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1. Data and code availability 

The 566 donor/acceptor pairs with their detailed information and codes used to 

discuss the ML results in this work are available from a public GitHub repository at 

github.com/marcosdelcueto/NonFullereneAcceptorPrediction. 

 

2. Computational methods 

2.1 Generating properties 

Physical properties related to ground-state were calculated at the B3LYP/6-31G* level, 

with the exclusion of where the smaller basis set 3-21G* was used for reorganization 

energy calculations.1 And the excited state properties computed at the 

M06-2X/6-31G* level2 and the triplet state energies were computed by ΔSCF 

procedure.3 Fingerprints have been computed with the RDKit package4 and the 

miscibility properties have been generated with the code SwissADME5 (with the 

exception of several molecules computed with XLOGP36). 

 

2.2 Distance Metrics and chemical similarity 

The distance between two donor-acceptor pairs, pij and pmn, is calculated as a linear 

combination of the distance based on physical properties (Dph), and the distance based 

on the fingerprint separately for donors (Dfpd) and acceptors (Dfpa) can be calculated 

as: 

𝐷 = 𝛾𝑝ℎ𝐷𝑝ℎ(𝑝𝑖𝑗, 𝑝𝑚𝑛) + 𝛾𝑑𝐷𝑓𝑝𝑑(𝑝𝑖𝑗 , 𝑝𝑚𝑛) + 𝛾𝑎𝐷𝑓𝑝𝑎(𝑝𝑖𝑗, 𝑝𝑚𝑛)        (1) 

Different hyperparameters (γph, γa and γd) are defined to tune the relative importance 

of physical and fingerprint distance, and we have considered three distinct cases: i) 

use only physical descriptors (γd = γa =0), ii) use only fingerprints (γph = 0) and iii) use 

both physical descriptors and fingerprints.  

The physical distances were calculated as the Euclidean distance between the vectors 

containing physical properties: 

                          ( ) 2 = ||, ||ph ph

ij mn ij mph nD p p p  - p                  (2) 

The chemical similarity of two molecules is a routine task in cheminformatics. It has 

been reported that Tanimoto similarity was identified as one of the best similarity 

metrics.7 The fingerprint distances8 were calculated from the Tanimoto similarity 

index T(r, s) between the vectors containing the Morgan fingerprints of the 

corresponding donor and acceptor (dfp and afp) : 
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Since distances are bit vectors, similarity will have a value between 0 and 1.  

 

2.3. Machine learning methods 

2.3.1 k-nearest neighbors (k-NN) 

The k-NN regression algorithm9 with weights and proximity determined by the 

distances expressed in Eq. 1 adopted here to predict values of the properties as a 

weighted average for the nearest k neighbors. The predictions were computed using a 

leave-one-out (LOO) procedure and 10-fold cross-validation scanning for various 

values of k, which allowed us optimizing k to give the best results.  

 

2.3.2 Kernel Ridge Regression (KRR) 

KRR as a modified version of regularized least squares could obtain predictions 

depending on the vicinity with previous observations.10 The target values 


y of new 

donor/acceptor pair pmn is defined as ( )
1Ty K I 


−

 = + y , where α is a 

regularization hyperparameter, I is the identity matrix, K and   can be obtained 

from ( ), ,i j mn ij mnK f= p p  and ( ), ,ij mn ij mnf = p p' . And the distance of physical and 

structural properties are used to compute f  by mapping vectors into a scalar as 

follows: 𝑓(𝑝𝑖𝑗 , 𝑝𝑚𝑛) = 𝑒−(𝛾𝑝ℎ𝐷𝑝ℎ
2 (𝑝𝑖𝑗,𝑝𝑚𝑛)+𝛾𝑑𝐷𝑓𝑝𝑑

2 (𝑝𝑖𝑗,𝑝𝑚𝑛)+𝛾𝑎𝐷𝑓𝑝𝑎
2 (𝑝𝑖𝑗,𝑝𝑚𝑛))  which can 

take into account electronic and/or structural properties. 

 

2.3.3 Support Vector Regression (SVR) 

SVR11 uses the same kernel as described above for KRR. Both algorithms are similar, 

and the main difference is the use of ε-sensitive loss with SVR instead of the squared 

error loss. The optimization parameters in SVR are the regularization parameter C, 

and ε, which defines the region within which there is no penalty in the training loss 

function. 

