Supporting Information

Consequence of products from oxidative coupling of methane in non-oxidative high temperature environment

Haruka Komada, ${ }^{a}$ Keisuke Obata, ${ }^{a}$ Duanxing Li, ${ }^{a}$ S. Mani Sarathy, b,c and Kazuhiro Takanabe ${ }^{*, a, d}$
${ }^{a}$ Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
${ }^{b}$ Clean Combustion Research Center (CCRC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
${ }^{c}$ KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
${ }^{b}$ PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan

Figure S1. Temperature distribution along the U-shaped quartz reactor measured by $2^{\text {nd }}$ thermocouple while the furnace temperature was maintained at $1000^{\circ} \mathrm{C}$. The catalyst bed was filled with 760 mg of $5 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{WO}_{4} / \mathrm{SiO}_{2}$. Inlet gas: $\mathrm{CH}_{4} 10 \mathrm{kPa}, \mathrm{O}_{2} 1.7 \mathrm{kPa}, \mathrm{H}_{2} \mathrm{O} 1.7 \mathrm{kPa}$, total pressure $101 \mathrm{kPa}, \mathrm{Ar}$ balance, $80 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure S2. Product distribution and conversions of CH_{4} and O_{2} from the outlets the first reactor filled with 800 mg of $5 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{WO}_{4} / \mathrm{SiO}_{2}$ at 750,850 , and $950^{\circ} \mathrm{C}$. Inlet gas; $\mathrm{CH}_{4} 10 \mathrm{kPa}, \mathrm{O}_{2}$ $1.4 \mathrm{kPa}, \mathrm{H}_{2} \mathrm{O} 1.7 \mathrm{kPa}$, total pressure 101 kPa , Ar balance, $40 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure S3. Simulated mole fractions at (a) 850 and (b) $1000{ }^{\circ} \mathrm{C}$ using KAM1-GS gas phase kinetics feeding the gas composition experimentally obtained from the outlet of first reactor.

Figure S4. Contributions in H_{2} formation estimated from $\mathrm{C}_{2} \mathrm{H}_{6}$ consumption and CO_{x} formation in the second reactor filled with 800 mg of catalysts ($5 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{WO}_{4} / \mathrm{SiO}_{2}$) at 830 $-975{ }^{\circ} \mathrm{C}$. The first reactor; 800 mg of $5 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{WO}_{4} / \mathrm{SiO}_{2}$ at $850^{\circ} \mathrm{C}$. Inlet gas; $\mathrm{CH}_{4} 10 \mathrm{kPa}$, $\mathrm{O}_{2} 1.4 \mathrm{kPa}, \mathrm{H}_{2} \mathrm{O} 1.7 \mathrm{kPa}$, total pressure 101 kPa , Ar balance, $40 \mathrm{~mL} \mathrm{~min}^{-1} . \mathrm{O}_{2}$ is depleted in all the conditions. Corresponding data is shown in Fig. 6b.

Supplementary note 1: Contribution in H_{2} formation in the second reactor filled with catalysts

In the second reactor filled with 800 mg of catalysts ($5 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{WO}_{4} / \mathrm{SiO}_{2}$), we have compared 1) total H_{2} formed, 2) estimated H_{2} formed by dehydrogenation of $\mathrm{C}_{2} \mathrm{H}_{6}$ to $\mathrm{C}_{2} \mathrm{H}_{4}$, and 3) estimated H_{2} formed by steam reforming / water gas shift reactions to CO_{x}.

