Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information (ESI) for

Supramolecular confinement synthesis of ultrafine iron nitride nanocrystals for oxygen reduction reaction in Zn-air batteries

Fanglei Yao,‡ Jiabao Bi,‡ Lei Yu,‡ Liming Dai, Wenkang Xue, Jingyao Deng, Zhihui Yao, Yunyan Wu, Jingwen Sun* and Junwu Zhu

Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China.

* Corresponding author. Jingwen Sun. E-mail: Jingwen_Sun@njust.edu.cn

[‡]These authors contributed equally.

Experimental Section

Preparation of 6-substituted-2,4-diamino-1,3,5-triazine (T monomer)

The 6-substituted-2,4-diamino-1,3,5-triazine (T monomer) was synthesized according to our previous study. Typically, a mixture of dicyandiamide (15 mmol, 1.258 g), sodium hydrogencyanamide (15 mmol, 1.335 g), potassium hydroxide (3 mmol, 0.168 g) and DMSO (10 mL) was added into a Pyrex flask and irradiated using a microwave reactor under 180 °C for 30 minutes. After cooling to room temperature, 150 mL of ethanol was added to the resulted crude mixture. After stirring for 2 hours, the white precipitate (T monomer) was collected by centrifuging, washing with DMF and ethanol, and drying.

Electrochemical measurement

All the electrochemical tests were carried out on a three-electrode system using Biologic SP-300 electrochemical workstation equipped with a high-speed rotator. The graphite rod and Hg/HgO electrode were used as the counter electrode and reference electrode, respectively. To prepare the working electrode, 2 mg of catalyst and 20 μ L of 5 wt% Nafion solution were dispersed in 0.5 mL water/ethanol (V/V=4:1) mixture and sonicated for 30 minutes to form a homogeneous ink. 10 μ L of the homogeneous ink was dropped on the surface of glassy carbon (GC) (GCE, 0.196 cm²) and dried at room temperature. The loading of electrocatalysts were 0.2 mg cm⁻². All reference potentials were converted to the reversible hydrogen electrode (RHE) according to the Nernst equation (1):

 $E_{RHE} = E_{Hg/HgO} + 0.059 \text{ pH} + 0.098$(1)

Where E_{RHE} is the potential referenced to a reversible hydrogen electrode, $E_{Hg/HgO}$ is the experimentally measured potential using Hg/HgO as the reference electrode.

The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) measurements for ORR were performed at scan rates of 5 mV s⁻¹ in O₂ saturated 0.1 M KOH electrolyte. The rotating disk electrode (RDE) tests were performed at rotation rates from 400 to 1600 rpm with a sweep speed of 5 mV s⁻¹. The electrode stability was tested by chronoamperometric technique at 0.7 V versus RHE for 30000s in 0.1 M KOH. In addition, we reassessed the stability of the electrode by testing chronoamperometric in 3 M methanol.

The hydrogen peroxide yield (H_2O_2) and electron transfer number (n) were calculated using the following equations:

$$%H_2O_2 = 200 \times \frac{I_d}{I_d + I_r/N}$$
 (2)

$$n = 4 \times \frac{I_d}{I_d + I_r/N}$$
(3)

Where I_d is the disk current, I_R is the ring current, and N is the current collection efficiency of the Pt ring.

The Koutecky-Levich equation is (4) and (5):

$$J^{-1} = J_{L}^{-1} + J_{K}^{-1} = J_{K}^{-1} + (B\omega^{0.5}) - 1$$

$$B = 0.2nF (D_{O2})2/3 \tau - 1/6C_{O2}$$
(5)

Where J represents the measured current density, J_K represents the kinetic current, ω is the rotating rate of the electrode, n is the number of electrons transferred per O₂ molecule, *F* is the Faraday constant (96485 C mol⁻¹), D_{O2} is the diffusion coefficient of O₂ in the electrolyte (1.9×10⁻⁵ cm² s⁻¹), τ represents the kinetic viscosity of the electrolyte (0.01 cm² s⁻¹), and C_{O2} denotes the saturated concentration of O₂ (1.2×10⁻⁶ mol cm⁻³) in the aqueous system. 0.2 is a constant to determine *B*.

Zn-air battery tests

The Zn-air battery was constructed using a Zn plate as the anode electrode, a mixture of 6 M KOH and 0.2 M Zn(Ac)₂ as the electrolyte, and the electrocatalyst layer as the cathode electrode. To prepare the cathode electrode, 4 mg of electrocatalyst was dispersed in a mixture of ultrapure water (800 μ L), isopropanol (150 μ L), and Nafion solution (50 μ L) to form a homogeneous ink. The electrocatalyst ink was dropped on the surface of carbon paper. The loading of electrocatalyst is 2 mg cm⁻² and the available catalyst layer is 2 cm⁻². The discharge polarization curve and the corresponding power density curve were measured by LSV with a sweep speed of 10 mV/s on the electrochemical workstation at room temperature.

