
1

Supplementary Information

Bayesian optimization with known experimental and design constraints for chemistry
applications

Riley J. Hickman,1,2,∗ Matteo Aldeghi,1,2,3,4,∗ Florian Häse,1,2,3,5 Alán Aspuru-Guzik1,2,3,6,7,8

1Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
2Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada

3Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
4Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

5Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
6Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada

7Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
8Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada

∗These authors contributed equally

S.1. CONSTRAINED OPTIMIZATION OF THE ACQUISITION FUNCTION

Minima of the acquisition function, α(x) (main text Eq. 1), determine the parameter space point x to be proposed
for objective function measurement, thus, its optimization is an important subroutine in Bayesian optimization.
Acquisition function optimization in Gryffin consists of two main steps. First, a set of N initial parameter space
points are drawn from the domain X using rejection sampling according to constraint function c(x) producing the
set of initial samples Pinit = {xi}Ni=1, where xi ∼ X ; s.t. c(xi) 7→ feasible. These samples are then refined by one of
several optimization strategies, returning a set of refined proposals Pref = {xi}Ni=1. In the following subsections, we
detail the each acquisition function optimization strategy and compare their computational scaling.

A. Adam/Hill optimizer

For continuous parameters, the Adam optimizer1 is used to optimize the acquisition function, with built in checks for
whether the optimized samples obey the defined known constraints. For discrete and categorical parameter types, we
use a “hill-climbing” strategy, in which each initial sample is randomly updated for a predefined number of iterations,
with the candidate that has the best merit maintained and eventually returned. Algorithm 1 shows this strategy’s
basic pseudocode.

B. Genetic optimizer

Our genetic algorithm implementation is based on the DEAP library2,3 and consists of crossover (C), mutation
(M) and tournament selection (S) operations. The size of the initial population is determined by the number of
initial random samples, N . At each generation, offspring are chosen using tournament-style selection (tournament
size of 3); elitism is applied to 5% of the population. Each parent in the resulting population is given a chance to mate
(using either uniform or two-point crossover, depending on the dimensionality of the parameter space, with a crossover
probability of 0.5), as well as a chance to mutate. We employ a custom mutation operator, M which can handle
continuous, discrete and categorical parameter types. The mutation probability is set to 0.4, with the probability
of mutating each individual parameter set to 0.2. The maximum number of generations is set to 10, but the search
is terminated early if the diversity of the population reaches a specified threshold. Specifically, if the population
is concentrated in a small subvolume of parameter space, where each attribute does not span more than 10% of
the allowed range, then the search is terminated. M consists of different mutations for each parameter type. For
continuous parameters, a perturbation x′ is sampled from a Gaussian distribution with scale 0.1, i.e. M(x) = x+ x′,
x′ ∼ N (0, 0.1). The same is true for discrete parameter types, except x′ is first rounded to the nearest integer value.
For categorical parameters, the mutated offspring are sampled randomly from the set of options for that parameter.

In order to constrain the genetic optimization procedure according to the known constraint function, a subroutine
is used to project infeasible population offspring onto the feasibility boundary using a binary search procedure. After
each application of C or M to parent xp, the feasibility of each resulting offspring xo is tested with c(xo), where
c is the user-defined constraints function. If c(xo) returns False, i.e. the constraint is not satisfied and xo is in
the infeasible region, the following procedure is employed project xo onto the boundary of the feasible region. For

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2022



2

Algorithm 1: Constrained acquisition function optimization with Adam/Hill climbing

Data: initial samples Pinit, acquisition function α(·), constraint function c(·), max iterations imax

Result: refined samples Pref

Pref ← ∅ ;
for xn in Pinit do

for i in imax do
xn ← AdamStep

(
xcont

n

)
; /* continuous optimization step */

xn ← HillStep
(
xcat

n

)
; /* categorical optimization step */

xn ← HillStep
(
xdisc

n

)
; /* discrete optimization step */

if c(xn) 7→ infeasible then

Pref
+← xi−1

n ; /* add feasible sample from previous iteration to refined samples */

else

Pref
+← xn ; /* add current sample to refined samples */

end

end
Function HillStep(xn):

ybest ← α (xn);

for zd in xcat
n do

znew
d ← znew

d ∼ Sd ; /* sample from set of categorical options Sd */

xnew
n updated with znew

d ;
ynew ← α (xnew

n );
if ynew < ybest then

ybest ← ynew ;
xn ← xnew

n ;

end

return xn

continuous parameters, we consider the midpoint xm of the line segment bounded by xp and xo. If xm is feasible, then
the parent is set to the midpoint; if it is infeasible, the offspring is set to the midpoint. This process is repeated until
the distance between xo and xp is below a tolerance threshold. As a default, we use the criterion ‖xp−xo‖∞ < 0.01 to
terminate the search, i.e., when we are guaranteed to be within a 1% of relative distance from the feasibility boundary
in all parameter dimensions. Throughout this procedure, xp is guaranteed to always be feasible while xo is always
infeasible. Hence, once the search is terminated, the xo is set equal to xp and is returned. For discrete parameters, the
same process is performed but the search is terminated when the closest point to the feasibility boundary is identified.
Categorical parameters of infeasible offspring are instead simply reset to those of the feasible parent. When mixed
continuous, discrete, and categorical parameters are present, we (i) set the categorical parameters of xo to those of its
parent, to obtain x′o. If x′o is feasible, we return it, otherwise we (ii) perform the binary search procedure described
above for the continuous and/or discrete parameters and obtain x′′o . Then, we (iii) reset the categorical parameters
of x′′o to their original values in xo, obtaining x′′′o . If x′′′o is feasible, we return it, otherwise we return x′′o . Given this
approach relies on binary searches, it has a favorable logarithmic scaling and adds little overhead to the optimization
of the acquisition function.

