
Supplementary Information
Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse

Molecular Design

AkshatKumar Nigam,1, 2, 3, 6 Robert Pollice,2, 3, 6 and Alán Aspuru-Guzik2, 3, 4, 5, ∗

1Department of Computer Science, Stanford University, USA.
2Department of Computer Science, University of Toronto, Canada.

3Department of Chemistry, University of Toronto, Canada.
4Vector Institute for Artificial Intelligence, Toronto, Canada.

5Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR),
661 University Ave, Toronto, Ontario M5G, Canada.

6Equal Contributions.

S1. EXTENDED BACKGROUND

Variational autoencoders (VAEs), generative adversarial networks (GANs), Markov decision processes (MDPs) and
reinforcement learning (RL) approaches belong to the group of deep generative models as they all rely on DNNs for
molecular generation. VAEs convert discrete representations into continuous latent spaces and vice versa. This latent
space allows for both gradient-based optimization and vicinity-based sampling for generating favorable molecules [1].
Since their first demonstration in chemistry [2], they have received widespread attention, notably being applied to
the design of nanoporous crystalline reticular materials [3], the optimization of binding affinities for drug discovery
[4], the exploration of inorganic materials [5] and scaffold-based drug design [6]. Common implementations of VAEs
for inverse molecular design include CVAE [2], GVAE [7] and SD-VAE [8], which operate on molecular string rep-
resentations. Alternatively, JT-VAE [9], CGVAE [10] and DEFactor [11] use matrix representations of molecular
graphs. The framework of VAEs can be generalized to encoder-decoder architectures where the output of the decoder
does not correspond to the input of the encoder. This has been used in translation tasks for performing structural
modifications. VJTNN [12] follows this approach by implementing a graph-to-graph translation.

GANs are characterized by joint adversarial training of a generator and a discriminator DNN. The generator proposes
molecular structures from a high-dimensional latent space, while the discriminator is tasked with distinguishing the
proposed structures from a reference dataset. The generator and discriminator are trained as competing networks.
For inverse design, ORGAN [13] and ORGANIC [14] were the first implementations of a GAN for molecular design
that were trained on molecular string representations with RL. Follow up work includes the use of adjacency matrices
[15, 16]. RL approaches in general rely on learning how to take actions in an environment to maximize a cumulative
reward. Accordingly, the goal is to use DNNs to predict the best action based on a given state. GCPN [17] and
PGFS [18] use matrix representations of molecular graphs, while MolDQN [19] and REINVENT [20] use string-based
representations of molecular graphs. GCPN relies on an MDP for generating new molecules, starting from an initial
set of structures. MolDQN utilizes an action space of elementary modifications chosen by domain experts. Similarly,
PGFS also implements an expert-derived action space but in the form of reaction templates to mimic forward syn-
thesis for molecular generation. In contrast, REINVENT and MRNN [21] use recurrent neural networks (RNNs) [22]
to propose new molecules.

MDPs require explicit actions from a decision maker and knowledge of the current state to predict future states.
Monte Carlo tree search (MCTS) is a method to sample decision processes such as MDPs that has gained significant
popularity in ML due to its use in AlphaGo in combination with DNNs [23]. This also inspired its application for
inverse molecular design. Particular implementations include ChemTS [24] that relies on string-based representations
of molecular graphs and an RNN for modeling the MCTS. Alternative approaches are unitMCTS [25] and MARS [26],
which both rely on matrix representations of molecular graphs. While unitMCTS implements MCTS for modeling
the molecular generation process, MARS uses annealed Markov chain Monte Carlo sampling. Finally, Flow-based
generative models (FGMs) are based on normalized flow to model probability distributions by using a sequence of
invertible functions acting on an input to explicitly model the log-likelihood. They can be used as an alternative to

∗ Correspondence to: alan@aspuru.com

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2022

mailto:Correspondence to: alan@aspuru.com

S2

VAEs to generate continuous latent spaces with the advantage that only one direction of the transformation needs
to be trained due to its inherent invertibility. One model relying on FGMs is GraphAF [27], which combines the
advantages of FGMs with the ones of autoregressive models and uses an RL framework for optimization of molecular
properties.

S2. EXTRACTING FRAGMENTS FROM DATASETS

In JANUS, fragments can be extracted in an automated manner based on molecular subgraphs within a given radius
of a central atom indicating the distance in number of edges from that atom. They are based on a reference dataset
and can be used as optional method to bias the genetic operators. The corresponding methodology is illustrated
in Supplementary Figure 1. The molecule depicted is taken from the training datasets of the imitated inhibition tasks.

ON
H

N

N

N
NN

O

N

N N
N

O

O

1 2

3

2
1

3

1
2

3

Supplementary Figure 1. Schematic illustration of the extraction of circular fragments from molecules with a radius of 3 from
the circled atoms.

S3. SELECTION OF POPULATION MEMBERS FOR GENETIC OPERATORS

The molecules that are selected from the exploration population for proceeding to the genetic operators are not
solely chosen based on fitness but also based on a parameter F25 that essentially determines the temperature of the
population. At higher temperature, molecules of lower fitness are more likely to proceed to the next generation.
Inspired by Fermi-Dirac statistics [28, 29], we evaluate the relative frequency pi for molecule i to be selected according
to the following formula:

pi =
(
3

F50−Fi
F50−F25 + 1

)−1

(1)

In that equation, F50 corresponds to the fitness of the nth molecule when the population is sorted by decreasing
fitness and n molecules need to be selected in total. This fitness corresponds to a relative frequency of 0.50 for being
selected. The parameter F25 is the fitness value that is to be assigned a relative frequency of 0.25 for being selected.
The lower it is, the higher the effective temperature of the system and the more likely molecules of very low fitness
are propagated to the next generation increasing the extent of exploration. Unless noted otherwise, the fitness of
the (n+1)th molecule is chosen for F25 in each generation. The impact of the F25 parameter on the performance of
JANUS was tested in the unconstrained optimization of the penalized log P and the corresponding details can be
found in Section S9.

S3

S4. GENETIC OPERATORS IN JANUS

Supplementary Figure 2 illustrates the algorithms used as genetic operators in JANUS. They are based on the
STONED algorithm, a set of string modifications of SELFIES that have recently been shown to be extremely efficient
for molecular generation [30].

Supplementary Figure 2. Overview of the mutation and crossover operations implemented in JANUS. (a) A combination of
SMILES reordering and random SELFIES modification yields a diverse set of mutated molecules. (b) Chemical paths between
two SELFIES are generated by gradually changing the SELFIES characters of the starting molecule to the corresponding
SELFIES characters at the exact same position of the target molecule. The order these characters are changed is random
providing a large number of possible paths between the two molecules. The molecule with highest joint similarity with respect
to both starting and target molecules is selected as child structure between the two.