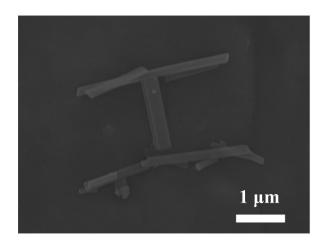


Fig. S1 SEM image of the Fe-CT.

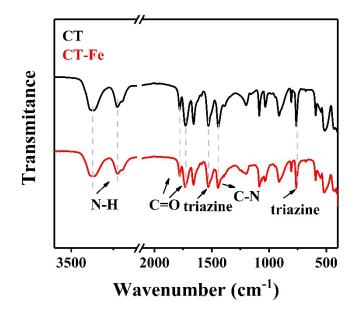


Fig. S2 FT-IR spectra of CT and CT-Fe precursors

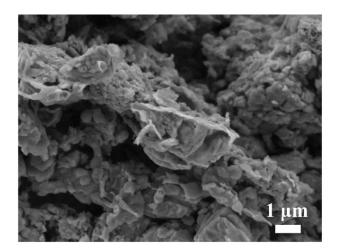


Fig. S3 SEM image of the NC-800.

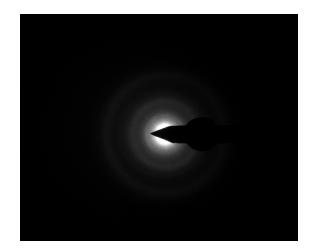


Fig. S4 SAED image of the $Fe_3N/NC-800$.

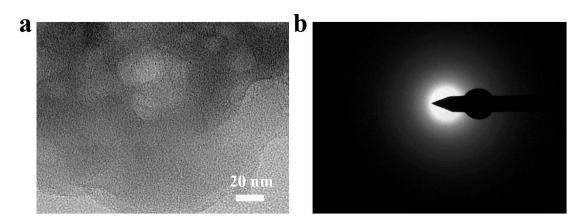


Fig. S5 (a) TEM image of the $Fe_3N/NC-700$, (b) SAED image of the $Fe_3N/NC-700$.

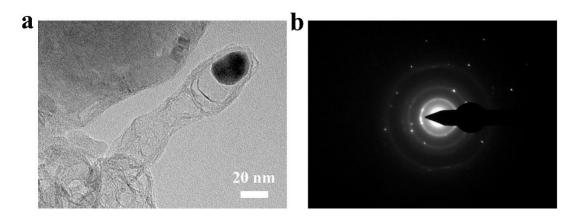


Fig. S6 (a) TEM image of the $Fe_3N/NC-900$, (b) SAED image of the $Fe_3N/NC-900$.

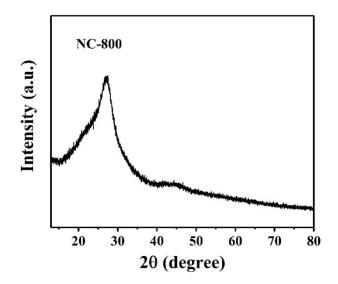


Fig. S7 XRD pattern of NC-800.

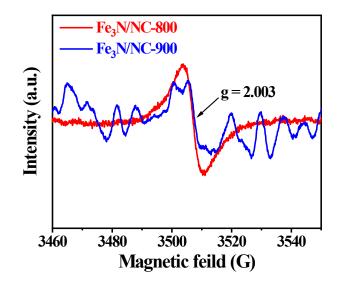


Fig. S8 EPR spectra of $Fe_3N/NC-800$ and $Fe_3N/NC-900$.

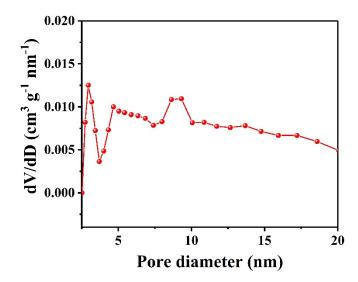


Fig. S9 The corresponding pore-size distribution curve of Fe₃N/NC-800.

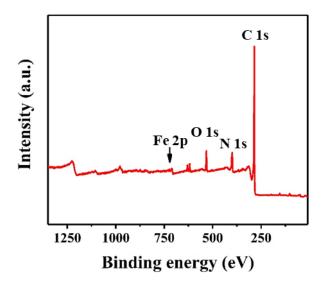


Fig. S10 XPS survey of Fe₃N/NC-800.

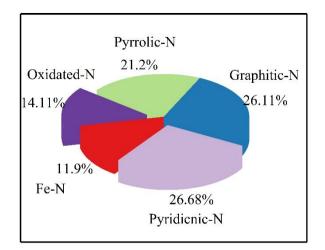


Fig. S11 The corresponding contents of the deconvoluted N species in the $Fe_3N/NC-800$ catalyst.

