
Supplements

1 Training details

We used a neural network with one LSTM layer and two dense layers, containing
32 neurons each. The input to the LSTM layer is one-dimensional, containing
only the current capacity. The covariate input is concatenated with the output
of the LSTM layer for input into the dense layers. Since the covariate inputs
are not time-dependent, we do not need to input them into the LSTM layer.

We model the output with a tanh unit for the output of the mean and a
softplus unit for the output of the variance. Since the variance is always positive,
we predict the output as the logarithm of the variance with an added constant
(10e-6) for stability. Since we predict the output as the percentage remaining of
the last capacity, we restrict the NN to predict values between 85% and 100%.
The output is scaled to be between -1 and 1 (the range of the tanh function).
As an example, if the capacity of the previous cycle was 1.05 Ah and in the
current cycle is 1.00 Ah, the target is ypred = 1.00

1.05 ≈ 0.9524. Since the output
non-linearity of the LSTM is a tanh unit with a range between -1 and 1, we set
-1 and 1 to 85% and 100% respectively as the expected range. The prediction
target would then become 0.9524−0.85

1−0.85 ∗ 2− 1 ≈ 0, 365
For the covariates, we transform the data to have a mean of 0 and a standard

deviation of 1 based on the training set. For the ensembles, we combine five
neural networks with identical architecture, identical training procedures and a
different random seed for the initialization of the weight and bias terms of the
neural network.

Figure S1: Overview of LSTM architecture.
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2 Baseline models

We compare the LSTM with several ML models, a linear regression (with elastic
net regularization as used by Severson et. al), an LSTM with no covariate
features and a DNN (densely connected neural network) that outputs the entire
capacity trajectory as an output. For the linear regression, we evaluated elastic
net and ridge regularization, choosing the regularization parameters via 4-fold
cross-validation based on the average R2 value and retraining the model with
the entire training set with the best parameter.

For the LSTM model with no covariates we chose an architecture consist-
ing of one LSTM layer and two dense layers, equivalent to the LSTM model
with covariates. The training process was equivalent to the LSTM model with
covariates. For the DNN, we use a three-layer neural network. The number
of neurons was chosen via cross-validation on the validation set. The training
process was equivalent to the training of the LSTM. Since we output the entire
capacity degradation trajectory at once, we use the sum of L1 and L2 loss as
the loss function (this generated better results as measured by the validation
RMSE than either L1 or L2 loss separately). To calculate the RMSE, we took
the first time the capacity dipped below 80% capacity as the predicted EOL.

3 Applying our model to different chemistries

We present the majority of our results on a dataset composed of LFP batter-
ies. To show that our model is not inherently restricted to LFP, we present
preliminary results on NMC and NCA batteries from a dataset created by the
Sandia National Laboratories in Fig. S2. The dataset contains 40 batteries, (22
NMC batteries, 18 NCA batteries; 21 LFP batteries present in the dataset were
excluded as the goal of this study was to show results on non-LFP batteries)
which were randomly assigned to the training, validation and testing set. We
split the data into 50:25:25 for the training, validation and test set respectively.

We use an identical model to the one described in the main manuscript with
the only difference being the encoding of the charging schedule. All batteries
in this dataset were cycled with a one-step charging schedule but were also
discharged using different C-rates. We encode the charging strategy as a two-
dimensional vector with the charge and discharge rate. Otherwise, no changes
were made to the ML model.

Compared to the results on LFP batteries, we see in Fig. S2 that the model
learned to predict the rate of degradation but is less accurate in prediction.
This is likely due to the noise, including lasting upwards jumps of the capacity,
present in the data that can readily be seen from the true degradation trajec-
tories in Fig. S2 as well as the two different chemistries in the dataset.