S4

S5. NEURAL NETWORK FEATURES

For training of neural network models, i.e, the classifier or the property predictor, in JANUS, we use 51 descriptors
collected from RDKit as input features. They are described in more detail in the following list.

• The ratio of the number of carbon atoms to the total number of atoms within a molecule (1 feature)

• The ratio of the number of hydrogen atoms to the total number of atoms within a molecule (1 feature)

• The ratio of the number of nitrogen atoms to the total number of atoms within a molecule (1 feature)

• The ratio of the number of sulfur atoms to the total number of atoms within a molecule (1 feature)

• The ratio of the number of oxygen atoms to the total number of atoms within a molecule (1 feature)

• The ratio of the number of chlorine atoms to the total number of atoms within a molecule (1 feature)

• The ratio of the number of bromine atoms to the total number of atoms within a molecule (1 feature)

• The ratio of the number of fluorine atoms to the total number of atoms within a molecule (1 feature)

• A set of RDKit descriptors, titled: ”RingCount”, ”HallKierAlpha”, ”BalabanJ”, ”NumAliphaticCarbocy-
cles”,”NumAliphaticHeterocycles”, ”NumAliphaticRings”,”NumAromaticCarbocycles”,”NumAromaticHeterocycles”,
”NumAromaticRings”,”NumHAcceptors”,”NumHDonors”,”NumHeteroatoms”, ”NumRadicalElectrons”, ”Num-
SaturatedCarbocycles”,”NumSaturatedHeterocycles”, ”NumSaturatedRings”,”NumValenceElectrons” (17 fea-
tures in total)

• The total number of single, double, triple and aromatic bonds within a molecule (4 features)

• Total number of rings in a molecule (1 feature)

• The number of rings ranging from size 3 to 20 within a molecule and the total number of consecutive double
bonds within rings (19 features)

• The number of triple bonds within rings (1 feature)

• The number of consecutive double bonds within a molecule (1 feature)

S5

S6. FEATURE COMPARISON OF JANUS AND GA+D

Supplementary Table 1 compares the features of GA+D [31], a previously published genetic algorithm based on
SELFIES [32], and JANUS. It demonstrates several advances of JANUS over GA+D but also shows that the current
version of JANUS does not use fitness augmentation via a discriminator.

Supplementary Table 1. Feature comparison of JANUS and GA+D [31], two GAs relying on SELFIES [32]. ✓ and ✗ indicate
the presence and absence of a feature, respectively. ◦ indicates the feature to be implemented but optional.

Feature GA+D [31] JANUS
Mutation ✓ ✓
Crossover ✗ ✓
Similarity Selection Pressure ✗ ✓
Neural Network Selection Pressure ✗ ◦
Parallel Populations ✗ ✓
Fragment Extraction ✗ ◦
Discriminator Fitness Augmentation ◦ ✗

S6

S7. PROPERTY DISTRIBUTIONS OF RANDOM SELFIES

The properties of molecules generated from random SELFIES depend on the specific version of the alphabet used. The
distribution densities of various properties used in the course of this work for various version of SELFIES are illustrated
in Supplementary Figure 3. Importantly, this does not only affect completely randomly generated structures but also
randomly modified structures generated via point mutations.

Supplementary Figure 3. Property distribution densities of molecules obtained from random SELFIES using various versions.

S7

S8. ADJUSTABLE PARAMETERS IN JANUS

Supplementary Table 2 provides an overview and an explanation of all the parameters that a user can readily define
for every molecular design run with JANUS.

Supplementary Table 2. Description of parameters that users can specify in the file params init.py prior to runnning JANUS
(https://github.com/aspuru-guzik-group/JANUS/blob/main/params_init.py.)

Parameter Description

params [′generations′] Number of generations (iterations) to run JANUS.

params [′generation size′]
The number of molecules that are kept within a generation. It also corresponds to the number
of fitness calculations done for the exploration and exploitation components of JANUS, respec-
tively.

params [′start population′] The location of the text file containing SMILES that are used to seed JANUS for Generation 0.

params [′num exchanges′] Number of molecules that are exchanged between the exploration and exploitation components
of JANUS.

params [′use fragments′]
An option to generate fragments and use them when performing mutations. Fragments are gen-
erated using the SMILES provided for the starting population. The list of generated fragments
is stored in the file ’./DATA/fragments selfies.txt’.

params [′use NN classifier′]
An option to use a classifier for sampling. If set to true, the trained model is saved at the end
of every generation in ’./RESULTS/’.

calc prop(smi) Given a SMILES string (smi), a user can specify an algorithm within this function for calculating
the fitness value.

https://github.com/aspuru-guzik-group/JANUS/blob/main/params_init.py

S8

S9. UNCONSTRAINED PENALIZED LOG P OPTIMIZATION

In addition to the results discussed in the main text, we also investigated the generational propagation of diversities of
both the explorative and the exploitative populations in the maximization of the unconstrained penalized logarithm
of the octanol-water partition coefficient scores. The corresponding results using four different kinds of selection
pressure are depicted in Supplementary Figure 4. First, we observe that the diversities in the explorative populations
are never higher than in the exploitative populations. With additional selection pressure in the explorative popula-
tions from neural networks, the diversities are significantly lower compared to the exploitative populations. This is
particularly pronounced when additional selection pressure is applied using a property predictor or a classifier that
only accepts the best 20% of molecules as both of them only accept a narrow range of molecules. As the optimizations
progress, the diversities tend to decrease which suggests that the search space is at least partially focused on the
best-performing molecules. However, it only decreases marginally for the exploitative populations. Nevertheless, at
least in the experiments investigated here, the diversities remain high in both the explorative and the exploitative
populations as long as the additional selection pressure allows for some leeway. However, the results also suggest
that JANUS could still be improved further by increasing the diversities in the explorative population. At the same
time, the diversities in the exploitative population could probably be decreased leading to more efficient local searches.

0 20 40 60 80 100
Generation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po
pu

la
tio

n
Di

ve
rs

ity

JANUS (Explore)
JANUS (Exploit)
JANUS+P (Explore)
JANUS+P (Exploit)

JANUS+C(50%) (Explore)
JANUS+C(50%) (Exploit)
JANUS+C(20%) (Explore)
JANUS+C(20%) (Exploit)

Supplementary Figure 4. Progress of the median-of-median diversities in each generation across 15 independent runs for both
the explorative and the exploitative populations of JANUS with four variations of selection pressure in the maximization of the
penalized logarithm of the octanol-water partition coefficient (penalized log P). The semi-transparent areas depict the diversity
intervals between the corresponding first and third quartiles of each generation.

