</sup>



Yield: 57%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.86-7.77 (m, 2H), 7.45-7.36 (m, 3H), 7.28-7.18 (m, 6H), 7.05-7.00 (m, 1H), 2.34 (s, 3H), 2.33 (s, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.51, 143.48, 141.78, 141.68, 137.36, 137.32, 132.52, 132.40, 132.38, 132.23, 132.20, 131.85, 131.73, 131.36, 130.64, 130.62, 129.23, 129.21, 126.33, 126.31, 125.64, 125.51, 125.06, 125.01, 21.39, 21.33, 21.29.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 42.84.

**IR (ATR)**:  $\tilde{v}$ = 3436, 3058, 2920, 1940, 1589, 1454, 1188, 1079, 755, 713, 553 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{21}H_{21}OPS$  [M+H]<sup>+</sup> 353.1123, found 353.1119.

#### S-(m-tolyl) di-o-tolylphosphinothioate (3aa)



Yield: 56%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 15.0, 7.7 Hz, 2H), 7.45-7.37 (m, 2H), 7.31-7.19 (m, 6H), 7.15-7.06 (m, 2H), 2.41 (s, 6H), 2.25 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 141.97, 141.87, 138.86, 138.84, 136.37, 136.33, 132.76, 132.71, 132.64, 132.24, 132.21, 132.05, 131.88, 131.76, 131.03, 129.74, 129.72, 128.80, 128.78, 125.80, 125.75, 125.58, 125.45, 21.49, 21.45, 21.25.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 43.81.

**IR (ATR)**:  $\tilde{v}$ = 3443, 3058, 2921, 2852, 1590, 1448, 1190, 1074, 917, 764, 688, 571 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>21</sub>H<sub>21</sub>OPS [M+H]<sup>+</sup> 353.1123, found 353.1122.

S-(4-(tert-butyl)phenyl) bis(4-methoxyphenyl)phosphinothioate (3ab)



Yield: 92%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.82-7.71 (m, 4H), 7.39-7.33 (m, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 6.93 (dd, *J* = 8.8, 2.7 Hz, 4H), 3.82 (s, 6H), 1.24 (s, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 162.65, 162.62, 152.00, 151.97, 135.06, 135.02, 133.62, 133.50, 126.25, 126.23, 124.69, 123.56, 123.11, 123.05, 114.05, 113.91, 55.37, 34.59, 31.17.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.79.

**IR (ATR)**:  $\tilde{v}$ = 3437, 3055, 2963, 2557, 1913, 1593, 1442, 1251, 1179, 1113, 1021, 826, 528 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>24</sub>H<sub>27</sub>O<sub>3</sub>PS [M+H]<sup>+</sup> 427.1491, found 427.1492.

#### S-(m-tolyl) bis(4-methoxyphenyl)phosphinothioate (3ac)



Yield: 56%, white solid.

<sup>1</sup>H NMR (400 MHz, Chloroform-d) δ 7.73-7.63 (m, 4H), 7.20-7.12 (m, 2H), 7.03-6.95 (m, 2H), 6.86

(dd, *J* = 8.8, 2.8 Hz, 4H), 3.75 (s, 6H), 2.15 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 162.67, 162.64, 138.89, 138.87, 135.92, 135.88, 133.63, 133.51, 132.17, 132.13, 129.63, 129.61, 128.84, 128.82, 126.48, 126.43, 124.61, 123.47, 114.07, 113.93, 55.39, 21.23.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.64.

**IR (ATR)**:  $\tilde{v}$ = 3441, 3055, 2923, 2839, 1594, 1568, 1499, 1256, 1115, 1025, 829, 559 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>21</sub>H<sub>21</sub>O<sub>3</sub>PS [M+H]<sup>+</sup> 385.1022, found 385.1016.

