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S1 Solvent Categorization

Each solvent was categorized as one of the 22 solvent categories based on its primary functional
group. We first defined a list of functional groups and specified their order of priority. The list
was adapted from the conventional functional group hierarchy for organic nomenclature1 with a
few modifications (e.g., addition of arbitrary function groups such as ”Sulfur” and ”Silicon” that
capture solvents with certain elements but were not identified as the precedent functional groups)
to accommodate our solvent data set. SMARTS, or SMILES arbitrary target specification, was used
to search for the functional groups within a molecule. For each functional group, the identifiable
SMARTS strings were gathered from the source documentation from a collection of cheminfor-
matics tools, including RDKit,2 OpenBabel,3 and Daylight Chemical Information Systems.4 For
each solvent, the searching algorithm goes through the functional group list from high priority to
low priority and returns the category with which a SMART pattern is first matched. For example,
an ester may also be identified as a ketone due to the carbonyl group, but since ester is defined to
have higher order of priority than ketone, the ester-like molecule is eventually categorized as an
ester. Although the included SMARTS helped categorize most of the solvents, there were a few
exceptions; for these, we manually categorized them based on their nomenclatures. Despite its
limitation in categorizing complex chemical structures that require functional group identification
by human expertise, the algorithm provides a simple method for fast solvent categorization and
can be easily modified for other studies.
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S2 Additional Details on Model Training and Validation

Table S1: List of atom features.5

Node Feature Index Meaning

1-43 One-hot-encoded atom type

44-54 One-hot-encoded atom degree (0-10)

55-61 One-hot-encoded number of implicit H’s (0-6)

62 Formal Charge

63 Number of radical electrons

64-68 One-hot-encoded atom hybridization (SP, SP2, SP3, SP3D, SP3D2)

69 Whether the atom is aromatic

70-74 One-hot-encoded number of total H’s (0-4)

Table S2: List of hyperparameters.

Hyperparameter SolvGNN SolvGCN SolvCAT

# local graph convolution layers 2 2 2

# local hidden layer size 256 256 256

# global graph convolution layers 1 1 -

# global hidden layer size 256 256 -

# readout layers 2 2 2

# readout hidden layer size 256 256 256

# trainable weights 2.8M 283K 283K(binary)/349K(ternary)

Optimizer Adam Adam Adam

Batch size 100 100 100

Learning rate 0.001 0.001 0.001

Loss function MSE MSE MSE
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S3 Model Comparison Between Data with or without ln γ∞

Here, we tested SolvCAT, SolvGCN, and SolvGNN on binary mixtures and compared two cases,
one trained on a data set with infinite dilution activity coefficients and one without. In both cases,
SolvGNN performs the best, followed by SolvCAT and SolvGCN. Although the cross-validation
RMSE increased slightly when we train the models with infinite dilution activity coefficients, the
R2 and MAE are comparable. As discussed in the main text, training with infinite dilution ac-
tivity coefficients improved predictions at extreme concentrations and therefore was kept as the
benchmark model for analysis in the manuscript.

Figure S1: Cumulative frequency plots for SolvCAT, SolvGCN, and SolvGNN trained and vali-
dated on data with (black) and without (blue) infinite dilution activity coefficients.

S4 Baseline Model using XGBoost

We used Extreme Gradient Boosting (XGBoost)6 to develop a baseline model for comparison to the
SolvGNN. XGBoost is a decision tree-based model that incorporates the idea of ensemble learning
and gradient boosting. It is accurate and scalable due to the parallelization of tree building and
has been used extensively for benchmarking and comparing with deep learning models in molec-
ular property predictions.7 In our study, the XGBoost model was implemented using the Python
package XGBoost (version 1.5.0). The major hyperparameters we tuned includes the number of
estimators (100, 300), learning rate (0.1, 0.2), and max depth of the trees (4, 8). For the input data
representation, we used Morgan fingerprints8 concatenated with mole fractions. Input data from
the binary mixtures (with infinite dilution activity coefficients) were used to train the model. The
same data splitting method used when training the graph neural nets was incorporated with ran-
dom order switching of the components during training; the cross-validation MAE of this model
is 0.21, which is substantially higher than the MAE of SolvGNN (0.03), and leads to less accurate
predictions as illustrated by the parity plot below.
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Figure S2: Parity plots for activity coefficient predictions (including infinite dilution activity coef-
ficients) of binary mixtures using XGBoost. The same data splitting was used during training and
validation. Individual ln γi’s with the true (COSMO-RS) and predicted (XGBoost) values from CV
are displayed. The points are colored by the type of mixtures following the naming convention of
the main text.

