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1 Experimental Details

1.1 General Experimental Details

Solvents and chemicals were obtained from commercial suppliers and were used without any further 

purification unless otherwise noted. In the flow setup, standard PFA tubing (0.8 mm or 1.6 mm i.d.), 

fittings, T-pieces manufactured from PTFE or PEEK were used as connectors. Solvents and chemicals 

were obtained from commercial suppliers and were used without any further purification unless 

otherwise noted. Reference materials for 2ClBA, 5N-2ClBA, 3-NSA, 5-NSA were obtained from TCI 

in >98% purity and 3N-2ClBA was obtained from Apollo Scientific (99% purity).

1.2 Reactor Platform and Connectivity for Process Data

The reactor platform, connectivity of the instruments, UHPLC method, and the process runs are 

described in reference S1. The concentration for the intermediates and impurities after the NMR and 

UV/vis measurements were recalculated from the final measurements of the UHPLC placed at the 

reactor outlet. The UHPLC concentrations for 2ClBA, 3N-2ClBA, 5N-2ClBA, 3-NSA, 5-NSA for the 

stability run and the run with dynamic changes can be found in Table S1 - Table S2 and Table S3 - Table 

S4, respectively. 

Table S1. Online UHPLC results for the stability run.

Injection Timestamp
(h)

[2ClBA]
(mol/L)

[3N-2ClBA]
(mol/L)

[5N-2ClBA]
(mol/L)

[3-NSA]
(mol/L)

[5-NSA]
(mol/L)

1 0.015 0.000 0.000 0.000 0.000 0.000
2 0.144 0.000 0.000 0.000 0.000 0.000
3 0.273 0.000 0.000 0.001 0.001 0.019
4 0.402 0.000 0.001 0.015 0.006 0.105
5 0.531 0.000 0.001 0.019 0.010 0.147
6 0.659 0.000 0.001 0.019 0.011 0.153
7 0.788 0.006 0.001 0.019 0.009 0.157
8 0.916 0.007 0.001 0.019 0.011 0.159
9 1.046 0.007 0.001 0.019 0.011 0.160
10 1.175 0.007 0.001 0.018 0.009 0.163
11 1.304 0.007 0.001 0.018 0.009 0.163
12 1.433 0.007 0.001 0.018 0.009 0.163
13 1.561 0.007 0.002 0.018 0.012 0.163
14 1.691 0.007 0.001 0.018 0.009 0.163
15 1.819 0.007 0.001 0.017 0.011 0.160
16 1.948 0.007 0.001 0.018 0.012 0.165
17 2.077 0.007 0.001 0.019 0.009 0.166
18 2.206 0.007 0.001 0.020 0.009 0.166
19 2.334 0.008 0.001 0.018 0.009 0.166
20 2.463 0.008 0.002 0.018 0.009 0.166
21 2.592 0.008 0.002 0.018 0.009 0.162
22 2.721 0.008 0.002 0.017 0.011 0.162
23 2.850 0.008 0.002 0.018 0.011 0.159
24 2.978 0.008 0.002 0.015 0.011 0.157
25 3.107 0.008 0.002 0.014 0.009 0.163
26 3.236 0.008 0.002 0.014 0.011 0.159
27 3.365 0.008 0.002 0.014 0.009 0.163
28 3.494 0.008 0.002 0.014 0.009 0.165
29 3.623 0.008 0.002 0.016 0.010 0.155
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Table S2. Online UHPLC results for the stability run.

Injection Timestamp
(h)

[2ClBA]
(mol/L)

[3N-2ClBA]
(mol/L)

[5N-2ClBA]
(mol/L)

[3-NSA]
(mol/L)

[5-NSA]
(mol/L)

30 3.751 0.008 0.002 0.015 0.011 0.159
31 3.880 0.008 0.002 0.015 0.011 0.160
32 4.009 0.008 0.002 0.014 0.009 0.163
33 4.138 0.008 0.002 0.014 0.009 0.161
34 4.267 0.009 0.002 0.015 0.009 0.162
35 4.395 0.009 0.002 0.012 0.008 0.139
36 4.524 0.012 0.000 0.004 0.002 0.044
37 4.653 0.010 0.000 0.001 0.001 0.014
38 4.783 0.009 0.000 0.000 0.000 0.008
39 4.912 0.007 0.000 0.000 0.000 0.005
40 5.041 0.007 0.000 0.000 0.000 0.003
41 5.171 0.007 0.000 0.000 0.000 0.003
42 5.302 0.007 0.000 0.000 0.000 0.003
43 5.431 0.006 0.000 0.000 0.000 0.002
44 5.560 0.000 0.000 0.000 0.000 0.002

Table S3. Online UHPLC results for the run with dynamic changes. 

Injection Timestamp
(h)

[2ClBA]
(mol/L)

[3N-2ClBA]
(mol/L)

[5N-2ClBA]
(mol/L)

[3-NSA]
(mol/L)

[5-NSA]
(mol/L)