In addition to the experiments discussed in the main text, we also tested the impact of the F25 parameter on the per-
formance of JANUS in the unconstrained optimization of the penalized log P. The corresponding results are depicted
in Supplementary Figure 5. Notably, the parameter F25 is the fitness value in a given generation that is to be assigned
a relative frequency of 0.25 for being selected. In this experiment, F50 corresponds to the fitness of the 50th molecule
when the exploration population of size 250 is sorted by decreasing fitness, as 50 molecules need to be selected in
total. The default value of F25 is chosen to be the fitness of the (n+1)th molecule in each generation, which is referred
to here as F(n+1). Effectively, this is a very low ”temperature” of the population as essentially only the most fit
molecules will be selected for genetic operations. The additional values of the F25 parameter tested are the fitnesses of
the (n+5)th, (n+10)th, (n+20)th and (n+40)th molecule, respectively, and they are referred to as F(n+5), F(n+10),
F(n+20) and F(n+40) in Supplementary Figure 5. The corresponding results demonstrate that, at least in the
parameter range tested, F25 does not seem to have any significant influence. Hence, we decided to not investigate its
influence on the performance of JANUS any further and used the default setting for F25 in all subsequent experiments.

Furthermore, we performed an ablation experiment to test the impact of the use of crossover in the genetic operators.
The comparison of the performance of JANUS with and without crossover on the unconstrained penalized log P
optimization task is illustrated in Supplementary Figure 6. The results demonstrate that the use of crossover in the
genetic operators has a very significant influence on the performance of JANUS. The impact is particularly pronounced
in the median-of-medians fitness in each generation of the exploration population (cf. Supplementary Figure 6(b)).

S9

(a) (b)

0 20 40 60 80 100
Generation

0

5

10

15

20

25

30

35
Pe

na
liz

ed
 lo

g
P

F25 = F(n + 1)
F25 = F(n + 5)
F25 = F(n + 10)
F25 = F(n + 20)
F25 = F(n + 40)

0 20 40 60 80 100
Generation

5

0

5

10

15

20

Pe
na

liz
ed

 lo
g

P

F25 = F(n + 1)
F25 = F(n + 5)
F25 = F(n + 10)
F25 = F(n + 20)
F25 = F(n + 40)

Supplementary Figure 5. Optimization progress of JANUS with four variations of F25 parameters in the maximization of
the penalized logarithm of the octanol-water partition coefficient (penalized log P). (a) Progress of the median of the highest
fitness in each generation across 6 independent runs. (b) Progress of the median-of-medians fitness in each generation of the
exploration population across 6 independent runs. The semi-transparent areas in both (a) and (b) depict the fitness intervals
between the corresponding first and third quartiles of each generation

.

It shows that the majority of molecules generated in the exploration population via mutation does not have a high
fitness. The main reason for this is that the molecules generated are not filtered or ordered based on their similarity
to the parent molecule but simply selected randomly. However, the majority of molecules generated by mutation
differ significantly from the parent as has been established in previous work [30]. Hence, the majority of molecules
generated by mutation have not much in common with their parents anymore. In contrast, molecules generated via
crossover are similar to both parent molecules as that is explicitly required from them. These results suggest that the
performance of JANUS could be enhanced even further by improving the mutated structures generated and work in
that regard is ongoing in our group.

Finally, we compared the performance of JANUS with and without crossover in the unconstrained penalized log P
optimization task against alternative GA-based molecular design algorithms described previously in the literature,
namely GA [31], GA+D [31] and EvoMol [33]. Notably, GA is the same algorithm as GA+D but without the use of
a discriminator. It serves as an important ablation study to test the impact of the parallel populations in JANUS
as GA differs from JANUS without crossover only by the absence of parallel populations. Overall, there are several
points to be noted. First, parallel populations lead to a significant performance improvement across the entire run of
100 generations. Secondly, the discriminator in GA+D significantly impacts the performance as well demonstrating
that it will be an important future improvement of JANUS. Finally, EvoMol differs significantly in its trajectory
characteristics from JANUS as it is almost deterministic across 10 runs. This is indicated by its almost invisible
semi-transparent area depicting the corresponding first and third best fitness quartiles in each generation across 10
runs. This suggests EvoMol to have only a limited stochastic exploration of the chemical space. Nevertheless, EvoMol
shows very steady and reliable improvement of the penalized log P in these simulations demonstrating comparable
performance to JANUS without additional selection pressure at intermediate numbers of generations.

S10

(a) (b)

0 20 40 60 80 100
Generation

0

5

10

15

20

25

30

35
Pe

na
liz

ed
 lo

g
P

Crossover
No Crossover

0 20 40 60 80 100
Generation

5

0

5

10

15

20

Pe
na

liz
ed

 lo
g

P

Crossover
No Crossover

Supplementary Figure 6. Comparison of the optimization progress of JANUS with and without crossover as genetic operators
in the maximization of the penalized logarithm of the octanol-water partition coefficient (penalized log P). (a) Progress of the
median of the highest fitness in each generation across 10 independent runs. (b) Progress of the median-of-medians fitness
in each generation of the exploration population across 10 independent runs. The semi-transparent areas in both (a) and (b)
depict the fitness intervals between the corresponding first and third quartiles of each generation

.

0 20 40 60 80 100
Generation

10

0

10

20

30

Pe
na

liz
ed

 lo
g

P

JANUS
JANUS (No Crossover)
EvoMol
GA
GA+D

Supplementary Figure 7. Comparison of the optimization progress of JANUS with and without crossover as genetic operators
against GA, GA+D and EvoMol, three approaches described in the literature [31, 33], in the maximization of the penalized
logarithm of the octanol-water partition coefficient (penalized log P) via the progress of the median of the highest fitness in
each generation across 10 independent runs. The semi-transparent areas depict the fitness intervals between the corresponding
first and third quartiles of each generation

.

S10. CONSTRAINED PENALIZED LOG P OPTIMIZATION

For the constrained penalized log P optimization benchmark, we use the setup employed by Jin et al. [9]. The goal is
to improve the penalized log P values of select molecules while maintaining similarity (δ) constraints to them. This
task has two subtask, one is to maintain a similarity of at least 0.4 to the original structure, the other is to maintain
a similarity of at least 0.6. The tasks are assessed by the improvement in penalized log P values and by success,
which is measured by the percentage of structures that were successfully improved in terms of penalized log P within
the respective similarity constraints. In total, the benchmark task is to perform this constrained optimization for 800
molecules selected from the ZINC dataset. For each molecule, we run JANUS independently, and the generations are

S11

seeded by the starting structure. Each experiment is run for at most 10 generations. The corresponding results are
summarized in Table 3.

