
Supplementary Information :

MultivariateAnalysis of Peptide-DrivenNucleation andGrowthofAuNanopar-
ticles

Kacper J. Lachowski a,c,∗, Kiran Vaddi a, Nada Y. Naser a, François Baneyx a, Lilo D
Pozzo a,b,c,∗

0.1 Materials

Pyrene (98.2 % purity) was obtained from Sigma-Aldrich and used without further
puri�cation.

0.2 UV-Vis Spectra

Note that although Z2M6I contains an outlier in the 0 mM HEPES condition shown
in Figure S1 J, the use of GFT on the transformed spectra would have treated this
sample as noise.

0.3 Determination of Lipidated Peptide Critical Micelle Concentration

The pyrene stock was prepared by �rst preparing a 0.5 mM stock solution of pyrene
in ethanol. The ethanol solution was diluted with deionized water to reach a
pyrene concentration of 0.146 mg/mL. Note that the �nal ethanol concentration
was 0.144 vol.%. Peptide stock solutions were prepared at 5 × 10−1 wt.% and
5× 10−2 wt.%. Samples were prepared using an Opentrons OT-2 liquid handling
robot. Solutions were prepared by transferring peptide, pyrene stock, and additional
water into Caplugs Evergreen untreated 96-well microplates (black, �at bottom).
The concentration of peptide in the samples was varied from 0.04 mM to 3 mM.
Samples were mixed by pipetting up and down after addition of water, and were
then characterized using a BioTek Synergy H1 microplate reader. Samples were
excited at 334 nm and emission was obtained at 372 (peak 1) and 384 nm (peak 3).
Pyrene remains dissolved in samples where the peptide concentration is too low
for formation of micelles. Above the critical micelle concentration (CMC), pyrene
adsorbs to the peptide lipid tails inside micelles. The resulting change in the polarity
of pyrene’s environment leads to changes in its �uorescence emission. The ratio
between emission peaks 3 and 1 as a function of peptide concentration is used to
estimate the critical micelle formation [1, 2, 3]. The CMC is estimated from the
intersection of two lines in the plot of the ratio of the two �uorescence peaks as
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a function of the logarithm of peptide concentration. The order of the resulting
CMC values are MZ2 > MZ2R > PZ2.

0.4 Au Reduction Kinetics Assay

Samples were prepared by �rst adding all reagents except HAuCl4 to well in a
48-well plate. Then the latter was added to each well, the solution was pipetted up
and down, and the samples were moved into the plate reader for measurement.

1 Functional Data analysis
In this section, we describe the mathematical details of our framework.

1.1 Functional Principal Component Analysis

Similar to standard PCA used in the multivariate analysis of high-dimensional
vectors, functional principal component analysis (FPCA) aims to represent each
data point (a function) in terms of its variation from the mean [4, 5]. One advantage
of using PCA-based representation of the data is that dimensionality can be reduced
to represent types or modes of variation. This is especially useful for UV-Vis spectra
where the expected variations are low in number such as peak position, amplitude,
etc. The goal in PCA is to obtain dominant (or principal) variations of the data
(from the mean) by solving for a set of weight vectors that maximize variance
along di�erent components called principal components. Let d discrete evaluations
of a function f(t) represented as fij for j = 1, 2, 3, . . . , d be the ith data point
of the functional data F for i = 1, 2, 3, . . . , N . Similar to multi-variate PCA for
vector-like data, FPCA assumes an underlying linear model for the variations of F :

f = µf +
c∑

j=1

βjwj (1)

where µf is the mean of samples fi and βj, j ∈ {1, 2, . . . , c} is the learnable
principal coe�cients corresponding to an orthogonal basis function wj or principal
components of the linear model. It can be shown that a solution to PCA problem of
�tting a linear model to data such that cross-correlation is minimized in the new
orthogonal basis wj is given by orthogonal decomposition of covariance matrix [6].
The covariance of the data V (s, t) can now be estimated using:

V (s, t) =
1

N − 1

N∑
i

(fi(s)− µf )(fi(t)− µf )

The linear model of F along any given component f = µ+ βj ∗ wj highlights a
particular type of variations of sample xi along a component wj . Following the
terminology of multi-variate PCA, the values βj are called scores for the optimized
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principal components wj . We illustrate usage of functional PCA using an example
case study below where the samples from F are a set of functions f(t) = c sin(2πt)
for c ∈ [0, 1] and t ∈ [0, 1] as shown in Figure S6. The samples have only one mode
of variation (i.e. one dimension of functional variation) in the amplitude.
Because the FPCA is a (linear) generative model, we can draw samples from it by
picking arbitrary principal component scores. Figure S7 depicts the only principal
component along with the mean function (in red solid line) and a percentage
indicating the total amount of variation accounted for by each component. The grey
gradient solid lines in Figure S7 represent linear spaced samples along βj ∈ [−1, 1]
from the trained FPCA model for the functional data in Figure S6. We observe
that for any given sample draw f = µf + β1w1 from the FPCA model, the value α
changes the peak amplitude which is the only variation present in F .
In this paper, we use a class of FPCA (called joint-FPCA) introduced in [7] that can
e�ciently decouple the variations along x and y axis of one dimensional functional
data. We refer interested readers to [7] and [5, Chapter 8.9] as the details are beyond
the scope of this paper.

1.2 Graph Fourier Transforms (GFT)

Graph Fourier Transforms (GFT) [8, 9] o�er a way to decompose signals indexed
by nodes/vertices into a weighted combination of di�erent frequencies on a given
graph structure. Given a spatial embedding of a graph, the frequencies correspond
to di�erent oscillations of a signal. Mathematically, the GFT de�nes an irreducible
representation of signal space S with the basis given by the eigenfunctions of the
graph Laplacian matrix L representing variations of signals de�ned on the graph
vertices. The graph Laplacian is de�ned as L := D − A where D is the degree
matrix and A is the adjacency matrix. Given a signal S : V → Rd, the Laplacian
operator L computes the signal variation from local average:

(Ls)i =

(
1

Dii

∑
ij∈E

sj

)
− si

Using the spectral theorem for symmetric matrices [10], we can obtain a orthogonal
basis for the linear operator Ln×n in terms of eigenfunctions φ0, φ1, . . . , φn for a
graph with n nodes. Motivated by interpretation of Fourier basis as the eigenfunc-
tions of the second derivative operator on a circle, the Laplace eigenfunctions are
associated with oscillations on an irregular domain such as a graph. GFT Ŝ in the
eigenbasis of L for signal S can be obtained using:

Ŝ(k) =
∑
i∈V

S(i)φk (2)
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Figure S8 below shows an example using GFT on a circle where di�erent eigen-
functions of a circle (represented as a graph) are shown using a color code.
We recover the standard Fourier basis in one-dimensions in Figure S9 by plotting
the eigenbasis in Figure S8 with vertex index (i.e. θ). Any signal de�ned over the
vertices of a circle can then be represented as a sum of di�erent φi in (see Figure S8)
multiplied by a scalar using Equation (2) analogous to one-dimensional Fourier
representation. Once the graph signal is represented using the Fourier transform,
we can then obtain a �attened vector where each dimension correspond to a
combination of the original signal dimension and frequency. A distance between
two Fourier transformed graph signals Ŝi, Ŝj can then be computed using:

d = 1− (Ŝi − Ŝi) · (Ŝj − Ŝj)

||(Ŝi − Ŝi)||2||(Ŝj − Ŝj)||2
(3)

where ·̄ and || · ||2 represent the mean and norm of the signal. Two signals are
considered identical if the distance d is zero and the similarity decreases with
increase in d.