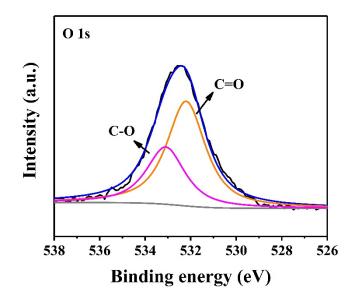


Fig. S12 O 1s XPS spectrum of Fe₃N/NC-800.

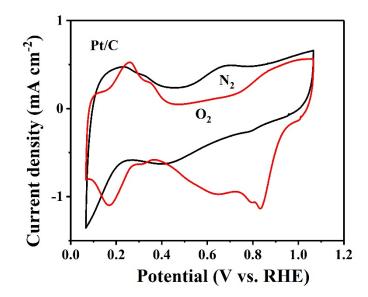


Fig. S13 CV plots of commercial Pt/C in N_2 and O_2 -saturated 0.1 M KOH electrolytes.

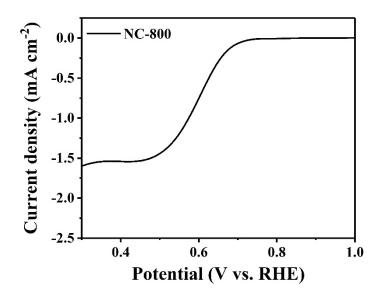


Fig. S14 ORR polarization plots of NC-800 in the O_2 saturated 0.1 M KOH electrolyte.

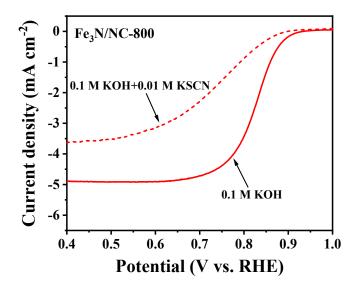
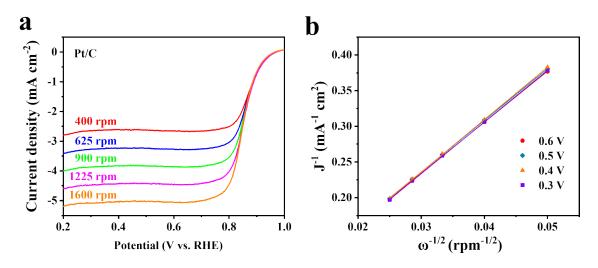



Fig. S15 ORR polarization curves of Fe_3N/NC -800 before and after the addition of 0.01 M KSCN in O_2 saturated 0.1 M KOH.

Fig. S16 (a) Polarization plots of commercial Pt/C at different rotating speeds from 400 to 1600 rpm. (b) The K-L plots of commercial Pt/C at different potentials.

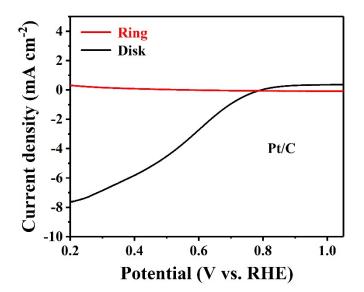


Fig. S17 RRDE curves of Pt/C.

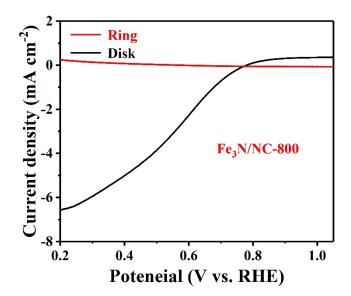


Fig. S18 RRDE curves of Fe₃N/NC-800.

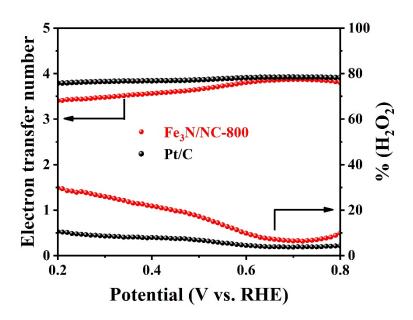


Fig. S19 Electron transfer number and H_2O_2 yield plots of commercial Pt/C and Fe₃N/NC-800 at different potentials.

Element content	Atomic %	
С	82.39	
Ν	11.31	
Ο	5.49	
Fe	0.81	

Table S1. The element content in $Fe_3N/NC-800$ determined by XPS.

Table S2. The Fe contents in Fe₃N/NC-700, Fe₃N/NC-800 and Fe₃N/NC-900 catalysts determined by ICP-MS.

Sample	Fe ₃ N/NC-700	Fe ₃ N/NC-800	Fe ₃ N/NC-900
Fe content (wt %)	2.26	2.83	7.59