1 0.007 0.000 0.000 0.000 0.000 0.000
2 0.136 0.000 0.000 0.000 0.000 0.000
3 0.264 0.000 0.000 0.000 0.002 0.000
4 0.393 0.000 0.000 0.000 0.000 0.000
5 0.521 0.000 0.000 0.000 0.000 0.000
6 0.650 0.000 0.000 0.000 0.000 0.000
7 0.778 0.000 0.001 0.006 0.001 0.009
8 0.906 0.000 0.005 0.087 0.005 0.060
9 1.035 0.000 0.009 0.106 0.006 0.073
10 1.164 0.000 0.010 0.117 0.006 0.076
11 1.293 0.000 0.010 0.124 0.007 0.080
12 1.421 0.000 0.010 0.107 0.008 0.094
13 1.549 0.000 0.006 0.072 0.012 0.129
14 1.678 0.000 0.003 0.042 0.016 0.155
15 1.806 0.000 0.001 0.028 0.018 0.166
16 1.935 0.000 0.001 0.024 0.015 0.170
17 2.064 0.000 0.000 0.023 0.013 0.171
18 2.192 0.000 0.000 0.018 0.010 0.148
19 2.321 0.000 0.000 0.017 0.009 0.141
20 2.449 0.006 0.000 0.016 0.009 0.138
21 2.578 0.006 0.000 0.018 0.009 0.145
22 2.707 0.006 0.000 0.019 0.011 0.164
23 2.836 0.007 0.000 0.019 0.011 0.170
24 2.964 0.007 0.000 0.018 0.010 0.168
25 3.093 0.008 0.000 0.017 0.010 0.170
26 3.221 0.011 0.000 0.017 0.009 0.167
27 3.351 0.014 0.000 0.016 0.008 0.162
28 3.479 0.015 0.000 0.016 0.008 0.162
29 3.608 0.016 0.000 0.016 0.009 0.166
30 3.737 0.016 0.000 0.016 0.008 0.164
31 3.866 0.017 0.000 0.016 0.008 0.166
32 3.994 0.017 0.000 0.015 0.008 0.159
33 4.123 0.017 0.000 0.016 0.008 0.166
34 4.252 0.017 0.000 0.015 0.008 0.165
35 4.384 0.017 0.000 0.014 0.008 0.163
36 4.513 0.017 0.000 0.013 0.008 0.163
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Table S4. Online UHPLC results for the run with dynamic changes. 

Injection Timestamp
(h)

[2ClBA]
(mol/L)

[3N-2ClBA]
(mol/L)

[5N-2ClBA]
(mol/L)

[3-NSA]
(mol/L)

[5-NSA]
(mol/L)

37 4.641 0.018 0.000 0.013 0.008 0.164
38 4.770 0.017 0.000 0.015 0.008 0.165
39 4.899 0.017 0.000 0.016 0.008 0.166
40 5.027 0.017 0.002 0.016 0.009 0.169
41 5.158 0.017 0.000 0.016 0.010 0.167
42 5.286 0.017 0.004 0.025 0.009 0.156
43 5.415 0.011 0.012 0.050 0.007 0.109
44 5.544 0.008 0.016 0.060 0.005 0.085
45 5.672 0.007 0.017 0.058 0.005 0.082
46 5.802 0.007 0.017 0.058 0.006 0.081

1.3 PAT Instrument Details

1.3.1 General Information for NMR

NMR spectra were acquired on a low field benchtop 43.795 MHz NMR spectrometer (Magritek, 

Spinsolve Ultra 43 MHz). A glass flow-through cell (internal volume = 800 μL, length = 550 mm) was 

inserted through the benchtop NMR to enable inline measurements for reaction monitoring. The spectra 

were recorded with a pulse angle of 90 °, acquisition time of 6.4 s, repetition time of 10.0 s and a single 

scan. The recorded spectra were preprocessed with PEAXACT 5.4 software (S-PACT) by phasing 

(Auto, Negative Peak Penalization) and baseline correction (Straight Line Subtraction). The highest 

peak (water) in the spectrum was aligned with the reference value of 5.00 ppm and the global range of 

the spectrum was reduced to 7.00 and 9.00 ppm.   

The description of the indirect hard model (IHM) and validation errors can be obtained from reference 

S1.  

The partial least squares (PLS) model was developed in PEAXACT by using the experimentally 

measured concentration values as training data. The spectra were classified into groups based on their 

concentration level for cross validation (leave-one-group out approach) during the training. The ranks 

of each individual species were adjusted accordingly, to obtain the lowest possible rank by low root-

mean-square error of calibration (RMSEPLS_C) and low root-mean-square error of cross validation 

(RMSEPLS_CV). The ranks, RMSEPLS_C, and RMSEPLS_CV for 2ClBA, 3N-2ClBA, and 5N-2ClBA are 

listed in Table S5.

Table S5. PLS model, overview of the ranks, RMSEPLS_C and RMSEPLS_CV
 for 2ClBA, 3N-2ClBA, and 5N-2ClBA.

Ranks RMSEPLS_C

(mM)
RMSEPLS_CV

(mM)
2ClBA 7 1.5 7.9

3N-2ClBA 7 4.1 41.6
5N-2ClBA 7 6.1 52.0
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1.3.2 Individual Component NMR Spectra
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Figure S1. NMR spectrum of 2ClBA as a single component (0.15 M concentration). 
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Figure S2. NMR spectrum of 3N-2ClBA as a single component (0.15 M concentration). 
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Figure S3. NMR spectrum of 5N-2ClBA as a single component (0.15 M concentration).
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1.3.3 General Information for UV/vis Spectroscopy

The UV/vis spectra were acquired using a fiber-coupled Avantes Starline AvaSpec-ULS2048 

spectrometer, with an Avantes AvaLight-DHc lamp as light source (deuterium and halogen lamp). The 

spectrometer was controlled using Avasoft 8.7 software and spectra were exported as csv file after each 

experiment. The spectra were recorded between a range from λ 199 – 769 nm, with an integration time 

of 20 ms and an average of 100 measurements per data point. Inline measurements were enabled by 

using a flow-through cell made out of a four-way connector (PEEK) and a bifurcated fiber-based 

reflection probe (FCR-7UVIR200-2-1.5x100). A detailed description of the flow cell can be found in 

reference S1.