1.3 USAXS Scattering Pro�les and AUTORG Results

The AUTORG results for lipidated and non-lipidated peptides are presented in
Figure S12 and Figure S13, respectively. The lipidated and non-lipidated peptide-
HAuCl4 assemblies are of similar size across all of the studied conditions. How-
ever, the size of the lipidated variants appears to vary less as a function of the
peptide:HAuCl4 ratio when compared with the non-lipidated variants. Note in Fig-
ure S13 that the data for peptides which are lacking methionine showed similar scat-
tering behavior to the Z2 peptide. We interpret this to mean that peptide-HAuCl4
interactions that are responsible for the formation of the observed aggregates are
not due to methionine-HAuCl4 complexation.

1.4 SAXS

MZ2 (myristoylated RMRMKMK) was dissolved at a concentration of 4.2 mM in
ultra pure water. The sample was �owed into a quartz capillary (1 mm outer
diameter, Charles Supper Company, Natick, MA). The capillary was loaded inside a
Kratky-type SAXS instrument (SAXSess, Anton Paar, Graz, Austria) with a Cu Kα
source (λ = 1.54 Å). The slit-smeared scattering data was �t using a slit-smeared
cylinder model using SASview (SasView v.5.0.1, www.sasview.org) [11, 12, 13]. The
resulting radius of the �tted cylinder model was 5.2 nm. The length could not
be determined from the scattering data due to the lack of a Guinier region in the
q-range of the instrument. Therefore we can only conclude that the length of the
extended, self-assembled MZ2 structures was in excess of 60 nm.
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Table 1: List of items used per plate
Supplier Material and Dimensions Catalog Number Part Name Qty.
Formlabs Clear RS-F2-GPCL-04 Center piece/main body 1
McMaster-Carr Aluminum 9140T109 Cover plate source 1
McMaster-Carr Aluminum 9140T109 Cover plate detector 1
McMaster-Carr Kapton (0.0010" thick) 2271K401 Windows 2
McMaster-Carr Buna-N (1.5 mm wide, 9 mm ID) 9262K126 O-rings 96
McMaster-Carr Stainless steel M3 (8 mm Long, 0.5 mm Pitch) 90666A104 Screws 18
MiSUMi Brass Cadmium-Free (M3x0.5 mm) FB-305580 Threaded insert 9

1.5 USAXS Sample Holder Assembly

The liquid sample holder used for USAXS experiments is a sandwiched well-plate
style assembly which has the same pro�le as a standard well plate. Files and
instructions for assembly have been shared online [14]. The process of assembly is
as follows:

1. Insert o-rings into center piece face which will be facing the X-ray source.

2. Place Kapton sheet and then the aluminum cover piece which will be facing
the source on top of the o-rings.

3. Insert screws and fasten in the order speci�ed in the image.

4. Turn over the plate and insert o-rings.

5. Load liquid samples manually or with a liquid-handling system. Suggested
volume is 450 µL.

6. Place second Kapton sheet and aluminum cover plate on top, and fasten using
the same order of screws.

1.6 Opentrons Protocol Details

Code to control the OT2 is available online [15]. The protocol uses an Opentrons
P300 GEN2 and P50 GEN1. Deck layout is shown in Figure S16.
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Figure S1: UV-Vis spectra of Au Nanoparticles prepared in the presence of di�erent peptides as
indicated by the color labeling. HEPES concentration is 0 mM, HAuCl4 concentration decreases
from top to bottom (0.2, 0.117, 0.0684, 0.04 mM), and peptide concentration increases from left to
right (0, 0.04, 0.0894, 0.2 mM ).
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Figure S2: UV-Vis spectra of Au Nanoparticles prepared in the presence of di�erent peptides as
indicated by the color labeling. HEPES concentration is 0.01 mM, HAuCl4 concentration decreases
from top to bottom (0.2, 0.117, 0.0684, 0.04 mM), and peptide concentration increases from left to
right (0, 0.04, 0.0894, 0.2 mM ).