It should be noted that JANUS achieved state-of-the-art performance in this benchmark with a lower number of
generations than the GA approach developed by Nigam et al. [31] which was run for 20 generations. Similarly,
JANUS also outperforms GEGL despite a much lower number of property evaluations, as GEGL was run for 50
generations with a generation size of 16,384 molecules to obtain the corresponding results [34]. Particular pairs of
initial structures and structures with maximized constrained penalized log P generated by JANUS are depicted in
Supplementary Figure 8. They show that JANUS finds a few very effective modifications that improve the penalized
log P while maintaining a sufficient similarity. In particular, keeping less polar substructures but replacing more polar
parts with extensive aliphatic or aromatic moieties is very effective in the examples provided.

Supplementary Table 3. Comparison on constrained improvement of penalized log P of specific molecules.

Method δ ≥ 0.4 δ ≥ 0.6
Improvement Success Improvement Success

JTVAE [9] 0.84 ±1.45 83.6% 0.21 ± 0.71 46.4%
GCPN [17] 2.49 ± 1.30 100% 0.79 ± 0.63 100%
MMPA [35] 3.29 ± 1.12 - 1.65 ± 1.44 -

DEFactor [11] 3.41 ± 1.67 85.9% 1.55 ± 1.19 72.6%
VJTNN [12] 3.55 ± 1.67 - 2.33 ± 1.17 -

GA [31] 5.93 ± 1.41 100% 3.44 ± 1.09 99.8%
GEGL [34] 7.87 ± 1.81 100% 4.43 ± 1.53 100%

JANUS 8.34 ± 3.17 100% 5.29 ± 2.33 100%

O

O

Similarity ≥ 0.4

H2N

O N

O N N

NN
Br

H2N

N

O N N

NN

N
H

O

NH+

O
N
H

O

O

O

Ph
Ph

Ph

N+H
N

O
NH+

H

O
-O

O

N

O
I

O

N

O

N

N
N

N

Ph

Ph
OH

Br

N+

H

NH3

Similarity ≥ 0.6

ΔJ = 7.61

ΔJ = 9.39

ΔJ = 6.22

6

64
O

2

H
N

NH

H

H

ΔJ = 6.17

ΔJ = 3.77

ΔJ = 7.57

O

Supplementary Figure 8. Selection of structures from the constrained penalized log P optimization task. Red structures are
the starting structures, blue structures are the best structures generated by JANUS.

S12

S11. IMITATED INHIBITION

For this task, JANUS is initiated by molecules classified as inhibitors that are provided as a reference dataset in
the benchmark. Across multiple generations, a list of molecules that fulfill all the criteria within each experiment is
maintained. The mutation and crossover operations are carried out using one random structure selected from this
list to replace a molecule from the population. Diversity and novelty of the 5,000 molecules generated are calculated
based on the following expressions:

Diversity = 1− 2

n(n− 1)

∑
X,Y

sim(X,Y) (2)

Novelty =
1

n

∑
G

1 [sim(G,GSNN) < 0.4] (3)

The expression sim(X,Y) computes the pairwise molecular similarity for all n structures calculated as the Tanimoto
distance of the Morgan fingerprint (calculated with a radius of size 3 and a 2048 bit size) [36]. In addition, for a given
compound G fulfilling the requirements of the benchmark, GSNN refers to the molecule from the reference dataset
that is closest to G in terms of molecular similarity.

Supplementary Figures 9 – 12 illustrate some structures produced by JANUS+C(50%) (cf. Table 3 of the main text)
in the imitated inhibition tasks. Blue structures are considered reasonable, red structures are considered problematic
based on expert opinion. It should be noted that some very large and unstable structures are considered favorable
inhibitors.

F

N
H

O

HN N

O

NH

N

N F

H2N

N

H
N

O

NH

H
N
N

NH2 N
N
N

N
NH

NH2

N

H2N

N

S

N N F

O

O

NH

N
N
H

N

O

HN

N

H
NCl

HS

N
H

H
N

NH2 Br

C O

NH2

N

N
NH2O

NH2

N

N
H

N

S

N
H2N

H
P

H
N
N
N

N
H

C

F

N
H

H
N

H
N

N

NH

N

NH2N

N
N

N

NH2

H
N

N

O

Supplementary Figure 9. Selection of structures from the imitated inhibition task optimizing for GSK3β inhibition. Blue
structures are considered reasonable, red structures are considered problematic in terms of stability based on expert opinion.

S13

F

NH

NCl

N

O

NH
O

N N

NH

OH

F
N

HN

N

O

N

HN

O

N
ON

NH

N

OHN

N

NH

NH2O

O

N

N

HN

S

Br

N

N N
H

N
NH

O

HN S

Br
N

N
NH

N
H

N

O
N
H

N

NH2

N
N

HN

O

N
H2N

N
H

N
N

N

H
N

F FF
F

O
H
N

N

NH2NH

C

N
H
N

C

NH

N

NHO

C
F

NHHN

H2N

O

HN

HN

N

NH2

O
O

N

F

Supplementary Figure 10. Selection of structures from the imitated inhibition task optimizing for JNK3 inhibition. Blue
structures are considered reasonable, red structures are considered problematic in terms of stability based on expert opinion.

S14

N
H
N

N
NH

N

O

N

N

O NH

N

NON

N
H

NH

F

Cl

N

N N

O

N

HN

H
N

N

HN

F

H2N

O

H
NN

O

HN

O

N
O

O
N

H2N

O
NH

N
N
H

F N

Cl

NH2

N

NH2

N

O
NHH2N

N

NH2

HN

NHN
H
N

N

O

F
N

Cl

NH2

OH

H2N

NHN
N

N
H

H
N

NH2 N

N

N
H

N N
H

N
O

F
N

Cl

N

S

NH

NH

C NH

N

N

N

O

HN

O

H2N

O

Supplementary Figure 11. Selection of structures from the imitated inhibition task optimizing for both GSK3β and JNK3
inhibition. Blue structures are considered reasonable, red structures are considered problematic in terms of stability based on
expert opinion.

N

NH

N NH

N

N

HN
N

ClHN

N

N

N

N
H

N

O
N
H

N

N

N
H N

N

HN

O

N
HN

N

NN

H
N N

N
N

HN
N

N

HN

N

O

H
N

N

N C N
N

N N
H

NH2

O

N

O

O
HN
N

N

O

OH

H
N

N

N
NH

O

F

NN N
N

N
N

HN
N

PH2

Supplementary Figure 12. Selection of structures from the imitated inhibition task optimizing for both GSK3β and JNK3
inhibition as well as QED and the SAscore. Blue structures are considered reasonable, red structures are considered problematic
in terms of stability based on expert opinion.