1.3.4 Individual Component UV/vis Spectra
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Figure S4. UV/vis spectrum of 2ClBA as a single component. 
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Figure S5. UV/vis spectrum of 3N-2ClBA as a single component. 
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Figure S6. UV/vis spectrum of 5N-2ClBA as a single component. 
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Figure S7. UV/vis spectrum of 3-NSA as a single component. 
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Figure S8. UV/vis spectrum of 5-NSA as a single component. 
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2 Development of Neural Network for NMR

2.1 Training Data

2.1.1 Experimentally Measured Concentration Levels 

The concentration level solutions were prepared by weighing the correct amount of 2ClBA, 3N-2ClBA, 

and 5N-2ClBA into a 10 mL volumetric flask (Table S 6). The flask was filled up with 0.5 M NaOH to 

the 10 mL mark. The solutions were recirculated with a peristaltic pump (Ismatec, ISM834C) through 

the benchtop NMR. The pump speed was 10 rpm, which approximately corresponds to a flow rate 

of 1 mL/min.

Table S 6. Overview of the prepared solutions used as pure component spectra and as training data for the ANN, PLS and IHM 
models. 

2ClBA

(mM)

3N-2ClBA

(mM)

5N-2ClBA

(mM)

Pure_2ClBA 251.7 0 0

Pure_3N-2ClBA 0 105.1 0

Pure_5N-2ClBA 0 0 249.5

Level_1 152.1 15.1 121.4

Level_2 33.9 54.7 217.8

Level_3 222.1 24.5 61.9

Level_4 8.8 37.7 255.5

Level_5 18.8 35.6 194.0

Level_6 6.5 16.1 227.6

Level_7 0 0 0

2.1.2 Simulation of NMR Spectra

The pure spectra and code for simulating NMR spectra is available from the authors or on GitHub.S2 

2.1.3 Continuous Validation Data Set

2ClBA
stock solution

3N-2ClBA
stock solution

5N-2ClBA
stock solution

NaOH solution

inline NMR

HPLC 2

HPLC 1

HPLC 3

HPLC 4

Figure S9. Process scheme for the measurement of the continuous validation set. 
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The 0.800 mol/L stock solution for 2ClBA was prepared by weighing 12.5377 g of 2ClBA into a 100 mL 

volumetric flask. The 0.250 mol/L stock solution for 3N-2ClBA was prepared by weighing 2.5244 g of 

3N-2ClBA into a 50 mL volumetric flask. The 0.597 mol/L stock solution for 5N-2ClBA was prepared 

by weighing 12.032 g into a 100 mL volumetric flask. The 0.1 mol/L NaOH solution was prepared by 

weighing approximately 4 g into a 1000 mL volumetric flask.

The four solutions were pumped with Knauer AZURA P 4.1S HPLC pumps (10 mL/min pump head, 

made of Hastelloy C or stainless steel and an integrated pressure sensor) and mixed in a 6-way mixer 

with one blocked port. The total flow rate of all four pumps stayed constant at 1.0 mL/min. The mixed 

solution was passed through the benchtop NMR flow through cell and the outlet was collected. 

The continuous validation set was dynamically recorded by varying the flow rates for each individual 

HPLC pump. The flow rates of the HPLC pumps and the calculated concentrations of 2ClBA, 

3N-2ClBA, and 5N-2ClBA are depicted in Figure S10.  

Figure S10. Flow rate (A) and concentration profile (B) for experiment to obtain the dynamic validation set.
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2.1.4 Comparison of Simulated to Experimentally Recorded NMR Spectra

The comparison between the simulated and experimentally measured spectra are depicted in Figure S11. 

The spectra have been slightly shifted for better comparison. 

Figure S11. Comparison of the simulated spectra to the experimentally recorded spectra.    
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2.2 Neural Network Architecture 

The models and the python code for training can be obtained from GitHub.S2 

2.2.1 Final Model for the Fully Dense Neural Network

A total of 527175 parameters could be adjusted during training. The “adam” optimizer was used and 

monitored the validation loss. A detailed description of the model can be found in Figure S12 and Figure 

S13. 

model_path_name = 'NMR_fully_final.hdf5'  

# Architecture of the NMR model

visible = Input(shape=(600,)) # input layer (spectrum size)

hidden11 = Dense(600,activation='relu')(visible) #dense layer 1 connected to the input 

layer (tune neurons and activation function)

hidden12 = Dense(243, activation='relu')(hidden11) #dense layer 2 connected to the 

densee layer 1 (tune neurons and activation function)

hidden13 = Dense(81, activation='relu')(hidden12)  #dense layer 3 connected to the 

densee layer 2 (tune neurons and activation function)

hidden14 = Dense(9, activation='relu')(hidden13) #dense layer 4 connected to the 

densee layer 3 (tune neurons and activation function)

output = Dense(3, activation='relu')(hidden14) #model output dense layer 5 connected 

to the dense layer 4 (3 neurons represent the 3 intermediates measured at this point, 

tune the activation function)

model = Model(inputs=visible, outputs=output) #assign inputs and outputs of the model

# summarize model

print(model.summary())

# compile the fully dense ANN model

model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])

# define learning and checkpointer

learning = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=20, 

min_lr=0.001)

checkpointer = ModelCheckpoint(filepath = path2 + model_path_name, 

monitor='val_loss', verbose=1, save_best_only=True)

#%% training of the model with validation data

Epochs = 2000

hist = model.fit(training_X, training_Y, epochs=Epochs, batch_size=500, verbose=1, 
validation_data=(validation_X, validation_Y) , callbacks=[checkpointer, learning])

Figure S12. Python code for the final fully dense neural network.
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Figure S13. Model summary model showing the trainable parameters for each layer.