7



0.0

0.2

0.4

0.6 A B C D

0.0

0.2

0.4

0.6 E F G H

0.0

0.2

0.4

0.6 I J K L

400 600 800
0.0

0.2

0.4

0.6 M

400 600 800

N

400 600 800

O

400 600 800

P Z2
AG3
MZ2R
MZ2
Z2M246I
Z2M6I
PZ2

Wavelength (nm)

Op
tic

al
 E

xt
in

ct
io

n

Figure S3: UV-Vis spectra of Au Nanoparticles prepared in the presence of di�erent peptides as
indicated by the color labeling. HEPES concentration is 0.1 mM, HAuCl4 concentration decreases
from top to bottom (0.2, 0.117, 0.0684, 0.04 mM), and peptide concentration increases from left to
right (0, 0.04, 0.0894, 0.2 mM ).
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Figure S4: Ratio of �uorescence intensity at 384 to 372 nm resulting from excitation at 334 nm
as a function of peptide concentration. Adsorption of pyrene to micelles leads to a change in the
�uorescence spectra which is used to estimate the CMC by �nding intersection of two lines �tted
to the data. The CMC of MZ2, MZ2R, and PZ2 were estimated to be 0.47 mM, 0.33 mM, and 0.24
mM, respectively.

0 20 40 60 80 100
Time (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ab
so

rb
an

ce
 a

t 4
00

 n
m

0.04 mM Z2, 1 mM HEPES, 0.2 mM HAuCl4
0.04 mM Z2M246I, 1 mM HEPES, 0.2 mM HAuCl4
0.04 mM MZ2, 1 mM HEPES, 0.2 mM HAuCl4

Figure S5: Absorbance at 400 nm as a function of time (minutes) for Z2, Z2M246I, and MZ2.

9



0.0 0.2 0.4 0.6 0.8 1.0
t

−4

−2

0

2

4

f
(t

)
=
c

si
n

(2
π
t)

Figure S6: Synthetic data generated with f(t) = c sin(2πt) with c ∈ [0, 1]
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Figure S7: Samples generated from the Principal component 1 of FPCA using Equation (1) with
mean of the data in Figure S6 shown in the solid red line.
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Figure S9: Eigen-functions of the circle graph in Figure S8 visualized as one dimensional functions
over vertex index
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Figure S10: Smeared USAXS data. Sample compositions: 0 mM HEPES; peptide left to right 0.040,
0.060, 0.089, 0.134, and 0.200 mM; HAuCl4 top to bottom 0.200, 0.117, 0.068, and 0.040 mM.
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Figure S11: Smeared USAXS data. Sample compositions: 1 mM HEPES; peptide left to right 0.040,
0.060, 0.089, 0.134, and 0.200 mM; HAuCl4 top to bottom 0.200, 0.117, 0.068, and 0.040 mM.
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Figure S12: Radius of gyration results obtained from AUTORG plotted as a function of
peptide:HAuCl4 molar ratio for all lipidated peptides and a HEPES concentration of 0 mM. Er-
ror bars indicate standard deviation. Pro�les which did not contain a Guinier region that could be
�tted were marked using black and plotted at a �xed Rg of 10 Å.
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Figure S13: Radius of gyration results obtained from AUTORG plotted as a function of
peptide:HAuCl4 molar ratio for non-lipidated peptides (except AG3) and a HEPES concentration of
0 mM. Error bars indicate standard deviation. Pro�les which did not contain a Guinier region that
could be �tted were marked using black and plotted at a �xed Rg of 10 Å.
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Figure S14: Smeared small-angle scattering of MZ2 dissolved in water (4.2 mM) �t with a cylinder
model (radius = 5.2 nm).

16



Figure S15: Process of assembling USXAXS sample holder, and the frame which holds up to two
plates during experiments. A 3D printed mock cartridge is used to hold silver behenate for USAXS
calibration.
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Figure S16: Opentrons OT-2 deck layout: 1, Agilent 6 column reservoir, water; 2, stocks in 20 mL
scintillation vials seated in 3D printed vial holder; 4 and 5, 48 well microplates; 7 and 10, 300 µL
pipette tips. Stock distribution in slot 2: A1, peptide; A3 and A4, HEPES; B1, HAuCl4
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