## S-(2,6-dimethylphenyl) bis(4-methoxyphenyl)phosphinothioate (3ad)



Yield: 98%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.73-7.64 (m, 4H), 7.14-7.09 (m, 1H), 7.02 (d, *J* = 7.5 Hz, 2H), 6.93 (dd, *J* = 8.9, 2.7 Hz, 4H), 3.84 (s, 6H), 2.33 (s, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 162.68, 162.64, 145.03, 144.99, 133.31, 133.20, 129.15, 129.13, 128.33, 128.31, 125.23, 125.20, 125.14, 124.10, 113.93, 113.79, 55.41, 22.66.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 40.15.

**IR (ATR)**:  $\tilde{v}$ = 3430, 3053, 2930, 2837, 2554, 1591, 1463, 1293, 1119, 827, 664, 558 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>22</sub>H<sub>23</sub>O<sub>3</sub>PS [M+H]<sup>+</sup> 399.1178, found 399.1182.

#### S-(p-tolyl) bis(4-methoxyphenyl)phosphinothioate (3ae)<sup>[5]</sup>



Yield: 60%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.81-7.73 (m, 4H), 7.33 (dd, *J* = 8.1, 1.7 Hz, 2H), 7.03 (d, *J* = 7.9 Hz, 2H), 6.95 (dd, *J* = 8.8, 2.7 Hz, 4H), 3.84 (s, 6H), 2.27 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 162.65, 162.62, 138.96, 138.93, 135.20, 135.17, 133.63, 133.52, 129.93, 129.91, 124.65, 123.51, 123.05, 123.00, 114.08, 113.94, 55.38, 21.19.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.61.

**IR (ATR)**:  $\tilde{v}$ = 3445, 2924, 1594, 1499, 1257, 1116, 807, 558 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{21}H_{21}O_3PS$  [M+H]<sup>+</sup> 385.1022, found 385.1023.

#### S-(o-tolyl) di(naphthalen-2-yl)phosphinothioate (3af)



Yield: 74%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 14.8 Hz, 2H), 7.99-7.84 (m, 8H), 7.68-7.48 (m, 5H), 7.21-7.09 (m, 2H), 6.99 (td, *J* = 7.2, 6.7, 2.4 Hz, 1H), 2.43 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.95, 142.91, 136.79, 136.75, 134.87, 134.84, 133.88, 133.79, 132.46, 132.32, 130.82, 130.80, 130.42, 129.37, 129.35, 129.11, 128.46, 128.44, 128.31, 127.84, 127.03, 126.56, 126.55, 126.25, 126.14, 125.41, 125.36, 21.58.

<sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>) δ 41.22.

**IR (ATR)**:  $\tilde{v}$ = 3444, 3052, 2920, 1621, 1457, 1193, 1089, 750, 645, 545 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{27}H_{21}OPS$  [M+H]<sup>+</sup> 425.1123, found 425.1121.

#### S-(m-tolyl) di(naphthalen-2-yl)phosphinothioate (3ag)



Yield: 82%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 14.8 Hz, 2H), 8.00-7.82 (m, 8H), 7.64-7.50 (m, 4H), 7.33 (s, 2H), 7.10-6.98 (m, 2H), 2.15 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 139.08, 139.06, 136.19, 136.15, 134.87, 134.84, 134.07, 133.97, 132.49, 132.44, 132.40, 132.35, 130.21, 129.94, 129.92, 129.14, 129.09, 129.00, 128.98, 128.51, 128.49, 128.38, 127.84, 127.04, 126.34, 126.23, 125.68, 125.62, 21.15.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.60.

IR (ATR): v= 3446, 3055, 2920, 1587, 1357, 1211, 1087, 827, 653, 533 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{27}H_{21}OPS$  [M+H]<sup>+</sup> 425.1123, found425.1129.

#### S-(p-tolyl) di(naphthalen-2-yl)phosphinothioate (3ah)<sup>[5]</sup>



**Yield**: 94%, white solid. <sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.50 (d, *J* = 14.8 Hz, 2H), 7.98-7.85 (m, 8H), 7.64-7.51 (m, 4H),

36/98
7.41 (d, *J* = 7.7 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 2.22 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 139.31, 139.29, 135.43, 135.39, 134.87, 134.84, 134.06, 133.96, 132.51, 132.37, 130.26, 130.10, 130.08, 129.19, 129.11, 128.51, 128.46, 128.38, 127.84, 127.01, 126.37, 126.25, 122.22, 122.17, 21.16.

<sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>) δ 41.58.

**IR (ATR)**:  $\tilde{v}$ = 3448, 3052, 1624, 1490, 1339, 1204, 1086, 808, 646, 546 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{27}H_{21}OPS$  [M+H]<sup>+</sup> 425.1123, found 425.1129.

S-(o-tolyl) bis(3,5-dimethylphenyl)phosphinothioate (3ai)



Yield: 91%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 13.2 Hz, 4H), 7.22-7.12 (m, 4H), 7.05 (td, *J* = 7.2, 2.2 Hz, 1H), 2.38 (s, 3H), 2.33 (s, 12H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.87, 142.83, 138.22, 138.08, 136.84, 136.81, 133.99, 133.96, 133.06, 132.01, 130.63, 130.61, 129.17, 129.14, 129.06, 128.96, 126.43, 126.41, 125.85, 125.80, 21.44, 21.30.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 42.45.

**IR (ATR)**:  $\tilde{v}$ = 3451, 2918, 2855, 1472, 1193, 875, 761, 690, 582 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{23}H_{25}OPS$  [M+H]<sup>+</sup> 381.1436, found 381.1432.

S-(m-tolyl) bis(3,5-dimethylphenyl)phosphinothioate (3aj)



Yield: 70%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 13.2 Hz, 4H), 7.27 (d, *J* = 10.4 Hz, 2H), 7.16-7.04 (m, 4H), 2.34 (s, 12H), 2.25 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.87, 138.85, 138.26, 138.12, 136.19, 136.15, 133.98, 133.95, 132.91, 132.40, 132.37, 131.86, 129.70, 129.68, 129.22, 129.12, 128.83, 128.81, 126.13, 126.08, 21.30, 21.21.

<sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>) δ 42.63.

**IR (ATR)**:  $\tilde{v}$ = 3441, 2918, 1590, 1468, 1208, 1119, 846, 687, 572 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{23}H_{25}OPS$  [M+H]<sup>+</sup> 381.1436, found 381.1439.

#### S-(2,4-dimethylphenyl) bis(3,5-dimethylphenyl)phosphinothioate (3ak)



Yield: 85%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 13.1 Hz, 4H), 7.35 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.14 (s, 2H), 6.98 (s, 1H), 6.86 (d, *J* = 7.9 Hz, 1H), 2.33 (s, 15H), 2.25 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.77, 142.73, 139.30, 139.27, 138.16, 138.03, 136.84, 136.81, 133.92, 133.89, 133.20, 132.16, 131.56, 131.54, 129.09, 128.98, 127.30, 127.28, 122.02, 121.97, 21.37, 21.30, 21.07.

<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 42.38.

**IR (ATR)**:  $\tilde{v}$ = 3443, 2916, 1599, 1448, 1211, 1045, 818, 693, 579 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for C<sub>24</sub>H<sub>27</sub>OPS [M+H]<sup>+</sup> 395.1593, found 395.1594.

#### S-(2,6-dimethylphenyl) bis(3,5-dimethylphenyl)phosphinothioate (3al)



Yield: 97%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 13.0 Hz, 4H), 7.18-7.10 (m, 3H), 7.04 (d, *J* = 7.7 Hz, 2H), 2.32 (s, 18H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 145.22, 145.18, 138.13, 137.99, 133.90, 133.87, 133.30, 132.26, 129.14, 129.11, 128.86, 128.75, 128.29, 128.27, 124.95, 124.89, 77.47, 77.15, 76.84, 22.54, 22.54, 22.53, 21.29.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.25.

**IR (ATR)**:  $\tilde{v}$ = 3435, 2914, 2855, 1598, 1458, 1199, 846, 686, 577 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for C<sub>24</sub>H<sub>27</sub>OPS [M+H]<sup>+</sup> 395.1593, found 395.1595.