2.2.2 Final Model for the Convolutional Neural Network (Conv1D)

A total of 28981 parameters could be adjusted during training. The “adam” optimizer was used and 

monitored the validation loss. A detailed description of the model can be found in Figure S14 and Figure 

S15. 

model_path_name = 'NMR_conv1D_final.hdf5'  

#Model for NMR

visible = Input(shape=(600,1)) #input layer (spectrum size)

conv1 = Conv1D(filters=16, kernel_size=9, strides=9, activation='relu')(visible) 

#convolutional layer (tune filters, kernel size, strides and the activation function)

flat = Flatten()(conv1) #flatten of the convolutional layer

hidden11 = Dense(27, activation='relu')(flat) #dense layer 1 connected to the flatten 

layer (tune neurons and activation function)

hidden12 = Dense(9, activation='relu')(hidden11) #dense layer 2 connected to the 

densee layer 1 (tune neurons and activation function)

output = Dense(3, activation='relu')(hidden12) #model output dense layer 3 connected 

to the dense layer 2 (3 neurons represent the 3 intermediates measured at this point, 

tune the activation function)

model = Model(inputs=visible, outputs=output) #assign inputs and outputs of the model

# summarize model

print(model.summary())

# compile the conv1D ANN model

learning_rate = 0.001

optimizer = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=10e-8, decay=0, 

amsgrad=False)

model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])

# define learning and checkpointer

learning = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=20, 

min_lr=0.001)
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checkpointer = ModelCheckpoint(filepath = path2 + model_path_name, 

monitor='val_loss', verbose=1, save_best_only=True)

#%% training of the model with validation data

Epochs = 2000

hist = model.fit(training_X, training_Y, epochs=Epochs, batch_size=500, verbose=1, 
validation_data=(validation_X, validation_Y) , callbacks=[checkpointer, learning])

Figure S14. Python code for the final conv1D neural network.

Figure S15. Model summary model showing the trainable parameters for each layer.

2.2.3 Final Model for the Convolutional Neural Network (Locally Connected 1D)

The best 1D locally connected ANN model was comprised of 1D locally connected convolutional layer 

with 16 filters, kernel size of 9, stride size of 9. The output was flattened and followed by 3 fully dense 

layers of 27, 9 and 3 neurons, respectively (Figure S16). The activation function for the convolutional 

layer and the two following dense layers were an exponential linear unit (elu) function. The output layer 

was connected with a rectified linear unit (relu) activation function to avoid negative predictions. A total 

number of 39381 parameters could be adjusted during the training. The root mean square error on the 7 

experimental measured concentration levels (RMSEVexp) was calculated to be 3.1 mM for 2ClBA, 

1.7 mM for 3N-2ClBA and 4.6 mM 5N-2ClBA for the locally connected 1D network.

model_path_name = 'NMR_locally_conncected1D_final.hdf5'  

#Model for NMR

visible = Input(shape=(600,1)) #input layer (spectrum size)

conv1 = LocallyConnected1D(filters=16, kernel_size=9, strides=9, activation='elu') 

(visible) #convolutional layer (tune filters, kernel size, strides and the activation 

function)

flat = Flatten()(conv1) #flatten of the convolutional layer

hidden11 = Dense(27, activation='elu')(flat) #dense layer 1 connected to the flatten 

layer (tune neurons and activation function)
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hidden12 = Dense(9, activation='elu')(hidden11) #dense layer 2 connected to the densee 

layer 1 (tune neurons and activation function)

output = Dense(3, activation='relu')(hidden12) #model output dense layer 3 connected 

to the dense layer 2 (3 neurons represent the 3 intermediates measured at this point, 

tune the activation function)

model = Model(inputs=visible, outputs=output) #assign inputs and outputs of the model

# summarize model

print(model.summary())

# compile the locally connected 1D ANN model

learning_rate = 0.0001

optimizer = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=10e-8, decay=0, 

amsgrad=False)

model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])

# define learning and checkpointer

learning = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=20, 

min_lr=0.001)

checkpointer = ModelCheckpoint(filepath = path2 + model_path_name, 

monitor='val_loss', verbose=1, save_best_only=True)

#%% training of the model with validation data

Epochs = 2000

hist = model.fit(training_X, training_Y, epochs=Epochs, batch_size=500, verbose=1, 
validation_data=(validation_X, validation_Y) , callbacks=[checkpointer, learning])

Figure S16. Python code for the final locally connected 1D neural network.

Figure S17. Model summary model showing the trainable parameters for each layer.
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2.3 Prediction of Process Data 

2.3.1 Stability Run

The prediction of 2ClBA, 3N-2ClBA, 5N-2ClBA during the stability run using a conv1D layer is 

depicted in Figure S18. The predictions using a locally connected 1D layer are visualized in Figure S20. 

Parity plots between IHM and ANN are displayed in Figure S19 and Figure S21

Figure S18. Prediction of the stability run using IHM and the conv1D ANN for NMR.  

Figure S19. Parity plot of the obtained concentration predictions using IHM versus the conv1D ANN for the stability run. The 
coefficient of determination (R2) is 0.125, 0.807 and 0.920 for 2ClBA, 3N-2ClBA, and 5N-2ClBA, respectively.
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Figure S20. Prediction of the stability run using IHM and the locally connected 1D ANN for NMR.  

Figure S21. Parity plot of the obtained concentration predictions using IHM versus the locally connected 1D ANN for the 
stability run. The coefficient of determination (R2) is 0.025, 0.802 and 0.917 for 2ClBA, 3N-2ClBA, and 5N-2ClBA, 
respectively.
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2.3.2 Run with Dynamic Changes

The prediction of 2ClBA, 3N-2ClBA, 5N-2ClBA during the run with dynamic changes using a locally 

connected 1D layer is depicted in Figure S23 (similar predictions from the conv1D ANN are found in 

manuscript Fig. 4C). Parity plots between IHM and ANN are displayed in Figure S22 and Figure S24.

Figure S22. Parity plot of the obtained concentration predictions using IHM versus the conv1D ANN for the run with dynamic 
changes The coefficient of determination (R2) is 0.764, 0.667 and 0.0466 for 2ClBA, 3N-2ClBA, and 5N-2ClBA, respectively.
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Figure S23. Prediction of the run with dynamic changes using IHM and the locally connected 1D ANN for NMR.  