 

2.3.4 Hyperparameters optimization 

Comparing the predicted and actual value of each point in the test set for each 

iteration, we can obtain an RMSE value. The iteration could be LOO or 

leave-one-group-out (LOGO). For each set of hyperparameters, each of the points of 



the test set were predicted by training a model on the remaining N points. In the case 

of k-NN regression, we obtain the optimum number of neighbors, k, from a list of 

possibilities (k=1-20). We are using a different number of physical descriptors, plus 

the fingerprints of the donor and acceptor with a recombination rate of 0.7, mutation 

of 0.5-1, popsize of 15, and 0<γ<6, 0<α,C,ε<10 for stochastic optimization in KRR 

and SVR. The data have been scaled so that the average of each descriptor is zero and 

the standard deviation is one.  

 

3. Grouping process 

As shown in Table S1, the 33 acceptors were encoded by different fragments. In 

practice, each entry in the data set of acceptors is labelled as 1, 2, 3, etc. Those labels 

are used to create training and testing sets. We then grouped the acceptor when they 

contained similar fragments. The encoded number is 1 if they contain the specific 

fragment and with 0 if they do not contain any fragment identified. For each 

investigated acceptor, the corresponding chemical building blocks were considered as 

fragments, and the number of new molecules for each fragment entry was counted. 

Fullerenes were not counted by group while all PDIs and other non-fullerenes were 

considered when grouping molecules to be consistent with our main aim in this work. 

In the beginning, we paid attention to the group with a number of new molecules 

larger than 3 and got 8 groups. For molecule like acceptor 7, which is not obvious 

what fragment to consider, we considered LUMO contributions as a criterion. As seen 

from Table S2, molecule 7 will be removed from Group 6 (IDT contributes 18.9% to 

LUMO) and kept in Group 3 (BT contributes 58.3% to LUMO). As seen in Table S2, 

we can re-assign molecules in different groups by fragment contribution to LUMO 

larger than 50%: (i) remove molecule 7 in Group 6 and keep it in Group 3; (ii) keep 

Group 2, Group 3, Group 4 and Group 5, and remove Group 6, Group 7 and Group 8.  



Table S1. The encode of fragments for each acceptor.  
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1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 

28 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

33 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



 

Figure S1. The chemical structures of considered fragments.  

 

 

 

 

 

 

 

 

 



Table S2. Fragments contribution to LUMO (Mulliken partition). 

Group 2 

(DPP) 

Group 3 

(BT) 

Group 4 

(IID-T) 

Group 5 

(IC) 

Group 6 

(IDT) 

Group 7 

(NI) 

Group 8 

(fluorene) 

23(52%) 7(58%) 3(92%) 17(62%) 7(19%) 2(23%) 14(17%) 

31(64%) 29(57%) 4(92%) 22(60%) 17(39%) 4(4%) 29(6%) 

32(61%) 30(59%) 5(97%) 24(60%) 26(38%) 6(2%) 30(8%) 

  6(97%) 25(55%)  10(24%)  

   26(62%)  11(22%)  

   27(64%)  29(29%)  

     30(26%)  

 

4. Machine learning results 

 

Table S3. Optimized hyperparameters and the resulting RMSE/r for k-NN predictions 

of PCE with different cross-validation strategies. 

 Features Group 𝒌 𝜸𝒑𝒉 𝜸𝒅 𝜸𝒂 RMSE (%) r 

LOO- 

interp. 

Fp. -  0.0 5.870 2.878 1.783 0.690 

Phys. -  1.0 0.0 0.0 2.155 0.513 

LOO-  

extrap. 

Fp. 

G1 4 0.0 4.873 3.514 

2.960 0.323 

G2 4 0.0 5.031 2.904 

G3 4 0.0 5.031 2.904 

G4 4 0.0 5.680 2.883 

G5 4 0.0 4.500 2.146 

Phys. 

G1 15 1.0 0.0 0.0 

3.209 -0.077 

G2 15 1.0 0.0 0.0 

G3 15 1.0 0.0 0.0 

G4 15 1.0 0.0 0.0 

G5 15 1.0 0.0 0.0 

LOGO- 

extrap. 
Fp. 

G1 2 0.0 3.404 4.873 

3.564 -0.011 

G2 5 0.0 3.053 5.432 

G3 5 0.0 2.629 0.529 

G4 20 0.0 0.704 3.443 

G5 2 0.0 4.500 2.146 



Phys. 

G1 4 1.0 0.0 0.0 

3.197 0.018 

G2 5 1.0 0.0 0.0 

G3 4 1.0 0.0 0.0 

G4 7 1.0 0.0 0.0 

G5 6 1.0 0.0 0.0 

 

Table S4. Optimized hyperparameters and the resulting RMSE/r for KRR predictions 

of PCE with different cross-validation strategies. 