#### S-(4-(tert-butyl)phenyl) di-p-tolylphosphinothioate (3am)<sup>[9]</sup>



Yield: 88%, white solid.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.74 (dd, *J* = 12.7, 8.0 Hz, 4H), 7.37 (d, *J* = 7.1 Hz, 2H), 7.28-7.21 (m, 6H), 2.40 (s, 6H), 1.26 (s, 9H).
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.05, 152.02, 142.75, 142.72, 135.13, 135.09, 131.71, 131.60, 130.20, 129.28, 129.14, 129.11, 126.27, 126.25, 122.80, 122.75, 34.59, 31.16, 21.66, 21.64.
<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 42.17.
IR (ATR): v= 3442, 3050, 2965, 1598, 1392, 1201, 1010, 804, 659, 550 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{24}H_{27}OPS$   $[M+H]^+$  395.1593, found 395.1588.

## S-(o-tolyl) di-p-tolylphosphinothioate (3an)



Yield: 95%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 (dd, *J* = 12.7, 8.1 Hz, 4H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.25 (dd, *J* = 7.9, 3.3 Hz, 4H), 7.20-7.12 (m, 2H), 7.07-6.99 (m, 1H), 2.39 (s, 6H), 2.38 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 142.82, 142.79, 142.73, 142.69, 136.62, 136.58, 131.56, 131.46, 130.67, 130.65, 130.30, 129.26, 129.21, 129.13, 129.10, 126.44, 126.43, 125.94, 125.89, 21.67, 21.65, 21.50.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.65.

**IR (ATR)**:  $\tilde{v}$ = 3443, 3035, 2961, 2918, 1598, 1460, 1187, 885, 747, 657, 556 cm<sup>-1</sup>. **HRMS [ESI]**: m/z calculated for C<sub>21</sub>H<sub>21</sub>OPS [M+H]<sup>+</sup> 353.1123, found 353.1128.

## S-(m-tolyl) di-p-tolylphosphinothioate (3ao)



Yield: 90%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (dd, *J* = 12.7, 8.1 Hz, 4H), 7.25 (dd, *J* = 8.0, 3.2 Hz, 6H), 7.13 – 7.02 (m, 2H), 2.39 (s, 6H), 2.24 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 142.81, 142.78, 138.89, 138.87, 136.00, 135.96, 132.25, 132.21, 131.70, 131.59, 130.09, 129.67, 129.65, 129.30, 129.16, 129.00, 128.85, 128.83, 126.18, 126.13, 21.65, 21.63, 21.20.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 42.02.

IR (ATR):  $\tilde{v}$ = 3457, 3052, 3021, 2920, 1599, 1474, 1200, 1019, 807, 659, 555 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{21}H_{21}OPS$  [M+H]<sup>+</sup> 353.1123, found 353.1121.

## S-(2,4-dimethylphenyl) di-p-tolylphosphinothioate (3ap)



Yield: 89%, white solid.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 (dd, *J* = 12.6, 8.1 Hz, 4H), 7.34 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.25 (dd, *J* = 7.9, 3.2 Hz, 4H), 6.98 (s, 1H), 6.84 (d, *J* = 7.9 Hz, 1H), 2.39 (s, 6H), 2.34 (s, 3H), 2.24 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 142.73, 142.70, 142.62, 142.58, 139.28, 139.25, 136.62, 136.58, 131.59, 131.49, 130.45, 129.37, 129.28, 129.24, 129.15, 129.10, 127.32, 127.30, 122.06, 122.00, 21.66, 21.65, 21.42, 21.11.<sup>3</sup>

<sup>1</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ 41.51.

**IR (ATR)**:  $\tilde{v}$ = 3469, 3021, 2919, 2862, 1915, 1599, 1396, 1200, 807, 658, 540 cm<sup>-1</sup>.

HRMS [ESI]: m/z calculated for  $C_{22}H_{23}OPS$  [M+H]<sup>+</sup> 367.1280, found 367.1278.