S5 Convergence Profiles for Robustness Study

Figure S3: Convergence plots. MSE loss is plotted against epoch for each of the three CV folds. In
each CV fold, SolvGNN was trained on two of the mixture types and validated on the rest. The
mixture types and percentage of the data included for training/validation are listed underneath
each figure. p-p stands for polar-polar; p-n stands for polar-nonpolar, and n-n stands for nonpolar-
nonpolar.
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S6 Significance of Physics-informed Edge Feature

To illustrate that the physics-informed edge features (H-bonds) are non-trivial in the proposed
architecture, we conducted an experiment where we set all the intermolecular interactions to 1 and
applied the same network. The results are shown below in Table S3. The performance decreased
by 15% and 9% for CV MSE and CV MAE compared to the proposed SolvGNN where H-bond
information is incorporated, suggesting the implementation of the global interaction network with
H-bond information as edge features plays a role in improving the performance.

Table S3: Comparison between physics-informed edge features and non physics-informed edge
features of SolvGNN.

CV MSE CV MAE

Proposed SolvGNN 0.0088 0.033

SolvGNN with all interaction edges set to 1 0.0102 0.036

% difference +15% +9%
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S7 Performance Metrics

The performance metrics in Table 2 are the same metrics used by Medina et al.,9 where the un-
scaled γ∞ values were used for evaluation. Each metric is defined in the subsections that follow.

S7.1 Mean Absolute Error (MAE)

MAE =
1

N

N∑
i=1

|γ∞i − γ̂∞i |

S7.2 Standard Deviation of the Errors of Prediction

SDEP =

√∑N
i=1(ri − µr)2

N

where ri = |γ∞i − γ̂∞i | and µr =
1
N

∑N
i=1 ri

S7.3 Mean Squared Error (MSE)

MSE =
1

N

N∑
i=1

(γ∞i − γ̂∞i )2

S7.4 Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

N

N∑
i=1

(γ∞i − γ̂∞i )2

S7.5 Mean Absolute Percentage Error (MAPE)

MAPE =
1

N

N∑
i=1

|γ∞i − γ̂∞i |
γ∞i

× 100%

S7.6 Coefficient of Determination (R2)

R2 = 1−
∑N

i=1(γ
∞
i − γ̂∞i )2∑N

i=1(γ
∞
i − µγ)2

where µγ = 1
N

∑N
i=1 γ

∞
i
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S8 Phase Diagram Comparison with Experimental Data

Figure 5 in the main text shows binary phase diagrams to highlight that SolvGNN-predicted activ-
ity coefficients lead to good agreement with phase diagrams generated by COSMO-RS and Aspen
(using the UNIFAC approach). To highlight that these approaches are also suitable for reproduc-
ing experimentally determined phase diagrams, Figure S4 compares binary phase diagrams be-
tween two experimental data sets10 and the computational predictions for a cyclohexane-ethanol
mixture. The two experimental data sets are at T = 293.15 and T = 303.15 K, respectively, while
the computational results are at T = 298. The COSMO-RS, Aspen, and SolvGNN predicted data
lie in between the two experimental data sets and exhibit similar patterns and azeotrope compo-
sitions, highlighting their applicability.

Figure S4: P-x-y comparison between SolvGNN and experimental data.