 Features Group 𝜶 𝜸𝒑𝒉 𝜸𝒅 𝜸𝒂 RMSE (%) r 

LOO- 

interp. 

Fp. - 0.349 0.0 2.766 0.627 1.751 0.691 

Phys. - 0.139 0.110 0.0 0.0 2.009 0.563 

LOO-  

extrap. 

Fp. 

G1 0.366 0.0 3.054 0.736 

3.522 0.078 

G2 0.383 0.0 3.184 0.913 

G3 0.360 0.0 2.980 0.884 

G4 0.389 0.0 3.111 0.652 

G5 0.347 0.0 3.632 0.306 

Phys. 

G1 0.105 0.111 0.0 0.0 

4.108 0.167 

G2 0.155 0.105 0.0 0.0 

G3 0.119 0.115 0.0 0.0 

G4 0.139 0.110 0.0 0.0 

G5 0.097 0.108 0.0 0.0 

LOGO- 

extrap. 

Fp. 

G1 0.015 0.0 0.037 0.350 

3.766 0.067 

G2 0.241 0.0 0.761 2.59×10-5 

G3 0.371 0.0 2.508 6.32×10-4 

G4 0.065 0.0 0.012 0.024 

G5 0.180 0.0 1.500 0.100 

Phys. 

G1 7.93×10-3 1.86×10-4 0.0 0.0 

2.845 0.309 

G2 2.57×10-3 9.60×10-5 0.0 0.0 

G3 0.196 5.94×10-3 0.0 0.0 

G4 0.310 3.53×10-3 0.0 0.0 

G5 0.659 4.30×10-3 0.0 0.0 

 

 

 

 

 

 

 

 



Table S5. Optimized hyperparameters and the resulting RMSE/r for SVR predictions 

of PCE with different cross-validation strategies. 

 Features Group (𝑪, 𝜺) 𝜸𝒑𝒉 𝜸𝒅 𝜸𝒂 RMSE (%) r 

LOO- 

interp. 

Fp. - 3.979, 0.017 0.0 3.977 0.818 1.667 0.726 

Phys. - 7.216, 1.157 0.157 0.0 0.0 1.961 0.587 

LOO- 

extrap. 

Fp. 

G1 4.138, 0.030 0.0 5.411 1.098 

3.268 0.169 

G2 3.694, 0.0112 0.0 4.877 1.203 

G3 3.762, 0.097 0.0 4.442 0.818 

G4 2.982, 0.021 0.0 4.951 0.664 

G5 3.297, 0.023 0.0 5.256 0.692 

Phys. 

G1 9.161, 1.199 0.115 0.0 0.0 

3.246 0.101 

G2 5.326, 1.237 0.172 0.0 0.0 

G3 4.884, 1.083 0.162 0.0 0.0 

G4 7.952, 1.162 0.151 0.0 0.0 

G5 9.651, 1.157 0.132 0.0 0.0 

LOGO- 

extrap. 

Fp. 

G1 10.000, 1.141 0.0 0.178 0.664 

3.323 -0.055 

G2 0.110, 4.902 0.0 5.331 2.192 

G3 0.130, 4.946 0.0 5.178 4.699 

G4 9.959, 2.618 0.0 0.077 0.508 

G5 9.604, 7.19×10-3 0.0 3.497 0.115 

Phys. 

G1 9.933, 2.720 6.33x10-3 0.0 0.0 

2.833 0.232 

G2 0.152, 4.926 2.829 0.0 0.0 

G3 0.180, 4.932 1.633 0.0 0.0 

G4 7.207, 2.996 2.86×10-3 0.0 0.0 

G5 9.999, 3.357 7.59×10-3 0.0 0.0 

 

5. LOGO convergence to LOO 

To better understand the relation between the proposed LOGO-extrapolation (five 

chemically different groups) and LOO-interpolation (566 groups with one 

donor/acceptor pair each), we considered three intermediate cases: 

(i) LOGO - 5 groups with non-fullerene pairs. Our database consists of 49 

non-fullerene donor/acceptor pairs, corresponding to 23 unique 

non-fullerene acceptor molecules. As a first step to increase the 

heterogeneity of our initial groups, we have randomly split these 23 

non-fullerene acceptor molecules into five groups, in a way that each 

group has a number of pairs per group similar to the LOGO-extrapolation 

case (~10). 

(ii) In total, our database has 33 unique acceptor molecules, so we have 

considered 33 groups, as a next step to increase group heterogeneity, 



where each of them contains all pairs with a given acceptor molecule. 

