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S1 Neural-network background

Neural networks are models constructed of interconnected neuron layers, in analogy to brain architecture.S1 Neu-
rons receive inputs x and generate an output y, which is directed to connected neurons in another layer.S2 Each
layer may have many neurons, and layers between the input and output layers are hidden layers. The activation, a,
of a neuron is a weighted sum of all the inputs,

a = ∑
i

wixi , (S1)

and the output, or activity of the neuron is determined by an activation function, of which there are many popular
examples, including the rectified linear unit (ReLU) function,S3

Φ(a) = max(0,a) . (S2)

A network may be described via three interactions, input to hidden, hidden to hidden, and hidden to output,S4

h1 = Φ(W T
1 x) ,

hp+1 = Φ(W T
p+1hp) ∀p ∈ {1, . . . ,k−1} ,

hout = Φ(W T
k+1hk) ,

where there is a single input layer h1 and output layer hout, k hidden layers hp, and W n is the matrix of weights for
a particular layer.

A deep NN has many hidden layers, which may be superior to a single hidden layer.S5 From the universal
approximation theory, any smooth function can be approximated by a network with any number of layers, given
enough neurons and appropriate weights.S6 For every smooth function, it is known that there exist NNs that can
model it; the task of ML algorithms that train NNs is one of global optimization.S7
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S2 Full set of candidate features

Table S1 Properties of elements used to calculate linear mixture and deviation features for alloy compositions in the
dataset.

Atomic number Periodic numberS8 Universal sequence numberS9

Pettifor-Mendeleev numberS10 Modified Mendeleev numberS11 Preferred crystal structure
Atomic radius Atomic volume Atomic mass
Electrons Protons Neutrons
Group Period Series
Block Debye temperature Cohesive energy
Electron affinity Wigner-Seitz boundary electron-densityS12 First ionization energy
Valence Valence electrons s-valence
p-valence d-valence f-valence
Pauling electronegativity Mulliken electronegativity Miedema φ S12

Melting temperature Boiling temperature Work function
Fusion enthalpy Vaporisation enthalpy Molar heat capacity
Thermal conductivity Thermal expansion Density
Chemical hardness Chemical potential Chemical scale
Shell / valence electrons Shell / Mendeleev number
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Table S2 Advanced features that are not simple linear mixtures or deviations of individual properties of elements, instead
being determined via a specific equation calculated for alloy compositions in the dataset.

Ideal entropyS13 ∆Sideal =−∑ci lnci

Xia’s ideal entropyS14 ∆SXia =−∑ci ln cir3
i

∑ j c jr3
j

Mismatch entropyS15

∆Smismatch =
3
2
(
ζ

2 −1
)

y1 +
3
2
(ζ −1)2 y2

−
{

1
2
(ζ −1)(ζ −3)+ lnζ

}
(1− y3)

Mixing entropy ∆Smix = ∆Sideal +∆Smismatch

Mixing enthalpyS15 ∆Hmix = ∑i̸= j Ωi jcic j

Mixing Gibbs free energy ∆Gmix = ∆Hmix −Tm∆Smix

ViscosityS16,S17 η = hNA
∑ciVi

exp
(

∑ciGi−0.155∆Hmix
RTm

)
Theoretical densityS18 ρth =

(
∑

cimi
Mρi

)−1

Lattice distortionS19 d = ∑ j≥i
cic j|ri+r j−2r̄|

2r̄

Mixing PHS
S20 PHS = ∆Hmix∆Smismatch

Mixing PHSS
S20 PHSS = ∆Hmix∆Sideal∆Smismatch
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S3 Definitions of classification metrics

The metrics used to describe the classification capability of models are defined as follows, where P is the total
number of positives, N negatives, T P true positives (correctly predicted positives), T N true negatives, FP false positives
(negatives incorrectly predicted to be positives), and FN false negatives:

• Accuracy, the percentage of predictions that are correct:S21

Acc =
T P+T N

P+N
(S3)

• Recall, the percentage of positives that are correctly predicted to be positive:S21

Rec =
T P
P

(S4)

• Precision, the percentage of predicted positives that are true positives:S21

Prec =
T P

T P+FP
(S5)

• Specificity, the percentage of negatives that are correctly predicted to be negative:S21

Spec =
T N
N

(S6)

• F1 score, the harmonic mean of precision and recall:S21

F1 = 2
Prec ·Rec

Prec+Rec
(S7)

• Informedness, the probability that a prediction is being made based on knowledge rather than random guess-
ing:S21

In f = Rec+Spec−1 (S8)

• Markedness, the probability that the information used by the model is causally linked to the predictions, rather
than not being correlated at all:S22

Mark = Prec+
T N

T N +FN
−1 (S9)

• Matthews correlation coefficient, a measure of correlation between truth and prediction:S23

MCC =
T P ·T N −FP ·FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(S10)
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