## **Supporting Information**

## Consequence of products from oxidative coupling of methane in non-oxidative high temperature environment

Haruka Komada, <sup>a</sup> Keisuke Obata, <sup>a</sup> Duanxing Li, <sup>a</sup> S. Mani Sarathy, <sup>b,c</sup> and Kazuhiro Takanabe <sup>\*, a, d</sup>

<sup>*a*</sup> Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

<sup>b</sup> Clean Combustion Research Center (CCRC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

<sup>c</sup> KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

<sup>b</sup> PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan



**Figure S1.** Temperature distribution along the U-shaped quartz reactor measured by  $2^{nd}$  thermocouple while the furnace temperature was maintained at 1000 °C. The catalyst bed was filled with 760 mg of 5 wt% Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub>. Inlet gas: CH<sub>4</sub> 10 kPa, O<sub>2</sub> 1.7 kPa, H<sub>2</sub>O 1.7 kPa, total pressure 101 kPa, Ar balance, 80 mL min<sup>-1</sup>.



**Figure S2.** Product distribution and conversions of  $CH_4$  and  $O_2$  from the outlets the first reactor filled with 800 mg of 5 wt% Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> at 750, 850, and 950 °C. Inlet gas; CH<sub>4</sub> 10 kPa, O<sub>2</sub> 1.4 kPa, H<sub>2</sub>O 1.7 kPa, total pressure 101 kPa, Ar balance, 40 mL min<sup>-1</sup>.



**Figure S3.** Simulated mole fractions at (a) 850 and (b) 1000 °C using KAM1-GS gas phase kinetics feeding the gas composition experimentally obtained from the outlet of first reactor.



**Figure S4.** Contributions in H<sub>2</sub> formation estimated from  $C_2H_6$  consumption and  $CO_x$  formation in the second reactor filled with 800 mg of catalysts (5 wt% Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub>) at 830 - 975 °C. The first reactor; 800 mg of 5 wt% Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> at 850 °C. Inlet gas; CH<sub>4</sub> 10 kPa, O<sub>2</sub> 1.4 kPa, H<sub>2</sub>O 1.7 kPa, total pressure 101 kPa, Ar balance, 40 mL min<sup>-1</sup>. O<sub>2</sub> is depleted in all the conditions. Corresponding data is shown in Fig. 6b.

**Supplementary note 1:** Contribution in  $H_2$  formation in the second reactor filled with catalysts

In the second reactor filled with 800 mg of catalysts (5 wt% Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub>), we have compared 1) total H<sub>2</sub> formed, 2) estimated H<sub>2</sub> formed by dehydrogenation of C<sub>2</sub>H<sub>6</sub> to C<sub>2</sub>H<sub>4</sub>, and 3) estimated H<sub>2</sub> formed by steam reforming / water gas shift reactions to CO<sub>x</sub>.

1) Total H<sub>2</sub> formed,  $\Delta$ H<sub>2</sub>  $\Delta$ H<sub>2</sub> was obtained from the H<sub>2</sub> concentration measured at the outlet of first and second reactor.

 $\Delta H_2 = H_2(2nd outlet) - H_2(1st outlet)$ 

2) Estimated H<sub>2</sub> formed by dehydrogenation of  $C_2H_6$  to  $C_2H_4$ ,  $\Delta H_2(C_2H_6$  consumption) We assume the consumption of  $C_2H_6$  in the second reactor fully comes from the following equation.

$$C_2H_6 \rightarrow C_2H_4 + H_2$$

 $\Delta H_2(C_2H_6 \text{ consumption})$  was estimated from the measured  $C_2H_6$  concentration at the outlet of first and second reactor.

 $\Delta H_2(C_2H_6 \text{ consumption})=C_2H_6(1 \text{ st outlet})-C_2H_6(2 \text{ nd outlet})$ 

3) Estimated H<sub>2</sub> formed by steam reforming and water gas shift reactions to  $CO_x$ ,  $\Delta H_2(CO_x$  formation) We assume the formation of  $CO_x$  in the second reactor fully comes from the reaction with H<sub>2</sub>O in the following equations according to oxygen balance.

$$C_{2}H_{4} + 2H_{2}O \rightarrow 2CO + 4H_{2}$$
$$C_{2}H_{4} + 4H_{2}O \rightarrow 2CO_{2} + 6H_{2}$$

 $\varDelta H_2(CO_x \text{ formation})$  was estimated from the measured  $CO_x$  concentration at the outlet of first and second reactor.

 $\Delta H_2(CO_x \text{ formation}) = 2 \times (CO(2nd \text{ outlet}) - CO(1st \text{ outlet})) + 3 \times (CO_2(2nd \text{ outlet}) - CO_2(1st \text{ outlet})))$ 

Their contributions are compared following the equations below and shown in Fig. S4.

 $H_2$ (Dehydrogenation)= $\Delta H_2(C_2H_6 \text{ consumption})/\Delta H_2 \times 100$ 

 $H_2$ (Steam reforming / water gas shift)= $\Delta H_2$ (CO<sub>x</sub> formation)/ $\Delta H_2 \times 100$ 



**Figure S5.** The equilibrium constant of water gas shift reaction,  $K_{\text{WGS}}$ ,<sup>1</sup> and  $\eta_{\text{WGS}}$  ( $\eta_{\text{WGS}} = P_{\text{CO}_2} P_{\text{H}_2} / P_{\text{CO}} P_{\text{H}_2\text{O}} K_{\text{WGS}}$ ) estimated from the partial pressures in the outlet from the second reactor filled with 800 mg of catalysts (5 wt% Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub>) at 830 - 975 °C. The first reactor was filled with 800 mg of 5 wt% Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> at 850 °C. The partial pressure of H<sub>2</sub>O was estimated from the oxygen balance using the concentrations of the introduced O<sub>2</sub> and H<sub>2</sub>O in the inlet and the measured CO and CO<sub>2</sub> in the outlet. Inlet gas; CH<sub>4</sub> 10 kPa, O<sub>2</sub> 1.4 kPa, H<sub>2</sub>O 1.7 kPa, total pressure 101 kPa, Ar balance, 40 mL min<sup>-1</sup>.

## Reference

1 CA. Callaghan, *Kinetics and catalysis of the water-gas shift reaction: a microkinetic and graph theoretic approach*. PhD Thesis, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 2006