Figure S24. Parity plot of the obtained concentration predictions using IHM versus the locally connected 1D ANN for the run 
with dynamic changes. The coefficient of determination (R2) is 0.623, 0.712 and 0.501 for 2ClBA, 3N-2ClBA, and 5N-2ClBA, 
respectively.
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2.4 Evaluation of the ANN Robustness by adding Peaks to the Spectrum

In python, an additional Gaussian peak was added to the experimentally measured concentration level 

spectra, to evaluate the robustness of the final Conv1D model. The simulated peak had a broad gaussian 

shape with different intensities (Figure S25A). Additionally, sharper peaks with different intensities and 

position shift were evaluated (Figure S26A, Figure S27A, and Figure S28A). The parity plots are 

provided (Figure S25B to Figure S28B) and the calculated root mean square errors for each component 

was calculated (Figure S25C to Figure S28C).

Figure S25. A) Example spectrum with different simulated peaks. B) Parity plots for 2ClBA, 3N-2ClBA, and 5N-2ClBA. 
C) Table of the root mean square error for 2ClBA, 3N-2ClBA, and 5N-2ClBA.
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Figure S26. A) Example spectrum with different simulated peaks. B) Parity plots for 2ClBA, 3N-2ClBA, and 5N-2ClBA. C) 
Table of the root mean square error for 2ClBA, 3N-2ClBA, and 5N-2ClBA.
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Figure S27. A) Example spectrum with different simulated peaks. B) Parity plots for 2ClBA, 3N-2ClBA, and 5N-2ClBA. C) 
Table of the root mean square error for 2ClBA, 3N-2ClBA, and 5N-2ClBA.
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Figure S28. A) Example spectrum with different simulated peaks. B) Parity plots for 2ClBA, 3N-2ClBA, and 5N-2ClBA. C) 
Table of the root mean square error for 2ClBA, 3N-2ClBA, and 5N-2ClBA.
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3 Data Fusion of NMR and UV/vis

3.1 Training Data

The UV/vis data for the data fusion ANN can be found in reference S1. The corresponding NMR spectra 

were simulated based on the approach in section 2.1.2.

3.1.1 Multi-Dimensional Dynamic Experiment

2ClBA
stock solution

3N-2ClBA
stock solution

5N-2ClBA
stock solution

NaOH solution

BPR

inline NMR

160 - 210°C

inline UV/Vis

20 bar

buffer
vessel

balance

offline UHPLC

Figure S29. Process scheme for the measurement of the training data for the data fusion ANN. 

The 0.800 mol/L stock solution for 2ClBA was prepared by weighing 12.5377 g of 2ClBA into a 100 mL 

volumetric flask. The 0.250 mol/L stock solution for 3N-2ClBA was prepared by weighing 2.5244 g of 

3N-2ClBA into a 50 mL volumetric flask. The 0.597 mol/L stock solution for 5N-2ClBA was prepared 

by weighing 12.032 g into a 100 mL volumetric flask. The 0.1 mol/L NaOH solution was prepared by 

weighing approximately 4 g into a 1000 mL volumetric flask.

The four solutions were pumped with Knauer AZURA P 4.1S HPLC pumps (10 mL/min pump head, 

made of Hastelloy C or stainless steel and an integrated pressure sensor) and mixed in a 6-way mixer 

with one blocked port. The total flow rate of all four pumps stayed constant at 1.0 mL/min, as individual 

flow rates were varied throughout the experiment (Figure S30, A). The mixed solution passed through 

the benchtop NMR flow through cell and the outlet was collected in a buffer vessel. The solution in the 

buffer vessel was pumped with Knauer Auzura HPLC pump through a 20 mL stainless steel coil placed 

on a coil heater (Unigsis, HotCoil, UQ1025-1). The temperature of the coil heater was ramped up and 

down during the experiment (Figure S30B). The reaction mixture was cooled to room temperature after 

the coil heater and passed through an inline UV-vis flow cell. . The UV-vis spectra were recorded using 

a fiber-coupled Avantes Starline AvaSpec-ULS2048 spectrometer. The outlet of the flow cell was 

connected to a Swagelok KCB series backpressure regulator (KCB1H0A2B5P60000), which was set to 

20 bar. The process outlet was sampled every three minutes for offline UHPLC measurements (Table 

S7). 
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Figure S30. Flow rate (A) and temperature profile (B) for the multidimensional dynamic experiment. 
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Table S7. Offline UHPLC results for the multidimensional dynamic experiment.

Fraction Timestamp
(h)

[2ClBA]
(mol/L)

[3N-2ClBA]
(mol/L)

[5N-2ClBA]
(mol/L)

[3-NSA]
(mol/L)

[5-NSA]
(mol/L)