(iii) To increase the number of groups further, we have split the 33 groups with 

the most pairs into new groups, so each group has approximately 40 pairs 

per group at most. We end up with 55 groups, where some of them contain 

pairs with the same acceptor molecules as other groups, increasing the 

heterogeneity between groups further, approaching the LOO extreme. 

 

6. LOGO-extrapolation vs LOO-extrapolation 

6.1. Predicted vs Experimental PCE 

 

Figure S2. Predicted vs experimental PCE values when using LOO-interpolation (left 

panel) LOO-extrapolation (middle panel) and LOGO-extrapolation (right panel) when 

using KRR and physical descriptors. 

6.2. Different Grouping 

The benefit of using LOGO-extrapolation with respect to LOO-extrapolation can be 

seen in Table S6. When we group our unique 23 non-fullerene acceptors in five 

random groups, LOO-extrapolation and LOGO-extrapolation return virtually the same 

result. However, when we group the acceptors in five chemically distinct groups, 

LOGO-extrapolation results in a significantly lower RMSE.  

 

Table S6. RMSE resulting of using LOO-extrapolation and LOGO-extrapolation 

when using different grouping. Results were obtained with KRR, using fingerprints 

and physical descriptors. 

 LOO-extrapolation LOGO-extrapolation 

Five random groups 2.58 % 2.57 % 

Five chemically distinct groups 3.36 % 2.84 % 

 



 

 

7. Screening new candidates 

To see how our model would perform when predicting the PCE of molecules from 

new chemical groups, we can use KRR to optimize the hyperparameters using the 

LOGO-extrapolation approach with physical descriptors, using all our database during 

training. This results in the optimized values: 𝛼 = 0.07950, 𝛾𝑝ℎ = 0.001596. 

 

As a first step to identify the ranges for desired properties of new molecules, we 

identified that the four acceptors with the largest PCE in our database have 𝐸𝐿𝑈𝑀𝑂 ≈

−3.5 𝑒𝑉, 𝜆 ≈ 0.2 𝑒𝑉, ∑ 𝑓 ≈ 2.9 and 𝑋𝐿𝑂𝐺𝑃3 ≈ 23.6. When we take the acceptor 

with the largest PCE in our database12, and we use it as a test point when training the 

model with all our database, it results in a predicted PCE value of 6.46%. We can 

change slightly each descriptor to identify which ranges result in a relative decrease of 

~25% (𝑃𝐶𝐸 ≥ 4.8%). Therefore, we would expect that acceptors with 𝐸𝐿𝑈𝑀𝑂 <

−2.85 𝑒𝑉, 𝜆 > 0.12 𝑒𝑉, ∑ 𝑓 > 0.8 and 𝑋𝐿𝑂𝐺𝑃3 > 2 would result in a large PCE.  

 

The database from ref. 13 contains multiple organic molecules, including their LUMO 

energy and oscillator strength for the three first excited states at a 

TDDFT/M06-2X/def2-SVP level of theory. We screened molecules that were within 

the 𝐸𝐿𝑈𝑀𝑂 < −2.85 𝑒𝑉, ∑ 𝑓 > 0.8 range, had less than 70 heavy atoms, were not 

part of any of the groups in our database and were not too similar to each other. After 

this, we have used the SwissADME web tool5 to calculate their XLOGP3 value, and 

added some side chains to those with a XLOGP3 value of approximately 2 or less. 

This procedure resulted in nine candidates, whose physical descriptors were 

calculated with the same level of theory specified in Section S2 of this SI. We show in 

Table S7 the computed descriptors of these molecules and the resulting predicted 

PCE. 

 

Table S7. Predicted PCE for nine molecules from families not present in the training 

dataset. Results were obtained using KRR with physical descriptors. 

Molecule 

no. 
LUMO (eV) λ (eV) ∑ 𝒇 XLOGP3 

Predicted 

PCE (%) 

1 -4.7266 0.1848 0.9699 8.31 7.32 

2 -3.8994 0.1363 0.7528 9.31 6.52 

3 -3.5786 0.1274 1.5634 9.18 6.36 

4 -4.2161 0.2366 0.7953 8.42 5.58 

5 -3.4055 0.2003 1.3320 16.41 4.81 

6 -4.2452 0.2800 0.5608 8.57 4.73 

7 -3.5152 0.1985 1.2209 7.93 4.58 

8 -3.5372 0.2352 0.0000 9.16 3.16 

9 -3.9097 0.3763 0.6825 9.51 2.04 

  



8. Acceptors structures 

 

Table S8. The distinct 33 acceptors in the database of experimental photovoltaic cells. 
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