Algorithm 2 shows the basic pseudocode for our implementation. We show pseudocode for our custom mutation
function M (referred to as Mutation), but we omit definition of our subroutine which projects infeasible points to
the feasible boundary for brevity. The function is referred to in Algorithm 2 by ProjectToFeasible. We direct the
interested reader to the source code of Gryffin for more details (https://github.com/aspuru-guzik-group/gryffin).

C. Empirical time complexity of the Adam and genetic acquisition optimizers

Computational scaling experiments were carried out to compare the relative cost of the Adam and Genetic acquisi-
tion optimization strategies. The time taken to optimize the acquisition function was measured with increasing number
of past observations while keeping the problem dimensionality constant, and with increasing number of parameter
dimensions while keeping the number of observations constant. All parameters were continuous and in [0, 1]. Tests

were performed with and without optimization constraints. When relevant, the constraint used was
∑d

i=1 xi ≤ 0.5d
, where d is dimension of the parameter space and xi are the individual elements of the d-dimensional parameter
vector. That is, we assumed half of the optimization domain to be infeasible. Results of these tests are shown in
Fig. S2. Each datapoint was obtained as the average elapsed time for 60 repeated acquisition function optimizations



3

Figure S1. Performance of the genetic optimizer implemented in Gryffin, with (proj) and without (no_proj) the use of the
ProjectToFeasible subroutine. (a) Effect of ProjectToFeasible on the optimization performance of the genetic optimizer,
applied to the optimization of a two-dimensional surface. This additional feature of the optimizer improved optimization
performance. As one may expect, the improvement becomes more evident as the size of the population (“initial samples”) is
decreased. (b) Effect of ProjectToFeasible on the optimization performance of Gryffin (Genetic). While less evident, here
too the added feature can improve performance when the global optimum is located on the feasibility boundary and with low
population sizes. Shaded regions indicate 95% confidence intervals from 100 independent executions.

(20 for each λ = {−1, 0, 1}). No appreciable overhead was observed when constraints were present. When keeping the
dimensionality constant, the Genetic strategy showed favourable scaling compared to Adam, being roughly 20% as
expensive as Adam after 100 observations. Similar results were observed in the experiments with a constant number
of observations, where the optimization cost with the Genetic strategy took, on average, ∼ 60% less time than Adam.

S.2. CONSTRAINED OPTIMIZATION OF ANALYTICAL FUNCTIONS

In this section, we provide more details about the constrained analytical functions used for testing Gryffin’s
implementation and performance.

A. Benchmark functions and constraints used

Our synthetic benchmark experiments consisted of four continuous and four discrete surfaces in two dimensions.
The original implementations of the surfaces can be accessed via the Olympus package.4 We used Python wrappers
for each of the surfaces to implement constraints on the parameter space. While the full implementation is available
on GitHub, code snippets are provided here as well to show a user may implement different constraint functions to
be used by Gryffin. These constraint functions, called is_feasible(), expect a dictionary, params, containing the



4

Algorithm 2: Constrained acquisition function optimization with genetic algorithm

Data: Pinit, α(·), c(·), imax, crossover operator C with prob pC, custom mutation operator M with prob pM and

independent prob pindep
M , tournament selection operator S

Result: refined population Pref

P ← Pinit; f ← α (P) ;
for i in imax do
O ← S (P ) ; /* tournament selection of offspring O from population P */

for xi
parent,1, xi

parent,2 in mating pairs do
if crossover sample ∼ U (0, 1) < pC then

xi
child,1,x

i
child,2 ← C

(
xi

parent,1,x
i
parent,2

)
;

xi
child,1 ← ProjectToFeasible

(
xi

child,1,x
i
parent,1

)
;

xi
child,2 ← ProjectToFeasible

(
xi

child,2,x
i
parent,2

)
;

end

for xi
parent in O do

if mutant sample ∼ U (0, 1) < pM then
xi

mutant ←M
(
xi

parent

)
;

xi
mutant ← ProjectToFeasible

(
xi

mutant,x
i
parent

)
;

end
f ← α (O) ; /* evaluate the fitness f of offspring O */

O +← E ; /* add elites E to the offspring O */

P ← O ; /* set population P as the offspring O for next generation */

end
Pref ← P;

Function Mutation(x, pindep
M ):

for xd in x do

if idependent mutation sample ∼ U (0, 1) < pindep
M then

if xd is continuous then
xd ← xd + x′ ; /* sample perturbation from unit Gaussian, i.e. x′ ∼ N (0, 1) */

else if xd is discrete then
xd ← xd + round(x′, integer) ; /* sample perturbation from unit Gaussian, i.e. x′ ∼ N (0, 1) */

else if xd is categorical then
xd ← x′ ; /* sample x′ from set of categorical options, i.e. x′ ∼ Sd */

end

return x

Figure S2. Empirical measurements of the time required by Gryffin to optimize its acquisition function. The Adam and
Genetic optimization strategies were compared at varying number of past observations and optimization domain dimensions,
with and without the presence of constraints.

parameter values and evaluate their feasibility; True is returned for feasible, False for infeasible. Note that, while
here we report the definition of the analytical functions and the input domain typically used, Olympus normalizes
the input domain to the unit hypercube for ease of use (i.e. all analytical function can be expected to be supported
in [0, 1]d). As such, the constraint functions below assume each parameter to be normalized between zero and one.



