Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Catalytic Oxidation of NO to NO_2 for Nitric Acid Production Using Ag-Promoted MnO_2/ZrO_2 Catalysts

Jithin Gopakumar,^{*a*} Sunniva Vold,^{*a*} Bjørn Christian Enger,^{*b*} David Waller,^{*c*} Per Erik Vullum,^{*d*} and Magnus Rønning^{**a*}

^c YARA Technology Center, Herøya Forskningspark, Bygg 92, Hydrovegen 67, NO-3936

Porsgrunn, Norway

^d SINTEF Industry, Materials and Nanotechnology, P.O. Box 4760 Torgarden, NO-7465 Trondheim, Norway

*Corresponding author, E-mail address: magnus.ronning@ntnu.no (M. Rønning)

S1 Gas-phase conversion

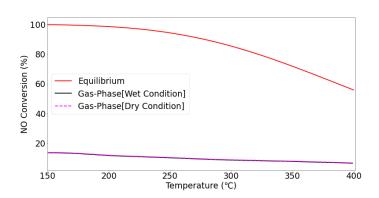


Fig. S1 Gas-phase NO to NO₂ conversion (%) as a function of temperature in both dry (10% NO, 6% O₂ and rest Ar) and wet conditions (10% NO, 6% O₂, 15% H₂O and rest Ar) heated at a rate of 5 °C/min at WHSV= 24,000 Ncm³/g_{gcat}h

S2 Zirconia supported silver conversion

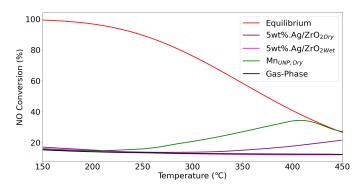


Fig. S2 NO to NO₂ conversion (%) as a function of temperature in dry (10% NO, 6% O₂ and rest Ar) and wet (10% NO, 6% O₂, 15% H₂O and rest Ar) conditions with 5wt.% Ag supported on ZrO₂ in comparison to Mn_{UNP} catalyst in dry (10% NO, 6% O₂ and rest Ar) conditions heated at a rate of 5 °C/min at WHSV= 24,000 Ncm³/g_{gcat}h

Swt.% Ag on ZrO_2 support were prepare by incipient wetness impregnation. The BET surface area was found to be $69m^2/g$. From Fig [52] it is clear that supported Ag alone have very low NO conversion levels compared to zirconia supported manganese catalysts in the measured temperature range.

S3 Short isothermal run



Fig. S3 NO to NO₂ conversion (%) at 150 °C, 200 °C, 300 °C and 400 °C) in wet conditions (10% NO, 6% O₂, 15% H₂O and rest Ar) at WHSV= 24,000 Ncm³/g_{scat}h

S4 In-situ XAS experiment programme

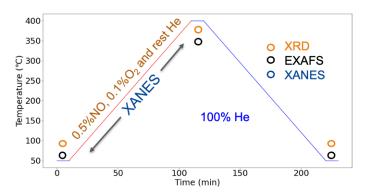


Fig. S4 *In-situ* XAS experiment programme at Mn K Edge with dry NO oxidation temperature scan from 50-400 °C at 5 °C/min rate in 0.5%NO, 0.1%O₂ and He balance at WHSV= 24,000 Ncm³/g_{gcat}h

S5 XAS χ^2 data

Fig. S5 displays χ^2 as a function of wavelength for MnO₂ standard, Mn_{UNP} and Mn_{Ag} fresh catalysts. The signal-to-noise ratio of EXAFS measured (Mn_{UNP} and Mn_{Ag} fresh catalysts) in fluorescence mode is higher when compared to the EXAFS (Mn⁴⁺ - MnO₂ standard) measured in transmission.

 ^a Norwegian University of Science and Technology (NTNU), Department of Chemical Engineering, Sem Sælands vei 4, NO-7491 Trondheim, Norway
^b SINTEF Industry, Kinetic, and Catalysis group, P.O. Box 4760 Torgarden, NO-7465

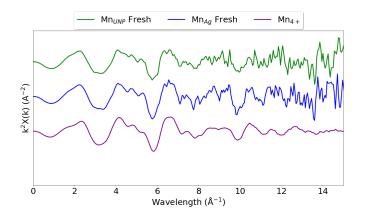
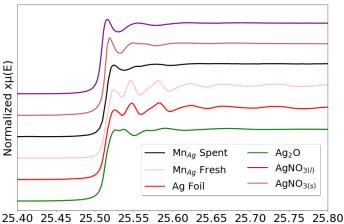



Fig. S5 EXAFS χ^2 as a function of wavelength for MnO₂ standard (measured in transmission mode), Mn_{UNP} and Mn_{Ag} fresh catalysts (measured in fluorescence mode)

S6 Silver edge XANES profiles

25.40 25.45 25.50 25.55 25.60 25.65 25.70 25.75 25.80 Energy (keV)

Fig. S6 Mn_{Ag} fresh and spent sample after wet NO oxidation at 400 °C isothermal conditions (10% NO, 6% O₂, 15% H₂O and rest Ar) at WHSV= 24,000 Ncm³/g_{gcat}h, showing *ex-situ* XANES profile compared with different Ag standards collected at the Ag K edge