S15

Supplementary Figures 13 – 15 provide the property histograms for the structures generated by JANUS in the imitated
inhibition set of benchmarks with respect to the SAscore [37], the SCScore [38] and the RAscore [39]. Additionally,
the corresponding distributions of the reference molecules [35] taken from the ChEMBL database [40, 41] are added
for comparison.

(a) GSK3β (b) JNK3

0 2 4 6 8 10
SAscore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

0 2 4 6 8 10
SAscore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

(c) GSK3β + JNK3 (d) GSK3β + JNK3 + QED + SAscore

0 2 4 6 8 10
SAscore

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

0 1 2 3 4 5 6 7
SAscore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

Supplementary Figure 13. Histograms based on the SAscore of the molecules that fulfilled all the respective benchmark
conditions generated by JANUS with three variations of selection pressure and two different types of mutations in the four
imitated inhibition tasks (a-d). The training dataset provided by the authors of the benchmark and taken from the ChEMBL
database (labelled ChEMBL) was used to estimate the reference synthesizability scores.

S16

(a) GSK3β (b) JNK3

0 1 2 3 4 5
SCScore

0

2

4

6

8

10

12

14

16
Pr

ob
ab

ilit
y

De
ns

ity
ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

0 1 2 3 4 5
SCScore

0

2

4

6

8

10

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

(c) GSK3β + JNK3 (d) GSK3β + JNK3 + QED + SAscore

0 1 2 3 4 5
SCScore

0

2

4

6

8

10

12

14

16

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

0 1 2 3 4 5
SCScore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

Supplementary Figure 14. Histograms based on the SCScore of the molecules that fulfilled all the respective benchmark
conditions generated by JANUS with three variations of selection pressure and two different types of mutations in the four
imitated inhibition tasks (a-d). The training dataset provided by the authors of the benchmark and taken from the ChEMBL
database (labelled ChEMBL) was used to estimate the reference synthesizability scores.

S17

(a) GSK3β (b) JNK3

0.0 0.2 0.4 0.6 0.8 1.0
RAscore

0

2

4

6

8

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

0.0 0.2 0.4 0.6 0.8 1.0
RAscore

0

1

2

3

4

5

6

7

8

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

(c) GSK3β + JNK3 (d) GSK3β + JNK3 + QED + SAscore

0.0 0.2 0.4 0.6 0.8 1.0
RAscore

0

2

4

6

8

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

0.0 0.2 0.4 0.6 0.8 1.0
RAscore

0

1

2

3

4

5

6

7

8

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL
JANUS(Fragments)
JANUS(No Fragments)

JANUS+P
JANUS+C(50%)

Supplementary Figure 15. Histograms based on the RAscore of the molecules that fulfilled all the respective benchmark
conditions generated by JANUS with three variations of selection pressure and two different types of mutations in the four
imitated inhibition tasks (a-d). The training dataset provided by the authors of the benchmark and taken from the ChEMBL
database (labelled ChEMBL) was used to estimate the reference synthesizability scores.

S18

Supplementary Table 4 provides the areas of the bins in the RAscore histograms that are depicted in Supplementary
Figure 15.

Supplementary Table 4. Areas of the bins in the RAscore histograms depicted in Supplementary Figure 15. They are based on
the RAscore of the molecules that fulfilled all the respective benchmark conditions generated by JANUS with three variations
of selection pressure and two different types of mutations in the four imitated inhibition tasks. The training dataset provided
by the authors of the benchmark and taken from the ChEMBL database (labelled ChEMBL) was used to estimate the reference
RAscore values.

RAscore Histogram Bin Intervals
Method [0,0.125] (0.125,0.25] (0.25,0.375] (0.375,0.5] (0.5,0.625] (0.625,0.75] (0.75,0.875] (0.875,1]

GSK3β
ChEMBL 0.088 0.014 0.010 0.008 0.008 0.014 0.017 0.841

JANUS (Fragments) 0.484 0.057 0.044 0.029 0.023 0.049 0.048 0.266
JANUS (No Fragments) 0.461 0.061 0.056 0.034 0.031 0.062 0.045 0.250

JANUS+P 0.582 0.054 0.050 0.027 0.018 0.043 0.039 0.187
JANUS+C(50%) 0.888 0.015 0.009 0.006 0.004 0.007 0.011 0.060

JNK3
ChEMBL 0.097 0.013 0.010 0.008 0.007 0.014 0.019 0.830

JANUS (Fragments) 0.581 0.058 0.050 0.024 0.018 0.048 0.038 0.184
JANUS (No Fragments) 0.383 0.067 0.072 0.043 0.024 0.061 0.053 0.297

JANUS+P 0.615 0.047 0.039 0.020 0.016 0.035 0.030 0.197
JANUS+C(50%) 0.683 0.034 0.029 0.016 0.013 0.024 0.029 0.172

GSK3β + JNK3
ChEMBL 0.093 0.013 0.010 0.008 0.008 0.014 0.018 0.836

JANUS (Fragments) 0.604 0.065 0.062 0.031 0.025 0.048 0.041 0.123
JANUS (No Fragments) 0.222 0.055 0.079 0.046 0.036 0.089 0.080 0.393

JANUS+P 0.893 0.031 0.021 0.008 0.006 0.011 0.008 0.023
JANUS+C(50%) 0.925 0.011 0.010 0.006 0.004 0.008 0.008 0.028

GSK3β + JNK3 + QED + SAscore
ChEMBL 0.093 0.013 0.010 0.008 0.008 0.014 0.018 0.836

JANUS (Fragments) 0.553 0.063 0.049 0.032 0.021 0.044 0.047 0.193
JANUS (No Fragments) 0.228 0.058 0.055 0.036 0.030 0.071 0.075 0.446

JANUS+P 0.376 0.069 0.065 0.034 0.029 0.057 0.060 0.309
JANUS+C(50%) 0.309 0.058 0.049 0.030 0.027 0.058 0.066 0.404

S19

S12. MOLECULAR DOCKING

Supplementary Figure 16 depicts the progress of the synthesizability metrics SAscore [37] and RAscore [39] for
all molecules generated in each generation of the molecular docking benchmarks. Supplementary Figures 17 – 19
illustrate the histograms with respect to the synthesizability metrics SAscore, SCScore and RAscore based on the
250 best molecules in each individual run, which is precisely the subset of generated structures used to derive the
benchmark scores provided in Table 4 in the main text.