# **References** :

- [1] J. Wang, X. Huang, Z. Ni, S. Wang, J. Wu, Y. Pan, Green Chem. 2015, 17, 314-319.
- [2] R. Choudhary, P. Singh, R. Bai, M. C. Sharma, S. S. Badsara, Org. Biomol. Chem. 2019, 17, 9757-9765.
- [3] G. Wang, L. Zhou, N. Li, Q. Zeng, *ChemistrySelect* **2019**, *4*, 13899-13903.
- [4] Y. Moon, Y. Moon, H. Choi, S. Hong, *Green Chem.* 2017, 19, 1005-1013.
- [5] H. Qiao, L. Yang, X. Yang, J. Wang, Y. Chen, L. Zhang, W. Sun, L. Zhai, L. Mi, *Chem. Eur. J.* 2022, 28, e202200600.
- [6] W. He, X. Hou, X. Li, L. Song, Q. Yu, Z. Wang, *Tetrahedron* 2017, 73, 3133-3138.
- [7] D. J. Jones, E. M. O'Leary, T. P. O'Sullivan, Adv. Synth. Catal. 2020, 362, 1825-1830.
- [8] Y. Nishiyama, T. Hosoya, S. Yoshida, Chem. Commun. 2020, 56, 5771-5774.
- [9] S. Li, T. Chen, Y. Saga, L.-B. Han, *RSC Adv.* **2015**, *5*, 71544-71546.

# **Copies of NMR spectra**















# S-(4-chlorophenyl) di-p-tolylphosphinothioate (3c)















## S-(4-chlorophenyl) di-o-tolylphosphinothioate (3e)

70

90 80

60 50

110 100 f1 (ppm)

140 130

120

00 190

180 170 160 150

- 4000 - 3000 - 2000 - 1000 - 0 - - - 1000

20

10

40 30



S-(4-chlorophenyl) di(naphthalen-2-yl)phosphinothioate (3f)























## 54/98



S-(4-(tert-butyl)phenyl) diphenylphosphinothioate (3j)











S-(o-tolyl) diphenylphosphinothioate (3l)









### S-(2,4-dimethylphenyl) diphenylphosphinothioate (3m)



S-(2,6-dimethylphenyl) diphenylphosphinothioate (3n)









# S-(4-methoxyphenyl) diphenylphosphinothioate (30)



S-(2-methoxyphenyl) diphenylphosphinothioate (3p)









## S-(naphthalen-2-yl) diphenylphosphinothioate (3q)



S-(2-methylfuran-3-yl) diphenylphosphinothioate (3r)











S-(4-chlorobenzyl) diphenylphosphinothioate (3t)











## S-(2,4-dimethylphenyl) di-o-tolylphosphinothioate (3y)


S-(o-tolyl) di-o-tolylphosphinothioate (3z)























## S-(m-tolyl) bis(4-methoxyphenyl)phosphinothioate (3ac)



S-(2,6-dimethylphenyl) bis(4-methoxyphenyl)phosphinothioate (3ad)













S-(o-tolyl) di(naphthalen-2-yl)phosphinothioate (3af)









S-(m-tolyl) di(naphthalen-2-yl)phosphinothioate (3ag)



S-(p-tolyl) di(naphthalen-2-yl)phosphinothioate (3ah)









## S-(o-tolyl) bis(3,5-dimethylphenyl)phosphinothioate (3ai)

90 80 70

60 50

110 100 f1 (ppm)

00 190 180 170 160 150 140 130 120

20

10 0

40 30













S-(2,4-dimethylphenyl) bis(3,5-dimethylphenyl)phosphinothioate (3ak)



S-(2,6-dimethylphenyl) bis(3,5-dimethylphenyl)phosphinothioate (3al)









S-(4-(tert-butyl)phenyl) di-p-tolylphosphinothioate (3am)

110 100 f1 (ppm)

00 190 180 170 160 150 140 130 120

90 80 70

60 50

30 20

10

40



S-(o-tolyl) di-p-tolylphosphinothioate (3an)









## . . . .

96/98