S7 Simulated equilibrium composition

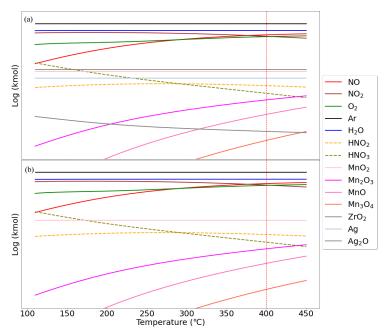


Fig. S7 HSC software simulated equilibrium composition changes for 10% NO, 6% O₂, 15% H₂O and rest Ar with respect to temperature for both (a) Mn_{Ag} and (b) Mn_{UNP} catalysts

Fig. S7 presents simulated equilibrium composition changes for 10% NO, 6% O_2 , 15% H_2O and rest Ar with respect to temperature for both Mn_{Ag} and Mn_{UNP} catalysts. For equilibrium composition simulation, HSC 9 software for windows was used^[38].

S8 TEM-EDX EELS analysis

This section presents EEL spectra for Mn_{Ag} subjected to longer iso-thermal run at 400 °C. The spectrum is collected from a small region that does not overlap with any ZrO₂. Also, the O K-peak plots have been omitted, and only Mn $L_{2,3}$ edges plots are presented.

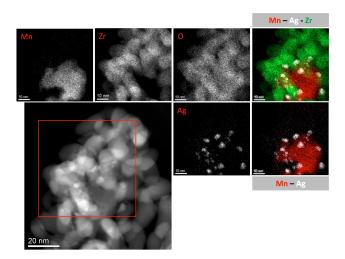


Fig. S8 MAP 1:TEM-EDX image of the spent Mn_{Ag} catalyst sample after 72hrs isothermal wet NO oxidation at 400 °C (10% NO, 6% O₂, 15% H₂O and rest Ar) at WHSV= 24,000 Ncm³/g_{gcat}h with corresponding EDX elemental-mapping. \Box represents mapped region.

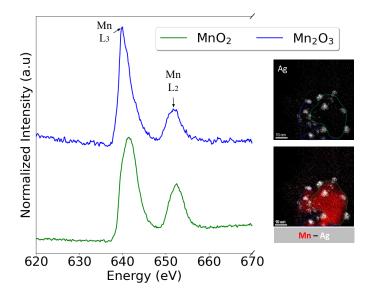


Fig. S9 EEL spectra obtained for TEM-EDX image presented in Fig. S8 at Mn $L_{2,3}$ edges (vertically displaced for more clarity). The presence of both MnO₂ and Mn₂O₃ were found in the mapped region.

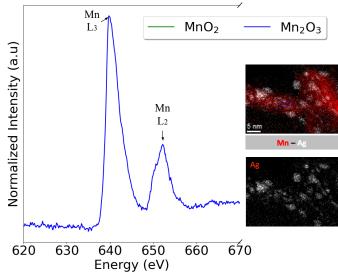
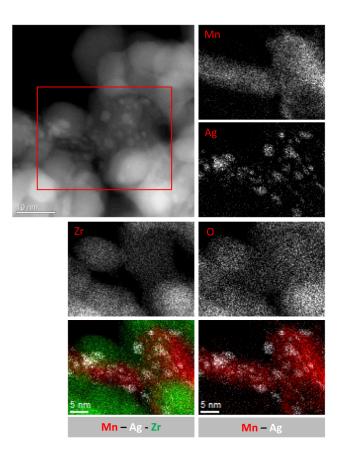
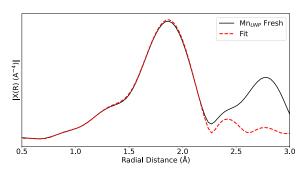
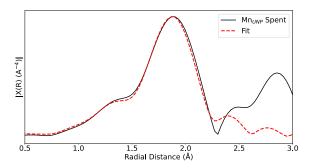
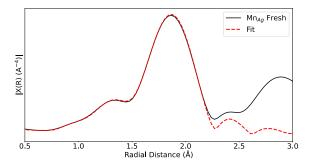
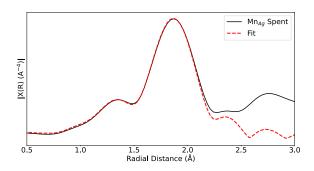


Fig. S11 EEL spectra obtained for TEM-EDX image presented in Fig. S10 at Mn $L_{2,3}$ edges. The presence of only Mn_2O_3 was found in the mapped region.


Fig. S10 MAP 2:TEM image of the spent Mn_{Ag} catalyst sample after 72hrs isothermal wet NO oxidation at 400 °C (10% NO, 6% O₂, 15% H₂O and rest Ar) at WHSV= 24,000 Ncm³/g_{gcat}h with corresponding EDX elemental-mapping. \Box represents mapped region


Mn_{UNP} fresh [-] catalyst sample

 $\mathsf{Mn}_{\mathit{UNP}}$ spent [-] catalyst sample

 Mn_{Ag} fresh [-] catalyst sample

 Mn_{Ag} spent [-] catalyst sample

Fig. S12 R space EXAFS fits for fresh and spent catalyst samples of $Mn_{\it UNP}$ and $Mn_{\it Ag}$ after dry NO oxidation [—Data and - - Fit]