(a) (b)

0 5 10 15 20 25
Generation

0

1

2

3

4

5

6

7

SA
sc

or
e

ChEMBL: 5HT1B
JANUS: 5HT1B
JANUS+C(50%): 5HT1B
JANUS+P: 5HT1B

ChEMBL: 5HT2B
JANUS: 5HT2B
JANUS+C(50%): 5HT2B
JANUS+P: 5HT2B

0 5 10 15 20 25
Generation

0

1

2

3

4

5

6

7

SA
sc

or
e

ChEMBL: ACM2
JANUS: ACM2
JANUS+C(50%): ACM2
JANUS+P: ACM2

ChEMBL: CYP2D6
JANUS: CYP2D6
JANUS+C(50%): CYP2D6
JANUS+P: CYP2D6

(c) (d)

0 5 10 15 20 25
Generation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RA
sc

or
e

ChEMBL: 5HT1B
JANUS: 5HT1B
JANUS+C(50%): 5HT1B
JANUS+P: 5HT1B

ChEMBL: 5HT2B
JANUS: 5HT2B
JANUS+C(50%): 5HT2B
JANUS+P: 5HT2B

0 5 10 15 20 25
Generation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RA
sc

or
e

ChEMBL: ACM2
JANUS: ACM2
JANUS+C(50%): ACM2
JANUS+P: ACM2

ChEMBL: CYP2D6
JANUS: CYP2D6
JANUS+C(50%): CYP2D6
JANUS+P: CYP2D6

Supplementary Figure 16. Progress of the median-of-median synthesizability scores (a,b) SAscore and (b,c) RAscore of the
molecules generated by JANUS with three variations of selection pressure in the minimization of the docking scores to the
protein targets (a,c) 5HT1B and 5HT2B, and (b,d) ACM2 and CYP2D6. Progress is depicted via the median of the corre-
sponding median synthesizability scores in each generation across 3 independent runs. The semi-transparent areas depict the
synthesizability score intervals between the corresponding 10% and 90% quantiles of each generation. The training dataset
provided by the authors of the benchmark taken from the ChEMBL dataset was used to estimate reference synthesizability
scores.

S20

(a) 5HT1B (b) 5HT2B

0 1 2 3 4 5 6 7 8
SAscore

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Pr

ob
ab

ilit
y

De
ns

ity
ChEMBL: 5HT1B
JANUS: 5HT1B

JANUS+C(50%): 5HT1B
JANUS+P: 5HT1B

0 2 4 6 8
SAscore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: 5HT2B
JANUS: 5HT2B

JANUS+C(50%): 5HT2B
JANUS+P: 5HT2B

(c) ACM2 (d) CYP2D6

0 1 2 3 4 5 6 7 8
SAscore

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: ACM2
JANUS: ACM2

JANUS+C(50%): ACM2
JANUS+P: ACM2

0 1 2 3 4 5 6 7 8
SAscore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: CYP2D6
JANUS: CYP2D6

JANUS+C(50%): CYP2D6
JANUS+P: CYP2D6

Supplementary Figure 17. Histograms based on the SAscores of the molecules generated by JANUS with three variations of
selection pressure in the minimization of the docking scores to the protein targets (a) 5HT1B, (b) 5HT2B, (c) ACM2 and (d)
CYP2D6. The training dataset provided by the authors of the benchmark and taken from the ChEMBL database (labelled
ChEMBL) was used to estimate the reference synthesizability scores.

S21

(a) 5HT1B (b) 5HT2B

0 1 2 3 4 5
SCScore

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: 5HT1B
JANUS: 5HT1B

JANUS+C(50%): 5HT1B
JANUS+P: 5HT1B

0 1 2 3 4 5
SCScore

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: 5HT2B
JANUS: 5HT2B

JANUS+C(50%): 5HT2B
JANUS+P: 5HT2B

(c) ACM2 (d) CYP2D6

0 1 2 3 4 5
SCScore

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: ACM2
JANUS: ACM2

JANUS+C(50%): ACM2
JANUS+P: ACM2

0 1 2 3 4 5
SCScore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: CYP2D6
JANUS: CYP2D6

JANUS+C(50%): CYP2D6
JANUS+P: CYP2D6

Supplementary Figure 18. Histograms based on the SCScores of the molecules generated by JANUS with three variations of
selection pressure in the minimization of the docking scores to the protein targets (a) 5HT1B, (b) 5HT2B, (c) ACM2 and (d)
CYP2D6. The training dataset provided by the authors of the benchmark and taken from the ChEMBL database (labelled
ChEMBL) was used to estimate the reference synthesizability scores.

S22

(a) 5HT1B (b) 5HT2B

0.0 0.2 0.4 0.6 0.8 1.0
RAscore

0

1

2

3

4

5
Pr

ob
ab

ilit
y

De
ns

ity
ChEMBL: 5HT1B
JANUS: 5HT1B

JANUS+C(50%): 5HT1B
JANUS+P: 5HT1B

0.0 0.2 0.4 0.6 0.8 1.0
RAscore

0

1

2

3

4

5

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: 5HT2B
JANUS: 5HT2B

JANUS+C(50%): 5HT2B
JANUS+P: 5HT2B

(c) ACM2 (d) CYP2D6

0.0 0.2 0.4 0.6 0.8 1.0
RAscore

0

1

2

3

4

5

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: ACM2
JANUS: ACM2

JANUS+C(50%): ACM2
JANUS+P: ACM2

0.0 0.2 0.4 0.6 0.8 1.0
RAscore

0

1

2

3

4

5

Pr
ob

ab
ilit

y
De

ns
ity

ChEMBL: CYP2D6
JANUS: CYP2D6

JANUS+C(50%): CYP2D6
JANUS+P: CYP2D6

Supplementary Figure 19. Histograms based on the RAscores of the molecules generated by JANUS with three variations of
selection pressure in the minimization of the docking scores to the protein targets (a) 5HT1B, (b) 5HT2B, (c) ACM2 and (d)
CYP2D6. The training dataset provided by the authors of the benchmark and taken from the ChEMBL database (labelled
ChEMBL) was used to estimate the reference synthesizability scores.

S23

Supplementary Figure 20 shows for each of the specific docking experiments and JANUS variations that were conducted
the proposed structure with the most favorable docking score.