S9 Additional Binary Phase Diagrams
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Figure S5: Six example P-x-y phase diagrams generated from SolvGNN displayed along with their
activity coefficient predictions (shown below each P-x-y diagram). The phase diagrams are com-
pared with those generated from two other state-of-the-art tools, including COSMOtherm that
implements COSMO-RS11 and Aspen Plus that implements UNIFAC.12 The vapor compositions
are represented as circles and liquid compositions are represented as squares. ”x” denotes activity
coefficients at infinite dilution. In all calculations, the ln γi’s are obtained by averaging the predic-
tions of SolvGNN trained from each CV fold, and standard deviations are visualized as error bars.
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S10 Numerical Comparison of VLE Data for Water-Acetone-MIBK

To test whether vapor-liquid equilibrium data could also be reliably obtained for a ternary system,
we computed isobars using modified Raoult’s Law for the ternary water(1)-acetone(2)-MIBK(3)
mixture using SolvGNN and compared to results from COSMO-RS. To do so, we sampled liquid-
phase compositions (xi) within the ternary space, calculated activity coefficients for all three com-
ponents, and used modified Raoult’s Law to determine the equilibrium bubble pressure (denoted
as P ) in Table S4. Pressures (either from SolvGNN or COSMO-RS) within 2% of each target isobar
pressure and corresponding vapor-phase compositions (yi) are included in the table below along-
side corresponding COSMO-RS predictions (from COSMOtherm). The comparison shows that in
general SolvGNN and COSMO-RS are in excellent agreement, with the MAE shown at bottom in
the table.
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Table S4: Numerical comparison between SolvGNN and COSMO-RS of VLE data for a ternary
mixture water(1)-acetone(2)-MIBK(3).

Sampled
Composition

Prediction Comparison
ˆindicates SolvGNN results (COSMO-RS otherwise)

x1 x2 x3 ŷ1 y1 ŷ2 y2 ŷ3 y3 P̂ (bar) P (bar)

P∼0.15 bar

0.00 0.40 0.60 0.00 0.00 0.89 0.89 0.11 0.10 0.15 0.16
0.05 0.35 0.60 0.07 0.08 0.81 0.81 0.12 0.11 0.14 0.15
0.10 0.35 0.55 0.12 0.12 0.77 0.78 0.11 0.11 0.15 0.15
0.40 0.30 0.30 0.23 0.20 0.66 0.70 0.11 0.10 0.14 0.15
0.45 0.30 0.25 0.22 0.20 0.67 0.71 0.11 0.09 0.14 0.15
0.55 0.30 0.15 0.19 0.18 0.71 0.74 0.10 0.08 0.15 0.16
0.60 0.25 0.15 0.21 0.20 0.67 0.70 0.13 0.10 0.14 0.15
0.70 0.20 0.10 0.24 0.19 0.63 0.69 0.12 0.12 0.13 0.15
0.70 0.25 0.05 0.21 0.15 0.73 0.78 0.06 0.06 0.15 0.18
0.75 0.25 0.00 0.22 0.13 0.78 0.87 0.00 0.00 0.15 0.20
0.80 0.15 0.05 0.31 0.19 0.61 0.68 0.09 0.13 0.12 0.15

P∼0.20 bar

0.00 0.55 0.45 0.00 0.00 0.93 0.93 0.07 0.06 0.19 0.20
0.05 0.55 0.40 0.04 0.05 0.89 0.89 0.07 0.06 0.20 0.20
0.10 0.55 0.35 0.07 0.07 0.87 0.87 0.06 0.06 0.20 0.20
0.25 0.50 0.25 0.14 0.11 0.81 0.84 0.05 0.05 0.20 0.20
0.30 0.50 0.20 0.14 0.11 0.81 0.84 0.04 0.05 0.20 0.20
0.35 0.50 0.15 0.14 0.12 0.82 0.84 0.04 0.04 0.20 0.21
0.40 0.50 0.10 0.14 0.11 0.83 0.85 0.03 0.03 0.20 0.21
0.45 0.45 0.10 0.15 0.13 0.81 0.84 0.04 0.04 0.19 0.20
0.55 0.45 0.00 0.14 0.11 0.86 0.89 0.00 0.00 0.20 0.23
0.60 0.35 0.05 0.16 0.13 0.80 0.83 0.04 0.04 0.17 0.20

MAE - - - 0.03 0.03 0.01 0.01
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