In Fig. S2 we show the prediction of a single LSTM model on the test set
batteries. As the batteries were cycled to varying SOH end states and frequently
display ‘dips’ in the discharge capacity far below 80%, it is not possible to
calculate an RMSE on the EOL prediction.
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We note that in two cases, the prediction deviates significantly from the
actual trajectory from the start. In both cases, the battery experienced signif-
icant degradation in the first 100 cycles (down to 70% of the initial capacity)
and based on visual inspection seems to differ from the rest of the distribution.

If this is the case or if the uncertainty is very large, our model can easily
incorporate cycling the battery for longer to reduce the uncertainty.

We note that the accuracy of this model is unsatisfying for any serious de-
ployment. As is visible from the true capacity decline, the data is characterized
by many irregular outliers, ’jumps’, etc., likely due to experimental conditions,
resulting in reduced accuracy for the trained model. As such, the experiments
shown here are preliminary.
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Figure S2: Results on NMC and NCA batteries. The shaded area indicates the
uncertainty as the 5th to the 95th percentile.

4 Calendar-aged data

We use the battery cycling dataset from Severson et. al.7 The batteries were
procured at the same time and cycled in three batches. The third batch was
cycled approximately one year after the first two batches. Upon inspection of the
dataset, the calendar-aged batteries behave differently from the non-calendar-
aged batteries under the same environmental conditions, i.e. when cycled with
the same cycler and the same charging profile as shown in Fig. S3.

We trained and evaluated the models on the data from the first two batches.
The third batch was used as an additional test set to evaluate the model’s
capacity to adapt to data from a different distribution. We report the RMSE
for EOL prediction in the main manuscript. In Fig. S4, we also show degradation
patterns for the calendar-aged batteries. We note that the uncertainty predicted
by the model in most cases is higher than for the non-calendar-aged data and
encompasses the actual trajectory.
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Figure S3: Calendar-aged and non calendar-aged batteries behave differently
under the same environmental conditions.
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Figure S4: Prediction on previously unseen calendar-aged batteries. On the
calendar-aged batteries, the model shows higher uncertainty over the output
trajectories than on non-calendar-aged batteries.
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5 Input variables

Figure S5: Inputs for each cell used for the LSTM model. During the training
phase, the complete degradation curve is used, along with the covariates, i.e.
the feature differences between the threshold cycle (last cycle available for pre-
diction) and the 10th cycle. During the prediction phase, the LSTM model uses
the first cycles up to the threshold cycle (, along with the covariates, to predict
the full degradation curve of an unseen dataset. The RMSE error quantifies
how the prediction (target in green) deviates from the experimentally observed
end of life.
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Table S1: List of covariates used. I, V and Q correspond to the current, voltage
and cumulative capacity vectors of each cycle in A, V and Ah units, respectively.
The subscripts indicate whether the vectors span the charge (I>0), discharge
(I<0) or full cycle. The subscript th indicates the threshold cycle, i.e. the last
cycle available for prediction (e.g. 20, 50, 100).

Feature Associated covariate
Subtracted between the threshold

and the 10th cycle

Icharge max(Icharge)th −min(Icharge)10 Maximum current during charge
Icharge min(Icharge)th −min(Icharge)10 Minimum current during charge
Icharge mean(Icharge)th −mean(Icharge)10 Mean current during charge
Vgap

1 (Vgap)th − (Vgap)10 Voltage gap between charge and discharge
Qeff

2 (Qeff)th − (Qeff)10 Coulombic efficiency
Qcycle variance(Qth −Q10) Capacity vectors 3

6 Projecting forward

In Fig. S6 we show the standard deviation over the EOL for each number of
cycles dependent on the respective accuracy. Uncertainty over the output can
be used to decide whether a battery should be cycled longer to reach the desired
accuracy.

1mean(Vcharge)−mean(Vdischarge)
2max(Qdischarge)//max(Qcharge)
3Each vector is sampled at the same regular voltage intervals
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Figure S6: Addition to Section 3.4 - We present the mean standard deviation for
each number of cycles depending on the accuracy (presented as the percentage
of batteries with an absolute error less than 50.
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Figure S7: Visualization of the data split for the Severson et. al dataset
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