5

• Branin This surface is evaluated on the domain x1 ∈ [−5, 10], x2 ∈ [0, 15], and has the form f(x) = a(x2 −
bx21 + cx1 − r)2 + s(1− t) cos(x1) + s, with a = 1, b = 5.1/4π2, c = 5/π, t = 1/8π. There are three degenerate
global minima at (x1, x2) = (−π, 12.275), (π, 2.275) and (9.42478, 2.475). Two of these minima were removed
by the constraints defined below.

def is_feasible(params):

x0 = params['x0']
x1 = params['x1']
y0 = (x0-0.12389382)**2 + (x1-0.81833333)**2

y1 = (x0-0.961652)**2 + (x1-0.165)**2

if y0 < 0.2**2 or y1 < 0.35**2:

return False

else:

return True

• Schwefel : This surface is a complex optimization problem with many local minima. In d dimensions, it is
evaluated on the hypercube xi ∈ [−500, 500] ∀ i = 1, . . . , d and is described by the expression f(x) = 418.9829d−∑d

i=1 xi sin
(√
|xi|
)

. The surface has a global optima at x = (420.9687, . . . , 420.9687).

def is_feasible(params):

np.random.seed(42)

N = 20

centers = [np.random.uniform(low=0.0, high=1.0, size=2) for i in range(N)]

radii = [np.random.uniform(low=0.05, high=0.15, size=1) for i in range(N)]

x0 = params['x0']
x1 = params['x1']
Xi = np.array([x0, x1])

for c, r in zip(centers, radii):

if np.linalg.norm(c - Xi) < r:

return False

return True

• Dejong : This surface generalizes a parabola to higher dimensions. It is convex and unimodal an evaluated on
the d-dimensional hypercube xi ∈ [−5, 5], ∀ i = 1, . . . , d. In two dimensions, this surface has a global minimum
at (x0, x1) = (0, 0) with y = 0.

def is_feasible(params):

x0 = params['x0']
x1 = params['x1']
y = (x0-0.5)**2 + (x1-0.5)**2

if np.abs(x0-x1) < 0.1:

return False

if 0.05 < y < 0.15:

return False

else:

return True

• DiscreteAckley : This surface is the discrete analogue to the Ackley function.

def is_feasible(self, params):

x0 = params['x0']
x1 = params['x1']

if np.logical_or(0.41 < x0 < 0.46, 0.54 < x0 < 0.59):

return False

if np.logical_or(0.34 < x1 < 0.41, 0.59 < x1 < 0.66):



6

return False

return True

• Slope This surface generalizes a plane to discrete domains. The surface’s values linearly increase along each
dimension. Constraints form three area elements defined by circles with increasing radii.

def is_feasible(params):

x0 = params['x0']
x1 = params['x1']
y = x0**2 + x1**2

if 5 < y < 25:

return False

if 70 < y < 110:

return False

if 200 < y < 300:

return False

return True

• Sphere: This surfaces generalizes a parabola to discrete spaces. It features a degenerate global minimum if the
number of options along at least one dimension is even,and a well-defined minimum if the number of options
for all dimensions is odd. Constraints remove the same two integer inputs, 9 and 11, from consideration in both
dimensions.

def is_feasible(params):

x0 = params['x0']
x1 = params['x1']
if x0 in [9, 11]:

return False

if x1 in [9, 11]:

return False

return True

• Michalewicz : This surface features a sharper well where the global optimum is located. The number of psuedo-
local minima scales factorially with the number of dimensions. Constraints consist of the area element between
a circle centred around (x0, x1) = (14, 10) with radii

√
5 and

√
30, as well as two rectangular areas.

def is_feasible(params):

x0 = params['x0']
x1 = params['x1']
y = ((x0-14))**2 + (x1-10)**2

if 5 < y < 30:

return False

if 12.5 < x0 < 15.5:

if x1 < 5.5:

return False

if 8.5 < x1 < 11.5:

if x0 < 9.5:

return False

return True

• Camel : This surface features a degenerate and pseudo-disconnected global minimum. In 2-dimensions, it has
global minima at (x0, x1) = (7, 11) and (x0, x1) = (14, 10). Constraints are generated by randomly sampling
100 infeasible locations and excluding the (x0, x1) = (7, 11) optima.

def is_feasible(params):

# choose infeasible points at random



7

num_opts = 21

options = [i for i in range(0,num_opts,1)]

num_infeas = 100

np.random.seed(42)

infeas_arrays = np.array([np.random.choice(options, size=num_infeas,replace=True),

np.random.choice(options, size=num_infeas, replace=True)]).T

infeas_tuples = [tuple(x) for x in infeas_arrays]