1 0.01 0.039 0.008 0.006 0.022 0.035
2 0.06 0.037 0.008 0.005 0.022 0.045
3 0.11 0.037 0.008 0.005 0.022 0.062
4 0.16 0.034 0.007 0.005 0.022 0.078
5 0.21 0.031 0.007 0.004 0.023 0.092
6 0.26 0.029 0.006 0.004 0.023 0.112
7 0.31 0.030 0.006 0.004 0.023 0.097
8 0.36 0.029 0.008 0.005 0.022 0.136
9 0.41 0.028 0.009 0.007 0.021 0.158
10 0.46 0.027 0.010 0.007 0.020 0.177
11 0.51 0.026 0.009 0.006 0.021 0.180
12 0.56 0.026 0.008 0.004 0.025 0.165
13 0.61 0.026 0.005 0.002 0.033 0.130
14 0.66 0.025 0.002 0.002 0.042 0.084
15 0.71 0.024 0.001 0.002 0.047 0.045
16 0.76 0.024 0.001 0.002 0.049 0.036
17 0.81 0.025 0.002 0.002 0.050 0.046
18 0.86 0.025 0.001 0.003 0.051 0.065
19 0.91 0.025 0.002 0.003 0.051 0.081
20 0.96 0.025 0.001 0.002 0.051 0.093
21 1.01 0.025 0.002 0.003 0.051 0.102
22 1.06 0.025 0.002 0.003 0.050 0.117
23 1.11 0.026 0.004 0.004 0.049 0.141
24 1.16 0.026 0.007 0.005 0.045 0.165
25 1.21 0.025 0.010 0.006 0.041 0.180
26 1.26 0.026 0.010 0.006 0.043 0.184
27 1.31 0.026 0.007 0.005 0.049 0.161
28 1.36 0.025 0.004 0.004 0.059 0.129
29 1.41 0.025 0.002 0.004 0.069 0.085
30 1.46 0.024 0.002 0.004 0.076 0.047
31 1.51 0.024 0.002 0.004 0.079 0.038
32 1.52 0.029 0.002 0.004 0.070 0.047
33 1.57 0.027 0.003 0.004 0.074 0.062
34 1.62 0.028 0.006 0.004 0.072 0.077
35 1.67 0.027 0.008 0.004 0.070 0.090
36 1.72 0.026 0.011 0.005 0.071 0.097
37 1.77 0.026 0.014 0.005 0.068 0.102
38 1.82 0.026 0.019 0.008 0.061 0.115
39 1.87 0.032 0.024 0.014 0.049 0.126
40 1.92 0.048 0.027 0.023 0.039 0.146
41 1.97 0.071 0.025 0.034 0.028 0.161
42 2.02 0.099 0.018 0.033 0.020 0.164
43 2.07 0.107 0.012 0.013 0.021 0.133
44 2.12 0.104 0.006 0.005 0.022 0.077
45 2.17 0.103 0.005 0.004 0.023 0.042
46 2.22 0.101 0.006 0.004 0.022 0.037
47 2.27 0.101 0.007 0.005 0.021 0.050
48 2.32 0.101 0.009 0.007 0.019 0.063
49 2.37 0.100 0.011 0.012 0.017 0.074
50 2.42 0.101 0.013 0.015 0.016 0.081
51 2.47 0.102 0.014 0.019 0.015 0.083
52 2.52 0.100 0.014 0.025 0.013 0.086
53 2.57 0.099 0.015 0.036 0.011 0.096
54 2.62 0.099 0.018 0.056 0.010 0.103
55 2.67 0.099 0.019 0.078 0.009 0.108
56 2.72 0.101 0.020 0.088 0.008 0.108
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Table S8. Offline UHPLC results for the multi-dimensional dynamic experiment.

Fraction Timestamp
(h)

[2ClBA]
(mol/L)

[3N-2ClBA]
(mol/L)

[5N-2ClBA]
(mol/L)

[3-NSA]
(mol/L)

[5-NSA]
(mol/L)

57 2.77 0.099 0.021 0.074 0.009 0.096
58 2.82 0.103 0.024 0.049 0.013 0.077
59 2.87 0.100 0.025 0.026 0.018 0.051
60 2.92 0.102 0.026 0.015 0.023 0.032
61 2.97 0.103 0.026 0.012 0.026 0.029
62 3.02 0.102 0.026 0.014 0.027 0.037
63 3.07 0.103 0.026 0.017 0.027 0.053
64 3.12 0.101 0.026 0.020 0.026 0.066
65 3.17 0.102 0.026 0.022 0.026 0.078
66 3.22 0.103 0.025 0.021 0.028 0.085
67 3.27 0.103 0.025 0.024 0.027 0.097
68 3.32 0.099 0.026 0.032 0.025 0.109
69 3.37 0.100 0.029 0.043 0.023 0.122
70 3.42 0.103 0.030 0.035 0.030 0.135
71 3.47 0.102 0.031 0.054 0.022 0.138
72 3.52 0.102 0.031 0.050 0.024 0.143
73 3.57 0.103 0.025 0.016 0.043 0.109
74 3.62 0.104 0.017 0.008 0.059 0.071
75 3.67 0.102 0.012 0.006 0.070 0.040
76 3.72 0.100 0.009 0.005 0.072 0.034
77 3.77 0.102 0.010 0.006 0.073 0.047
78 3.82 0.103 0.013 0.006 0.071 0.067
79 3.87 0.103 0.016 0.007 0.067 0.085
80 3.92 0.104 0.018 0.008 0.066 0.097
81 3.97 0.104 0.018 0.008 0.065 0.101
82 4.02 0.103 0.024 0.013 0.058 0.116
83 4.07 0.102 0.032 0.024 0.048 0.128
84 4.12 0.103 0.041 0.043 0.040 0.137
85 4.17 0.101 0.045 0.055 0.034 0.137
86 4.22 0.107 0.042 0.050 0.035 0.141
87 4.27 0.137 0.025 0.023 0.043 0.137
88 4.32 0.178 0.009 0.010 0.047 0.109
89 4.37 0.209 0.005 0.010 0.034 0.064
90 4.42 0.244 0.003 0.007 0.030 0.041
91 4.47 0.266 0.002 0.002 0.028 0.036
92 4.52 0.259 0.003 0.004 0.026 0.045
93 4.57 0.259 0.003 0.004 0.026 0.045
94 4.62 0.263 0.002 0.002 0.025 0.084
95 4.67 0.267 0.002 0.002 0.025 0.097
96 4.72 0.265 0.002 0.001 0.024 0.102
97 4.77 0.267 0.004 0.002 0.023 0.121
98 4.82 0.258 0.007 0.011 0.020 0.141
99 4.87 0.245 0.011 0.027 0.015 0.146
100 4.92 0.256 0.015 0.044 0.013 0.154
101 4.97 0.258 0.016 0.046 0.013 0.151
102 5.02 0.258 0.014 0.027 0.018 0.139
103 5.07 0.252 0.011 0.013 0.029 0.106
104 5.12 0.260 0.008 0.007 0.039 0.065
105 5.17 0.266 0.007 0.004 0.045 0.040
106 5.22 0.261 0.006 0.003 0.043 0.032
107 5.27 0.262 0.010 0.004 0.040 0.043
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3.2 Neural Network Architecture 