5HT1B, JANUS
CCC

C
N

HN

C
P

S

C
C

C
CCH2N

C
C

HO

5HT1B, JANUS+P

C
C
C

C

C
C

C
C

C

NHHN

5HT1B, JANUS+C(50%)

N
H

C

C
N

C
C
N NH

N

C P

NH2C
C
C
C
C
C
C
C
C
C
N

C

O

NH
C

CC

C

CC

C

C

H
P

O
C

HN

HN
HO

C
C

C
C

C
C

C
C

C
C

C

C
CC

C
C

C

C
C
C

N
C

OHN

H2N
C

C

C
C

C C C
C
C
C
C
C
C

5HT2B, JANUS 5HT2B, JANUS+P 5HT2B, JANUS+C(50%)

ACM2, JANUS ACM2, JANUS+P ACM2, JANUS+C(50%)

CYP2D6, JANUS CYP2D6, JANUS+P CYP2D6, JANUS+C(50%)

Supplementary Figure 20. Structures with most favorable docking score in each of the specific experiments conducted using
JANUS from the docking benchmarks.

S24

S13. GUACAMOL

For the GuacaMol benchmark suite [42], we set the generation size to 10,000 and initiated the population with the
top 10,000 molecules from the provided reference dataset. To reduce the computational requirements, we only used
mutations as genetic operations. Moreover, no additional selection pressure via DNNs was applied. The local search
within the exploitative population is only performed on the fittest member of the explorative population. The results
of JANUS on all the benchmark tasks is summarized in Table 5 and compared to various generative models from the
literature.

Supplementary Table 5. Comparison of JANUS against literature baselines for the GuacaMol benchmark suite [42]. The entry
denoted as “JANUS” does not use additional selection pressure for the exploration population. The following abbreviations
are used: redisc. for rediscovery, sim. for similarity.

STONED SMILES SMILES CReM GB MSO EvoMol MolFinder GEGL GA+D JANUS
Benchmark [30] GA [42] LSTM [42] [43] GA [42] [44] [33] [45] [34] [46] (here)
Celecoxib redisc. 0.556 0.732 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Troglitazone redisc. 0.543 0.515 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.700 1.000
Thiothixene redisc. 0.677 0.598 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.740 1.000
Aripiprazole sim. 0.716 0.834 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.580 1.000
Albuterol sim. 0.939 0.907 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.710 1.000
Mestranol sim. 0.769 0.790 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.570 1.000
C11H24 1.000 0.829 0.993 0.966 0.971 0.997 1.000 1.000 1.000 0.300 1.000
C9H10N2O2PF2Cl 0.886 0.889 0.879 0.940 0.982 0.56 1.000 1.000 1.000 1.000 1.000
Median molecules 1 0.351 0.334 0.438 0.371 0.406 0.437 0.455 0.412 0.455 0.270 0.434
Median molecules 2 0.395 0.380 0.422 0.434 0.432 0.395 0.417 0.454 0.437 0.270 0.416
Osimertinib MPO 0.863 0.886 0.907 0.995 0.953 0.966 0.969 0.945 1.000 0.780 0.967
Fexofenadine MPO 0.878 0.931 0.959 1.000 0.998 1.000 1.000 0.999 1.000 0.730 0.999
Ranolazine MPO 0.812 0.881 0.855 0.969 0.920 0.931 0.957 0.947 0.958 0.740 0.920
Perindopril MPO 0.629 0.661 0.808 0.815 0.792 0.834 0.827 0.816 0.882 0.550 0.817
Amlodipine MPO 0.738 0.722 0.894 0.902 0.894 0.900 0.869 0.924 0.924 0.620 0.905
Sitagliptin MPO 0.592 0.689 0.545 0.763 0.891 0.868 0.926 0.948 0.922 0.510 0.901
Zaleplon MPO 0.674 0.413 0.669 0.770 0.754 0.764 0.793 0.695 0.834 0.500 0.774
Valsartan SMARTS 0.864 0.552 0.978 0.994 0.990 0.994 0.998 0.999 1.000 0.690 0.993
Deco hop 0.968 0.970 0.996 1.000 1.000 1.000 1.000 1.000 1.000 0.660 1.000
Scafold hop 0.854 0.885 0.998 1.000 1.000 1.000 1.000 0.948 1.000 0.860 1.000
Total Score 14.704 14.396 17.340 17.919 17.983 18.086 18.211 18.087 18.412 12.040 18.126

S25

[1] AkshatKumar Nigam, Robert Pollice, Matthew F. D. Hurley, Riley J. Hickman, Matteo Aldeghi, Naruki Yoshikawa, Seyone
Chithrananda, Vincent A. Voelz, and Alán Aspuru-Guzik. Assigning confidence to molecular property prediction. Expert
Opinion on Drug Discovery, 16(9):1009–1023, 2021.

[2] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamı́n Sánchez-Lengeling,
Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic
chemical design using a data-driven continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

[3] Zhenpeng Yao, Benjamı́n Sánchez-Lengeling, N Scott Bobbitt, Benjamin J Bucior, Sai Govind Hari Kumar, Sean P Collins,
Thomas Burns, Tom K Woo, Omar K Farha, Randall Q Snurr, et al. Inverse design of nanoporous crystalline reticular
materials with deep generative models. Nature Machine Intelligence, 3(1):76–86, 2021.

[4] Jacques Boitreaud, Vincent Mallet, Carlos Oliver, and Jerome Waldispuhl. Optimol: Optimization of binding affinities in
chemical space for drug discovery. Journal of Chemical Information and Modeling, 60(12):5658–5666, 2020.

[5] Yashaswi Pathak, Karandeep Singh Juneja, Girish Varma, Masahiro Ehara, and U Deva Priyakumar. Deep learning
enabled inorganic material generator. Physical Chemistry Chemical Physics, 22(46):26935–26943, 2020.

[6] Jaechang Lim, Sang-Yeon Hwang, Seokhyun Moon, Seungsu Kim, and Woo Youn Kim. Scaffold-based molecular design
with a graph generative model. Chemical Science, 11(4):1153–1164, 2020.

[7] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 1945–1954, 2017.

[8] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational autoencoder for structured
data. In International Conference on Learning Representations, 2018.

[9] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular graph generation.
In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 2323–2332. PMLR, 10–15 Jul 2018.

[10] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Constrained graph variational autoencoders
for molecule design. The Thirty-second Conference on Neural Information Processing Systems, 2018.

[11] Rim Assouel, Mohamed Ahmed, Marwin H Segler, Amir Saffari, and Yoshua Bengio. Defactor: Differentiable edge
factorization-based probabilistic graph generation. arXiv preprint arXiv:1811.09766, 2018.

[12] Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-graph translation for
molecule optimization. In International Conference on Learning Representations, 2019.