# always exclude the other minima

infeas_tuples.append((7, 11))

infeas_tuples.append((7, 15))

infeas_tuples.append((13, 5))

x0 = params['x0']
x1 = params['x1']
sample_tuple = (x0, x1)

if sample_tuple in infeas_tuples:

return False

return True

In addition to the above functions, which were tested in two dimensions, we used higher-dimensional versions of the
AckleyPath and Schwefel functions in Fig. S4. AckleyPath is the continuous analogue of the DiscreteAckley function
and may be generalized to d dimensions. For AckleyPath, the constraints were randomly-generated hyper-rectangles
in the parameter domain. For a d-dimensional function defined on the unit hypercube [0, 1]d, each rectangular
constraint has d − 1 width parameters w = (w1, w2, . . . , wd−1) along with a start and end coordinate, e.g., (x, 0, z)
and (x, 1, z). We generate 10d hyper-rectangles with parameters w and coordinates sampled according to the following
class definition.

class AckleyPathConstr(AckleyPath):

def __init__(self, param_dim=2):

AckleyPath.__init__(self, param_dim=param_dim)

self.param_dim = param_dim

np.random.seed(43)

num_rect = int(param_dim*10)

max_width = 0.025*(param_dim**1.8)

self.ws, self.coords = [],[]

for _ in range(num_rect):

w = np.random.uniform(0.05, max_width, size=(param_dim,))

coord_1 = np.random.uniform(size=(param_dim,))

coord_2 = coord_1.copy()

ix = np.random.randint(param_dim)

w[ix] = 0.

coord_1[ix] = 0.

coord_2[ix] = 1.

self.ws.append(w)

self.coords.append([coord_1, coord_2])

def is_feasible(self, Xi):

for w, coord in zip(self.ws, self.coords):

bools = []

for param_ix in range(self.param_dim):

bool_ = np.logical_and(

Xi[param_ix] > coord[0][param_ix]-(w[param_ix]/2.),

Xi[param_ix] < coord[1][param_ix]+(w[param_ix]/2.)

)

bools.append(bool_)

if all(bools):

return False

return True

For the Schwefel function generalized to d parameter dimensions, the constraint function is generalized from the
random circles from our 2-dimensional example to randomly generated d-spheres. The equation of a d-sphere with



8

radius r centered at coordinate c = (c1, c2, . . . , cd) is r2 =
∑d

i=1 (xi − ci)2. We sampled 10d spheres with randomly
generated parameters r and c according to the following class definition.

class SchwefelConstr(Schwefel):

def __init__(self, param_dim=5):

Schwefel.__init__(self, param_dim=param_dim)

np.random.seed(42)

num_spheres = int(param_dim*10)

max_radius = np.sqrt(param_dim*1.**2) / 4.6

# generate d-sphere centres and radii

self.centers = [np.random.uniform(size=(param_dim,)) for _ in range(num_spheres)]

self.radii = [np.random.uniform(0.1, max_radius) for _ in range(num_spheres)]

def is_feasible(self, Xi):

for c, r in zip(self.centers, self.radii):

if np.linalg.norm(c-Xi) < r:

return False

return True

B. Results of the constrained optimization benchmarks

Fig. S3 shows the results of the continuous optimization benchmarks where regret is displayed on a linear scale,
which highlights how performance differences between Gryffin and Dragonfly on Branin and Dejong are marginal.
Table S1 reports the optimization performance achieved by the strategies tested on the discrete surfaces.

Figure S3. Constrained optimization benchmarks on analytical functions with continuous parameters. The upper row shows
contour plots of the surfaces with constrained regions darkly shaded. Gray crosses show sample observation locations and
purple stars denote the location(s) of unconstrained global optima. The bottom row show optimization traces for each strategy.
Shaded regions around the solid trace represent 95% confidence intervals.



9

Figure S4. Performance comparison of Gryffin (Adam) and Gryffin (Genetic) on high-dimensional analytical functions. These
results show that, even for higher dimensional surfaces, there is no significant difference in performance between Gryffin (Adam)
and Gryffin (Genetic). While one may expect the genetic approach to be more suited to more tortuous search landscapes,
Gryffin’s acquisition function is generally smooth, such that it is unlikely to pose a particularly challenging optimization
problem for either approach. Shaded regions indicate 95% confidence intervals from 25 independent executions of each strategy.

Figure S5. Gaussian process regression on the Schwefel surface using different kernels. The training data (50 samples) is shown
as blue, circular markers on the top-left plot. The Spearman correlation coefficients (rs) between the predictions of and the
true Schwefel function evaluated in the feasible region are reported. While RBF and Mátern are the most common kernels used
for Bayesian optimization, a periodic kernel provides a better inductive bias for this surface. However, this is not known at the
beginning of a black-box optimization.