3.2.1 Final Model for Data Fusion Using Locally Connected 1D for NMR and UV/vis

Python code for the final model using a locally connected 1D layers for NMR data and UV/vis data can 

be found below and on GitHub. The number of trainable parameters for every layer can be found in 

Figure S31.

model_path_name = 'datafusion_locally_NMR_locally_UV_final.hdf5'  

# import NMR

visible_NMR = Input(shape=(600,1))

# import UV/vis

visible_UV = Input(shape=(187,1)

#architecture for the ANN for NMR

conv1_NMR = LocallyConnected1D(filters=16, kernel_size=9, strides=9, activation 

='elu')(visible_NMR) #convolutional layer for NMR (tune filters, kernel size, strides 

and the activation function)

flat_NMR = Flatten()(conv1_NMR) #flatten of the NMR convolutional layer

hidden11_NMR = Dense(27, activation='elu')(flat_NMR) #dense layer 1 NMR connected to 

the flatten layer of NMR (tune neurons and activation function)

hidden12_NMR = Dense(9, activation='elu')(hidden11_NMR) #dense layer 2 NMR connceted 

to the dense layer 1 NMR (tune neurons and activation function)

output_NMR = Dense(3, activation='relu')(hidden12_NMR) #output NMR layer dense layer 

connected to dense layer 2 NMR (3 neurons represent the 3 intermediates measured at 

this point, tune the activation function)

#architecture for the ANN for UV/vis

conv1_UV = LocallyConnected1D(filters=10, kernel_size=5, strides=2, activation 

='elu')(visible_UV) #convolutional layer for UV (tune filters, kernel size, strides 

and the activation function)

flat_UV = Flatten()(conv1_UV) #flatten of the UV convolutional layer

hidden11_UV = Dense(64, activation='relu')(flat_UV) #dense layer 1 UV connected to 

the flatten layer of UV (tune neurons and activation function)

output_UV = Dense(32, activation='relu')(hidden11_UV) #dense layer 2 UV (output of 

UV) connected to dense layer 1 UV (tune neurons and activation function)

#architecture for the ANN to merge ANN for NMR and ANN for UV/vis

merge1 = concatenate([output_NMR,output_UV]) #combining the output of the UV and NMR 

networks to a new input for a NN

hidden11 = Dense(99, activation='relu')(merge1) #dense layer 1 comb connected to the 

input layer (tune neurons and activation function)

hidden12 = Dense(64, activation='relu')(hidden11) #dense layer 2 comb connected to 

dense layer 1 comb (tune neurons and activation function)

hidden13 = Dense(16, activation='relu')(hidden12) #dense layer 3 comb connected to 

dense layer 2 comb (tune neurons and activation function)
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output = Dense(4, activation='relu')(hidden13) #output layer as dense layer connected 

the dense layer 3 comb (4 neurons represent the 4 intermediates measured at this 

point, tune the activation function)

model = Model(inputs=[visible_NMR , visible_UV], outputs=[output_NMR, output]) 

#assign inputs and outputs of the model

# summarize layers

print(model.summary())

# compile the ANN model

learning_rate = 0.001

optimizer = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=10e-8, decay=0, 

amsgrad=False)

model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])

# define learning and checkpointer

learning = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=20, 

min_lr=0.001)

checkpointer = ModelCheckpoint(filepath = path4 + model_path_name, 

monitor='val_loss', verbose=1, save_best_only=True)

#%% training of the model with validation data

Epochs = 1000

hist = model.fit([training_X_NMR_norm, training_X_UV_norm],[training_Y_NMR_norm, 

training_Y_UV_norm], epochs=Epochs, batch_size=1000, verbose=1, validation_data = 

([val_X_NMR_norm, val_X_UV_norm],[val_Y_NMR_norm, val_Y_UV_norm]), callbacks = 

[checkpointer]) #, learning])  
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Figure S31. Model summary showing the trainable parameters for each layer.

3.2.2 Final Model for Data Fusion Using Conv1D Layer for NMR and Locally Connected 1D 

Layer for UV/vis

The python code for the final model using a conv1D layer for NMR data and a locally connected 1D 

layers UV/vis data can be found below and on GitHub. The amount of trainable parameters for every 

layer can be found in Figure S32.

model_path_name = 'datafusion_conv1D_NMR_locally_UV_final.hdf5'  

# import NMR

visible_NMR = Input(shape=(600,1))

# import UV/vis

visible_UV = Input(shape=(187,1))

#architecture for the ANN for NMR

conv1_NMR = Conv1D(filters=16, kernel_size=9, strides=9, activation 

='relu')(visible_NMR) #convolutional layer for NMR (tune filters, kernel size, strides 

and the activation function)
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flat_NMR = Flatten()(conv1_NMR) #flatten of the NMR convolutional layer

hidden11_NMR = Dense(27, activation='relu')(flat_NMR) #dense layer 1 NMR connected to 

the flatten layer of NMR (tune neurons and activation function)

hidden12_NMR = Dense(9, activation='relu')(hidden11_NMR) #dense layer 2 NMR connceted 

to the dense layer 1 NMR (tune neurons and activation function)

output_NMR = Dense(3, activation='relu')(hidden12_NMR) #output NMR layer dense layer 

connected to dense layer 2 NMR (3 neurons represent the 3 intermediates measured at 

this point, tune the activation function)

#architecture for the ANN for UV/vis

conv1_UV =  LocallyConnected1D(filters=10, kernel_size=5, strides=2, activation 

='elu')(visible_UV) #convolutional layer for UV (tune filters, kernel size, strides 

and the activation function)

flat_UV = Flatten()(conv1_UV) #flatten of the UV convolutional layer

hidden11_UV = Dense(64, activation='relu')(flat_UV) #dense layer 1 UV connected to 

the flatten layer of UV (tune neurons and activation function)

output_UV = Dense(32, activation='relu')(hidden11_UV) #dense layer 2 UV (output of 