1) Total H_{2} formed, $\Delta \mathrm{H}_{2}$
$\Delta \mathrm{H}_{2}$ was obtained from the H_{2} concentration measured at the outlet of first and second reactor.

$$
\Delta \mathrm{H}_{2}=\mathrm{H}_{2}(2 \text { nd outlet })-\mathrm{H}_{2}(1 \text { st outlet })
$$

2) Estimated H_{2} formed by dehydrogenation of $\mathrm{C}_{2} \mathrm{H}_{6}$ to $\mathrm{C}_{2} \mathrm{H}_{4}, \Delta \mathrm{H}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right.$ consumption)

We assume the consumption of $\mathrm{C}_{2} \mathrm{H}_{6}$ in the second reactor fully comes from the following equation.

$$
\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}
$$

$\Delta \mathrm{H}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right.$ consumption) was estimated from the measured $\mathrm{C}_{2} \mathrm{H}_{6}$ concentration at the outlet of first and second reactor.

$$
\Delta \mathrm{H}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \text { consumption }\right)=\mathrm{C}_{2} \mathrm{H}_{6}(1 \text { st outlet })-\mathrm{C}_{2} \mathrm{H}_{6}(2 \text { nd outlet })
$$

3) Estimated H_{2} formed by steam reforming and water gas shift reactions to $\mathrm{CO}_{\mathrm{x}}, \Delta \mathrm{H}_{2}\left(\mathrm{CO}_{\mathrm{x}}\right.$ formation) We assume the formation of CO_{x} in the second reactor fully comes from the reaction with $\mathrm{H}_{2} \mathrm{O}$ in the following equations according to oxygen balance.

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CO}+4 \mathrm{H}_{2} \\
& \mathrm{C}_{2} \mathrm{H}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CO}_{2}+6 \mathrm{H}_{2}
\end{aligned}
$$

$\Delta \mathrm{H}_{2}\left(\mathrm{CO}_{\mathrm{x}}\right.$ formation) was estimated from the measured CO_{x} concentration at the outlet of first and second reactor.
$\Delta \mathrm{H}_{2}\left(\mathrm{CO}_{\mathrm{x}}\right.$ formation $)=2 \times(\mathrm{CO}(2$ nd outlet $)-\mathrm{CO}(1$ st outlet $))+3 \times\left(\mathrm{CO}_{2}(2\right.$ nd outlet $)-\mathrm{CO}_{2}(1$ st outlet $\left.)\right)$
Their contributions are compared following the equations below and shown in Fig. S4.
$\mathrm{H}_{2}($ Dehydrogenation $)=\Delta \mathrm{H}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right.$ consumption $) / \Delta \mathrm{H}_{2} \times 100$
H_{2} (Steam reforming / water gas shift $)=\Delta \mathrm{H}_{2}\left(\mathrm{CO}_{x}\right.$ formation $) / \Delta \mathrm{H}_{2} \times 100$

Figure S5. The equilibrium constant of water gas shift reaction, $K_{\mathrm{WGS}},{ }^{1}$ and η_{WGS} ($\eta_{\mathrm{WGS}}=P_{\mathrm{CO}_{2}} P_{\mathrm{H}_{2}} / P_{\mathrm{CO}} P_{\mathrm{H}_{2} \mathrm{O}} K_{\mathrm{WGS}}$) estimated from the partial pressures in the outlet from the second reactor filled with 800 mg of catalysts ($5 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{WO}_{4} / \mathrm{SiO}_{2}$) at $830-975^{\circ} \mathrm{C}$. The first reactor was filled with 800 mg of $5 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{WO}_{4} / \mathrm{SiO}_{2}$ at $850{ }^{\circ} \mathrm{C}$. The partial pressure of $\mathrm{H}_{2} \mathrm{O}$ was estimated from the oxygen balance using the concentrations of the introduced O_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the inlet and the measured CO and CO_{2} in the outlet. Inlet gas; $\mathrm{CH}_{4} 10 \mathrm{kPa}, \mathrm{O}_{2} 1.4 \mathrm{kPa}, \mathrm{H}_{2} \mathrm{O}$ 1.7 kPa , total pressure 101 kPa , Ar balance, $40 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Reference

1 CA. Callaghan, Kinetics and catalysis of the water-gas shift reaction: a microkinetic and graph theoretic approach. PhD Thesis, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 2006