C. Empirical comparison of sampling in Gryffin and Dragonfly

In this section, we examine the sampling tendencies of Gryffin and Dragonfly on the constrained, continuous
analytical benchmark functions. Specifically, we compare the tendency of each algorithm to suggest parameter point
which are in close proximity to past observations. The first row of Fig. S6 shows the minimum Euclidean distance
between any two parameter points selected during an optimization campaign by each planner (boxplots show this
metric over the 100 independently seeded runs). Dragonfly is able to recommend parameter points which are signif-
icantly closer to past observations than Gryffin (Adam) or Gryffin (Genetic). The greater exploitative tendency of



10

− Slope (311) Sphere (362) Michalewicz (323) Camel (347)

Random 157.3± 9.4 162.3± 9.7 167.8± 9.2 171.0± 10.8

Genetic 55.2± 2.7 61.5± 2.7 47.7± 2.4 92.9± 6.2

Gryffin (Hill) 12.7± 1.0 19.0± 0.8 18.4± 0.9 33.8± 1.6

Gryffin (Genetic) 12.4± 1.0 20.2± 0.8 18.7± 0.8 36.0± 2.6

Dragonfly 11.0± 0.1 13.6± 0.3 29.8± 1.2 39.0± 2.3

Table S1. Mean and standard error of the number of evaluations needed by each strategy to identify the global optimum of
each constrained discrete surface tested. The integer in parentheses in the header is the number of feasible tiles for the surface
after the constraint is applied, out of a total of 21× 21 = 442 input combinations.

Dragonfly is beneficial on smooth continuous surfaces as it allows for marginal improvement on regret values (main
text Fig. 2). Gryffin strategies, on the other hand, contain a self-avoidance routine which biases the search away from
past observations in an attempt to avoid redundant measurements. For practical experimental applications in chem-
istry, the resolution on input parameters is determined by precision of laboratory equipment and/or human error, and
should be considered before commencing the experiment. The bottom two rows show the location of observations for
Gyrffin (Adam) and Dragonfly strategies around the minima of each surface. Visually, it is apparent that Dragonfly
has a greater tendency to recommend parameter points which are considerably closer to past observations than does
Gryffin.

S.3. PROCESS-CONSTRAINED OPTIMIZATION OF O-XYLENYL C60 ADDUCTS SYNTHESIS

A. Details of the Bayesian neural network experiment emulator

To emulate the process-constrained synthesis of C60 adducts, we trained a Bayesian neural network (BNN) to return
stochastic outcomes based on a set of controllable parameters. The trained emulator takes a vector containing the
experimental conditions (T , FC60 , and FS) and predicts the mole fractions of the products, the un- ([X0]), singly-
([X1]), doubly- ([X2]), and triply-functionalized ([X3]) C60. The BNN consisted of 3 densely-connected variational
layers with reparameterized Monte Carlo estimators5 and was implemented in PyTorch.6. Each hidden layer had
64 nodes and featured a ReLU non-linearity, while the output layer had 4 nodes, one for each of the aformentioned
C60 adducts. The output layer used the softmax activation function, which normalizes the outputs to a probability
distribution where

∑3
i=0[Xi] = 1. Network weights wi and biases bi followed Gaussian distributions whose priors

were set to have zero mean and unit standard deviation, i.e. wi ∼ N (0, 1), bi ∼ N (0, 1). The network was trained
using variational Bayesian inference. The ELBO loss was minimized using the Adam optimizer1, and resulting
gradients were used to adjust the weights and biases of the network’s parameter distributions during training. Fig. S7
shows parity plots of our model’s predictions against the true C60 adduct mole fractions, where 500 experimental
measurements were used for training and 100 for testing. The BNN displayed excellent interpolation performance
across the parameter space for each adduct type, with Pearson correlation coefficients on the test sets between 0.93
and 0.96.

B. Estimating the experimental cost

The overall goal of the process-constrained optimization of o-xylenyl C60 adducts synthesis is to adjust reaction
conditions such that the combined yield of first- and second-order adducts is maximized and reaches at least 90%,
while the cost of reagents is minimized. In order to estimate the cost of the experiments, we considered the listed
price of sultine and C60 by the chemical supplier Sigma-Aldrich. The cost of dibromo-o-xylene cost on Sigma Aldrich
was $191 for 100 g. The cost of C60 was $422 for 5g. In the experiments by Walker et al.7, the concentration of sultine
was 1.4 mg/mL, while the concentration of C60 was 2.0 mg/mL. The amount of C60 used in the experiments will
therefore have much greater influence on overall experiment cost than sultine. Our optimization experiments target
the adjustment of volume flow rates of each of these chemicals. Thus, we seek a measure of per-unit-time operation
cost to be minimized. Converting to per-litre costs, we have 2.674 $/L for sultine, and 168.8 $/L for C60. Finally,
from the flow rates used in the experiment, FC and FS (with units of µL/min), we obtain an estimate of per-minute
operation cost of the flow-reactor from Walker et al.7 with units of $/min as



11

Figure S6. Empirical evaluation of the sampling behaviour of Gryffin and Dragonfly on constrained continuous surfaces. The
first row shows the minimum Euclidean distance between any two parameter points selected by the each optimization strategy.
For each continuous constrained surface, Dragonfly allows for recommendation of parameter points which are significantly closer
to past observations than does Gryffin (Adam) or Gryffin (Genetic). The second and third rows shows the location of Gryffin
(Adam) and Dragonfly samples (grey crosses) in the vicinity of the surface minima (pink star).