[13] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha Farias, and Alán Aspuru-
Guzik. Objective-reinforced generative adversarial networks (organ) for sequence generation models. arXiv preprint
arXiv:1705.10843, 2017.

[14] Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and Alán Aspuru-Guzik. Optimizing distributions over
molecular space. an objective-reinforced generative adversarial network for inverse-design chemistry (organic). ChemRxiv,
2017.

[15] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

[16] Lukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and Micha l Warcho l. Mol-cyclegan:
a generative model for molecular optimization. Journal of Cheminformatics, 12(1):1–18, 2020.

[17] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy network for goal-
directed molecular graph generation. In Advances in Neural Information Processing Systems, pages 6410–6421, 2018.

[18] Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Simon Blackburn,
Karam Thomas, Connor Coley, Jian Tang, et al. Learning to navigate the synthetically accessible chemical space using
reinforcement learning. In International Conference on Machine Learning, pages 3668–3679. PMLR, 2020.

[19] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of molecules via deep reinforcement
learning. Scientific reports, 9(1):1–10, 2019.

[20] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo design through deep rein-
forcement learning. Journal of cheminformatics, 9(1):1–14, 2017.

[21] Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating realistic molecular graphs
with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

[22] Danilo Mandic and Jonathon Chambers. Recurrent neural networks for prediction: learning algorithms, architectures and
stability. Wiley, 2001.

[23] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and
tree search. nature, 529(7587):484–489, 2016.

[24] Xiufeng Yang, Jinzhe Zhang, Kazuki Yoshizoe, Kei Terayama, and Koji Tsuda. Chemts: an efficient python library for de
novo molecular generation. Science and technology of advanced materials, 18(1):972–976, 2017.

[25] Anand A Rajasekar, Karthik Raman, and Balaraman Ravindran. Goal directed molecule generation using monte carlo
tree search. arXiv preprint arXiv:2010.16399, 2020.

[26] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. {MARS}: Markov molecular
sampling for multi-objective drug discovery. In International Conference on Learning Representations, 2021.

S26

[27] Chence Shi*, Minkai Xu*, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a flow-based autore-
gressive model for molecular graph generation. In International Conference on Learning Representations, 2020.

[28] Paul Adrien Maurice Dirac. On the theory of quantum mechanics. Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character, 112(762):661–677, 1926.

[29] Enrico Fermi. Sulla quantizzazione del gas perfetto monoatomic. Rendiconti Lincei, 3,, 3:145–149, 1926.
[30] AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan Aspuru-Guzik. Beyond generative

models: Superfast traversal, optimization, novelty, exploration and discovery (stoned) algorithm for molecules using selfies.
Chemical Science, 2021.

[31] AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alan Aspuru-Guzik. Augmenting genetic algorithms with deep
neural networks for exploring the chemical space. In International Conference on Learning Representations, 2020.

[32] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-referencing embedded
strings (selfies): A 100% robust molecular string representation. Machine Learning: Science and Technology, 1(4):045024,
2020.

[33] Jules Leguy, Thomas Cauchy, Marta Glavatskikh, Béatrice Duval, and Benoit Da Mota. Evomol: a flexible and interpretable
evolutionary algorithm for unbiased de novo molecular generation. Journal of Cheminformatics, 12(1):1–19, 2020.

[34] Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization with genetic exploration.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 12008–12021. Curran Associates, Inc., 2020.

[35] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using interpretable substructures.
In International Conference on Machine Learning, pages 4849–4859. PMLR, 2020.

[36] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information and modeling,
50(5):742–754, 2010.

[37] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on molecular
complexity and fragment contributions. Journal of cheminformatics, 1(1):8, 2009.

[38] Connor W. Coley, Luke Rogers, William H. Green, and Klavs F. Jensen. Scscore: Synthetic complexity learned from a
reaction corpus. Journal of Chemical Information and Modeling, 58(2):252–261, 2018.

[39] Amol Thakkar, Veronika Chadimová, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Reymond. Retrosynthetic
accessibility score (rascore) – rapid machine learned synthesizability classification from ai driven retrosynthetic planning.
Chem. Sci., 12:3339–3349, 2021.

[40] Anna Gaulton, Anne Hersey, Micha l Nowotka, A. Patŕıcia Bento, Jon Chambers, David Mendez, Prudence Mutowo,
Francis Atkinson, Louisa J. Bellis, Elena Cibrián-Uhalte, Mark Davies, Nathan Dedman, Anneli Karlsson, Maŕıa Paula
Magariños, John P. Overington, George Papadatos, Ines Smit, and Andrew R. Leach. The ChEMBL database in 2017.
Nucleic Acids Research, 45(D1):D945–D954, 11 2016.

[41] David Mendez, Anna Gaulton, A Patŕıcia Bento, Jon Chambers, Marleen De Veij, Eloy Félix, Maŕıa Paula Magariños,
Juan F Mosquera, Prudence Mutowo, Micha l Nowotka, Maŕıa Gordillo-Marañón, Fiona Hunter, Laura Junco, Grace
Mugumbate, Milagros Rodriguez-Lopez, Francis Atkinson, Nicolas Bosc, Chris J Radoux, Aldo Segura-Cabrera, Anne
Hersey, and Andrew R Leach. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1):D930–
D940, 11 2018.

[42] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking models for de novo
molecular design. Journal of chemical information and modeling, 59(3):1096–1108, 2019.

[43] Pavel Polishchuk. Crem: chemically reasonable mutations framework for structure generation. Journal of Cheminformatics,
12(1):1–18, 2020.

[44] Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, and Djork-Arné Clevert. Efficient multi-
objective molecular optimization in a continuous latent space. Chemical science, 10(34):8016–8024, 2019.

[45] Yongbeom Kwon and Juyong Lee. Molfinder: an evolutionary algorithm for the global optimization of molecular properties
and the extensive exploration of chemical space using smiles. Journal of cheminformatics, 13(1):1–14, 2021.

[46] Kevin Maik Jablonka, Fergus Mcilwaine, Susana Garcia, Berend Smit, and Brian Yoo. A reproducibility study of” aug-
menting genetic algorithms with deep neural networks for exploring the chemical space”. arXiv preprint arXiv:2102.00700,
2021.

	Supplementary Information Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design
	Extended Background
	Extracting Fragments from Datasets
	Selection of Population Members for Genetic Operators
	Genetic Operators in JANUS
	Neural Network Features
	Feature comparison of JANUS and GA+D
	Property Distributions of Random SELFIES
	Adjustable Parameters in JANUS
	Unconstrained Penalized log P Optimization
	Constrained Penalized log P Optimization
	Imitated Inhibition
	Molecular Docking
	GuacaMol
	References