UV) connected to dense layer 1 UV (tune neurons and activation function)

#architecture for the ANN to merge ANN for NMR and ANN for UV/vis

merge1 = concatenate([output_NMR,output_UV]) #combining the output of the UV and NMR 

networks to a new input for a NN

hidden11 = Dense(99, activation='relu')(merge1) #dense layer 1 comb connected to the 

input layer (tune neurons and activation function)

hidden12 = Dense(64, activation='relu')(hidden11) #dense layer 2 comb connected to 

dense layer 1 comb (tune neurons and activation function)

hidden13 = Dense(16, activation='relu')(hidden12) #dense layer 3 comb connected to 

dense layer 2 comb (tune neurons and activation function)

output = Dense(4, activation='relu')(hidden13) #output layer as dense layer connected 

the dense layer 3 comb (4 neurons represent the 4 intermediates measured at this 

point, tune the activation function)

model = Model(inputs=[visible_NMR , visible_UV], outputs=[output_NMR, output]) 

#assign inputs and outputs of the model

# summarize layers

print(model.summary())

# compile the ANN model

learning_rate = 0.001

optimizer = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=10e-8, decay=0, 

amsgrad=False)

model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])

# define learning and checkpointer

learning = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=20, 

min_lr=0.001)

checkpointer = ModelCheckpoint(filepath = path4 + model_path_name, 

monitor='val_loss', verbose=1, save_best_only=True)

#%% training of the model with validation data
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Epochs = 1000

hist = model.fit([training_X_NMR_norm, training_X_UV_norm],[training_Y_NMR_norm, 

training_Y_UV_norm], epochs=Epochs, batch_size=1000, verbose=1, validation_data = 

([val_X_NMR_norm, val_X_UV_norm],[val_Y_NMR_norm, val_Y_UV_norm]), callbacks = 

[checkpointer, learning])  

Figure S32. Model summary showing the trainable parameters for each layer.

3.3 Prediction of Process Data

3.3.1 Stability Run (ANN Using Locally Connected 1D Layers for NMR and UV/vis Data)

The prediction of 2ClBA, 3N-2ClBA, 5N-2ClBA after the nitration step during the stability run using 

a locally connected 1D layer for the ANN1 (NMR) is depicted in Figure S33.
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Figure S33. Predictions for the NMR data of the stability run using a locally connected 1D layer for the NMR data. 

3.3.2 Stability Run (ANN Using Conv1D Layer for NMR Data and Locally Connected 1D Layer 

for UV/vis data)

The prediction for the process mixture (2ClBA, 3N-2ClBA, 5N-2ClBA, 3-NSA, and 5-NSA) after the 

hydrolysis step for the stability run is depicted in Figure S34. The prediction of 2ClBA, 3N-2ClBA, 5N-

2ClBA after the nitration step during the stability run using a locally conv1D layer for the ANN1 (NMR) 

is depicted in Figure S35.

Figure S34. Predictions of the stability run using the ANN with a conv1D layer for the NMR data and a locally connected 1D 
layer for the UV/vis data. 
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Figure S35. Predictions for the NMR data of the stability run using a conv1D layer for the NMR data.

3.3.3 Run with Dynamic Changes (ANN Using Locally Connected 1D Layers for NMR and 

UV/vis Data)

The prediction of 2ClBA, 3N-2ClBA, 5N-2ClBA after the nitration step during the run with dynamic 

changes using a locally connected 1D layer for the ANN1 (NMR) is depicted in Figure S36.

Figure S36. Predictions for the NMR data of the run with dynamic changes using a locally connected 1D layer for the NMR 
data.
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3.3.4 Run with Dynamic Changes (ANN Using Conv1D Layer for NMR Data and Locally 

Connected 1D Layer for UV/vis Data)

The predictions for the process mixture (2ClBA, 3N-2ClBA, 5N-2ClBA, 3-NSA, and 5-NSA) after the 

hydrolysis step for the run with dynamic changes is depicted in Figure S37. The prediction of 2ClBA, 

3N-2ClBA, 5N-2ClBA after the nitration step during the run with dynamic changes using a locally 

conv1D layer for the ANN1 (NMR) is depicted in Figure S38.

Figure S37. Predictions of the run with dynamic changes using the ANN with a conv1D layer for the NMR data and a locally 
connected 1D layer for the UV/vis data.

Figure S38. Predictions for the NMR data of the run with dynamic changes using a conv1D layer for the NMR data.
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3.3.5 Multidimensional Dynamic Experiment (ANN Using Locally Connected 1D Layers for 

NMR and UV/vis Data)

The prediction of 2ClBA, 3N-2ClBA, 5N-2ClBA after the nitration step during the multidimensional 

dynamic experiment using a locally connected 1D layer for the ANN1 (NMR) is depicted in Figure S39.

Figure S39. Predictions for the NMR data of multidimensional experiment using a locally connected 1D layer for the NMR 
data.

3.3.6 Multidimensional Dynamic Experiment (ANN Using Conv1D Layer for NMR Data and 

Locally Connected 1D Layer for UV/vis Data)

The predictions for the process mixture (2ClBA, 3N-2ClBA, 5N-2ClBA, 3-NSA, and 5-NSA) after the 

hydrolysis step multi-dimensional dynamic experiment is depicted in Figure S40. The prediction of 

2ClBA, 3N-2ClBA, 5N-2ClBA after the nitration step during the run with dynamic changes using a 

locally conv1D layer for the ANN1 (NMR) is depicted in Figure S41.

Figure S40. Predictions of the multi-dimensional dynamic experiment using the ANN with a conv1D layer for the NMR data 
and a locally connected 1D layer for the UV/vis data.
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Figure S41. Predictions for the NMR data of multidimensional experiment using a conv1D layer for the NMR data.
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