Figure S7. Parity plots for each mole fraction predicted by our Bayesian neural network emulator, averaged over 50 network
parameter samples. Horizontal axes plot the true mole fraction, and vertical axes plot the predicted mole fraction. The dashed
diagonal line indicates perfect agreement. The Pearson correlation coefficient and root-mean-square error is given for the
training set (in parentheses) and test set for each mole fraction target. Train (test) set points are shown in blue (orange).



12

cost =
1L

106µL
FC ×

$168.8

L
+

1L

106µL
FS ×

$2.674

L
. (3)

Fig. S8 shows the mean and 95% confidence interval for parameter values corresponding to the best observed
objective values achieved by each optimization strategy. We report the flow rate in terms of mass per unit time (mass
flow rate) to account for the difference in concentrations of each reagent and compare the rates on an equal footing.
To improve upon our secondary cost objective, each strategy decreases the FC parameter, as it’s value dominates the
cost in Eq. 3. Decrease in FC is however accompanied by a decrease in FS to preserve the high (≥ 0.9) mol fractions of
the X1 and X2 adducts. For most optimization runs, the temperature of the best performing reactions varies between
116 and 130 ◦C.

Fig. S9 shows distributions of FC − FS values for the best reaction conditions achieved by each optimization
strategy in units of µg/min. For each strategy, we note that this distribution favours positive values, meaning that,
in the majority of the best achieved reaction conditions, the mass flow rate of C60 was greater than that of sultine.
Crucially, the Gryffin strategies, which exhibited the best optimization performance on this application, achieved
narrower distributions around FC − FS = 0 than other strategies.

Figure S8. Mean and 95% confidence interval for parameter values corresponding to the best objective values found by each
optimization strategy at each iteration of the optimization campaign. C60 and sultine flow rates are both shown with units of
µg/min.

Figure S9. Kernel density estimates show the distribution of FC − FS for the best reactions conditions achieved by each
optimization strategy in units of µg/min. Each distribution is comprised of 100 such values, one for each independently seeded
optimization. Positive values indicate that the best achieved reaction conditions had FC > FS.



13

S.4. DESIGN OF REDOX-ACTIVE MATERIALS FOR FLOW BATTERIES WITH SYNTHETIC
ACCESSIBILITY CONSTRAINTS

A. Computation of reduction potential tolerance

To set the reduction potential (Ered) upon which we would like to improve, and which is used as an absolute
tolerance in Chimera8, we computed Ered for the base scaffold molecule H-AcBzC6.9 We computed Ered with the
same computational protocol used by Agarwal et al.9. The DFT calculation was performed using Gaussian 1610 at
the wb97xd/6-31+G-(d,p)11,12 level of theory. Optimized neutral and anionic geometries were subject to frequency
calculations to compute the free energies. The SMD continuum model13 was used with acetonitrile as the solvent.
The reduction potential was calculated using Eq. 1 in Agarwal et al.9,

Ered =
−∆Gred

nF
− 1.24 V , (4)

where ∆Gred = Greduced − Gneutral, n is the number of electrons added to the neutral molecules (n = 1), F is
Faraday’s constant in eV, and 1.24 is a constant subtracted to convert the Gibbs free energy change to reduction
potential (with Li/Li+ reference electrode). The Ered for H-AcBzC6 was computed to be 2.038372 V. Of the 1408
functional derivatives subject to computation by Agarwal et al.9, only 243 had better (lower) Ered.

B. Prediction of the synthetic accessibility of redoxmer candidate molecules

As a constraint on the redoxmer candidates space, we enforce a retrosynthetic accessibility threshold below which
the candidate is considered infeasible. The goal was to have an indication of synthetic accessibility that could be used
to constrain the search space to candidates that likely to be synthesizable in practice.

Fig. S10 shows the distributions of different synthetic accessibility scores for the set of 1408 redoxmer candidates
considered in this application. Specifically, it includes the RAscore14 predicted by an XGBoost classifier (XGB) and a
neural network (NN), the fragment-based synthetic accessibility score SAscore15, and the synthetic Bayesian classifier
(SYBA)16. The RAScore is a recently reported synthetic accessibility score that tries to capture the probability
of AiZynthFinder being able to identify a synthetic route for the molecule being evaluated.14 AiZynthFinder is
a retrosynthetic planning tool that can generate synthetic routes for organic molecules.17 Hence, an RAScore of
1 indicates a synthetic path to the desired molecule is likely to exist, while a score of 0 indicates that finding a
synthetic path is likely to be challenging and potentially impossible. For the purpose of our constrained optimization
experiments, we decided to use the RAscore based on a NN model given its reported performance14 and intuitive
interpretation.

Figure S10. Histograms showing the distributions of four synthetic accessibility scores computed for the 1408 redoxmer candi-
dates.

C. Generation of descriptors for benzothiadiazole scaffold substituents

In this example application of constrained Bayesian optimization, we employed the Dynamic version of Gryffin
for combinatorial optimization,18 which can take advantage of physicochemical descriptors in the search for optimal



14

molecules. Specifically, we provided Gryffin with a total of seven simple descriptors associated with each of the four
substituent groups considered (R1−4 in Fig. 5a). The physicochemical descriptors were computed with the Mordred
Python package.19 As summarized in Table S2, the following descriptors were considered: the number of hetero atoms
(nHetero), molecular weight (MW), topological polar surface area (TopoPSA), number of heavy atoms (nHeavyAtom),
atomic polarizablity (apol), fraction of sp3 hybridized carbons (FCSP3), and geometric diameter (Diameter). All seven
descriptors were used for substituent groups R2−4, but only four of them are used for R1. We eliminate apol, FCSP3
and Diameter from consideration because they each have equal value for both R1 substituent options, and therefore
are not informative. Table S2 sumarizes the Pearson correlation of each descriptor with each objective value over the
entire set of 1408 molecules. N/A entries show the cases where the descriptor is omitted for the R1 substituent. In
addition, Table S2 reports the Pearson correlations between the descriptors for all four R-groups (ρ1, ρ2, ρ3, and ρ4)
and each optimization objective (∆λabs, Ered, and Gsolv). Table S3 reports instead the pairwise correlation between
each descriptor, averaged over all R-groups.

Mordred name ∆λabs Ered Gsolv

ρ1 ρ2 ρ3 ρ4 ρ1 ρ2 ρ3 ρ4 ρ1 ρ2 ρ3 ρ4

nHetero 0.17 0.13 0.12 0.19 0.22 0.27 0.26 0.35 0.62 0.24 0.22 -0.12

MW 0.17 0.06 0.05 0.15 0.22 0.21 0.20 0.19 0.62 0.23 0.21 -0.13

TopoPSA -0.17 -0.12 -0.11 -0.14 -0.22 0.13 0.11 0.30 -0.62 0.00 0.01 -0.22

nHeavyAtom 0.17 0.09 0.07 0.20 0.22 0.22 0.21 0.22 0.62 0.22 0.20 -0.21

apol -0.17 -0.25 -0.31 -0.14 -0.22 -0.26 -0.27 -0.16 -0.62 -0.06 -0.04 -0.41

FCSP3 N/A -0.11 -0.06 -0.04 N/A -0.31 -0.32 -0.36 N/A 0.13 0.14 0.02

Diameter N/A 0.02 -0.04 0.17 N/A 0.16 0.16 0.23 N/A 0.14 0.12 -0.29

Table S2. Mordred descriptors used to describe R-groups for the battery application optimization. The right most three
columns show the Pearson correlation between each descriptor and each optimization objective for the 1408 redoxmer candidates
considered. The correlations for each of the four R groups are comma separated , i.e. ρR1, ρR3, ρR4, ρR5. The largest correlation
for each objective and R-group is bolded. N/A entries indicate that this descriptor was not considered for this particular R
group. For the R1 group, we do dont consider apol, FCSP3 and Diameter since their values are the same for both R1 options
and therefore provide no additional information.

− nHetero MW TopoPSA nHeavyAtom apol FCSP3 Diameter

nHetero 1.00 0.92 0.01 0.91 −0.04 0.2 0.61

MW 0.92 1.00 −0.06 0.93 0.24 0.29 0.71

TopoPSA 0.01 −0.06 1.00 −0.14 0.03 −0.20 −0.13

nHeavyAtom 0.91 0.93 −0.14 1.00 0.32 0.35 0.86

apol −0.04 0.24 0.03 0.32 1.00 0.47 0.62

FCSP3 0.2 0.29 −0.2 0.35 0.47 1.00 0.32

Diameter 0.61 0.71 −0.13 0.86 0.62 0.32 1.00

Table S3. Pairwise Pearson correlations between Mordred descriptors used to describe the R-groups of the redoxmer candidates.

D. Additional optimization experiments

In addition to Gryffin optimizations taking advantage of physicochemical descriptors (Dynamic Gryffin), we also
carried out optimizations without this additional information using Naive Gryffin. Fig. S11 shows the optimization
performance of all strategies tested, including the latter. The results show how the use of descriptors provide an
edge to Gryffin to achieve superior performance to all other strategies. Regardless, Naive Gryffin still outperforms
model-free optimization strategies Random and Genetic. All these optimizations were constrained to molecules with
high synthetic accessibility scores, as described above.



15

0 25 50 75 100
# molecules tested

0

10

20

30

40

ab
s  

[n
m

]
First objective

0 25 50 75 100
# molecules tested

1.6

1.8

2.0

2.2

2.4

2.6

Ere
d  

[V
 v

s,
 L

i/L
i+

]

Second objective
Random
Genetic
Naive Gryffin (Hill)
Naive Gryffin (Genetic)
Dynamic Gryffin (Hill)
Dynamic Gryffin (Genetic)

0 25 50 75 100
# molecules tested

0.9

0.8

0.7

0.6

G
so

lv
 [e

V
]

Third objective

Figure S11. Results of the constrained optimization experiments for the design of redox-active flow battery materials. Grey
shaded regions indicate objective values failing to achieve the desired objectives. Traces depict the objective values corresponding
to the best achieved merit at each iteration, where error bars represent 95% confidence intervals.

[1] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980 [cs], Jan. 2017.
[2] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP: Evolutionary algorithms made

easy,” Journal of Machine Learning Research, vol. 13, pp. 2171–2175, 2012.
[3] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and C. Gagné, “Deap: A python framework for evolutionary

algorithms,” in Proceedings of the 14th annual conference companion on Genetic and evolutionary computation, pp. 85–92,
2012.

[4] F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, M. Christensen, E. Liles, J. E. Hein, and A. Aspuru-Guzik, “Olympus:
a benchmarking framework for noisy optimization and experiment planning,” Machine Learning: Science and Technology,
vol. 2, p. 035021, July 2021.

[5] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural networks,” 2015.
[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Des-

maison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing
Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035,
Curran Associates, Inc., 2019.

[7] B. E. Walker, J. H. Bannock, A. M. Nightingale, and J. C. deMello, “Tuning reaction products by constrained optimisation,”
Reaction Chemistry & Engineering, vol. 2, no. 5, pp. 785–798, 2017.

[8] F. Häse, L. M. Roch, and A. Aspuru-Guzik, “Chimera: enabling hierarchy based multi-objective optimization for self-
driving laboratories,” Chemical Science, vol. 9, no. 39, pp. 7642–7655, 2018.

[9] G. Agarwal, H. A. Doan, L. A. Robertson, L. Zhang, and R. S. Assary, “Discovery of Energy Storage Molecular Materials
Using Quantum Chemistry-Guided Multiobjective Bayesian Optimization,” Chemistry of Materials, vol. 33, pp. 8133–8144,
Oct. 2021.

[10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A.
Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P.
Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,
B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma,
O. Farkas, J. B. Foresman, and D. J. Fox, “Gaussian˜16 Revision C.01,” 2016.

[11] J.-D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with damped atom–atom dispersion
corrections,” Physical Chemistry Chemical Physics, vol. 10, pp. 6615–6620, Nov. 2008.

[12] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, “6-31G* basis set for third-row atoms,”
Journal of Computational Chemistry, vol. 22, no. 9, pp. 976–984, 2001.

[13] A. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal Solvation Model Based on Solute Electron Density and on
a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions,” The Journal
of Physical Chemistry B, vol. 113, no. 18, pp. 6378–6396, 2009.

[14] A. Thakkar, V. Chadimová, E. J. Bjerrum, O. Engkvist, and J.-L. Reymond, “Retrosynthetic accessibility score (RAscore)
– rapid machine learned synthesizability classification from AI driven retrosynthetic planning,” Chemical Science, vol. 12,



16

pp. 3339–3349, Mar. 2021.
[15] P. Ertl and A. Schuffenhauer, “Estimation of synthetic accessibility score of drug-like molecules based on molecular com-

plexity and fragment contributions,” Journal of Cheminformatics, vol. 1, p. 8, June 2009.
[16] M. Voršilák, M. Kolář, I. Čmelo, and D. Svozil, “Syba: Bayesian estimation of synthetic accessibility of organic compounds,”

Journal of Cheminformatics, vol. 12, no. 1, p. 35, 2021.
[17] S. Genheden, A. Thakkar, V. Chadimová, J.-L. Reymond, O. Engkvist, and E. Bjerrum, “AiZynthFinder: a fast, robust

and flexible open-source software for retrosynthetic planning,” Journal of Cheminformatics, vol. 12, p. 70, Nov. 2020.
[18] F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, and A. Aspuru-Guzik, “Gryffin: An algorithm for Bayesian optimization

of categorical variables informed by expert knowledge,” Applied Physics Reviews, vol. 8, p. 031406, Sept. 2021.
[19] H. Moriwaki, Y.-S. Tian, N. Kawashita, and T. Takagi, “Mordred: a molecular descriptor calculator,” Journal of Chem-

informatics, vol. 10, p. 4, Feb. 2018.


	Bayesian optimization with known experimental and design constraints for chemistry applications
	Abstract
	Introduction
	Methods
	Acquisition optimization in Gryffin
	Constrained acquisition optimization with Adam or Hill
	Constrained acquisition optimization with a genetic algorithm
	User interface
	Current limitations

	Results and Discussion
	Analytical benchmarks
	Process-constrained optimization of o-xylenyl C60 adducts synthesis
	Design of redox-active materials for flow batteries with synthetic accessibility constraints

	Conclusion
	Data availability
	Acknowledgments
	Conflicts of interest
	References
	References
	Supplementary Information6pt Bayesian optimization with known experimental and design constraints for chemistry applications6pt Riley J. Hickman,1,2,* Matteo Aldeghi,1,2,3,4,* Florian Häse,1,2,3,5 Alán Aspuru-Guzik1,2,3,6,7,8 6pt 1Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada 2Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada 3Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada 4Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States 5Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States 6Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada 7Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada 8Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada *These authors contributed equally 

	Constrained optimization of the acquisition function
	Adam/Hill optimizer
	Genetic optimizer
	Empirical time complexity of the Adam and genetic acquisition optimizers

	Constrained optimization of analytical functions
	Benchmark functions and constraints used
	Results of the constrained optimization benchmarks
	Empirical comparison of sampling in Gryffin and Dragonfly

	Process-constrained optimization of o-xylenyl C60 adducts synthesis
	Details of the Bayesian neural network experiment emulator
	Estimating the experimental cost

	Design of redox-active materials for flow batteries with synthetic accessibility constraints
	Computation of reduction potential tolerance
	Prediction of the synthetic accessibility of redoxmer candidate molecules
	Generation of descriptors for benzothiadiazole scaffold substituents
	Additional optimization experiments

	References


