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1 Co-crystals in the CSD 

1.1 Creating the CSD co-crystals map 

 

Table S1. Co-crystals categorized based on the types of bonding. In the cases where more than one type of 
bonding was identified, the co-crystals were categorized considering i) the type of the interaction, e.g., if H-
bonding and π-π interactions where both found in a pair then the pair is categorized as H-bonded as this is 
stronger than π-π stacking ii) based on the distance between the bonds according to Mercury software, e.g., if 
both H-bonding and halogen bonding were found in a pair then the pair is categorized according to the shorter 
bond as it is the strongest. 

Type of bonding  Functional groups  Comments 

Hydrogen bonding  Both molecules have OH or NH 
or SH 

the donor atom D is any of N, 
O, or S, and the acceptor 
atom A is any of N, O, or S 

Halogen bonded  One molecule should have a 
halogen and the other a 

heteroatom 

D∙∙∙X‐A, where D is one of N, 
O, S, or Cl; X is either Br or I 

Weakly bound 
(π‐π stacking) 

At least one molecule of the 
pair has one aromatic ring 
without heteroatoms 

interactions that do not 
belong to any other category, 
mainly π‐π interconnected 

 

 

 

 

 

Figure S1. HOMO-LUMO gap in single molecule semiconductors. The orbital energies using PM6 were 

calculated for the list of the top 40 molecules reported in the SI of Nematiaram et al.2  

 



Table S2. Solvents and single atoms that were excluded from the molecular pairs during the co-crystal 
extraction. 

CC(Cl)(Cl)Cl  NC=O  CCNCC

OCC(F)(F)F  OC=O  F 

ClC=C(Cl)Cl  CCCCCCC  Br 

ClC(Cl)=C  CCCCCC  BrBr 

CCOC(CC)OCC  CC(C)COC(C)=O  [F] 

COCOC  CCCCCC(C)C  [O] 

ClCCCl  CC(C)O  [C] 

ClC=CCl  CC(C)OC(C)=O  [Cl] 

COCCOC  CC(C)OC(C)C  [Br] 

C1COCCO1  Cc1cccc(C)c1  [Xe] 

CCCCO  CO  [N] 

CCCCCO  COc1ccccc1  [H] 

CCCO  COC(C)=O  [I] 

COC(C)(C)OC  CCCCC(C)=O  [He] 

CCC(C)O  CC1CCCCC1  Cl 

CCOCCO  CCC(C)=O  ClCl 

COCCO  CC(C)CC(C)=O  I 

CC(C)CO  CC(C)C(C)=O  II 

CC1CCCO1  C1COCCN1  IIII

CC(C)CCO  CN(C)C(C)=O  IC(I)I 

CC(O)=O  CN1CCCC1=O  ICI 

CC(C)=O  CN([O])=O  C=O

CC#N  Cc1ccccc1C  C#C 

c1ccccc1  Cc1ccc(C)cc1  ClCl 

CCCCOC(C)=O  CCCCC  ClI 

ClC(Cl)(Cl)Cl  CCCOC(C)=O  COC 

Clc1ccccc1  c1ccncc1  OB(O)O 

ClC(Cl)Cl  O=S1(=O)CCCC1  S=C=S 

CC(C)c1ccccc1  COC(C)(C)C  O=S=O 

C1CCCCC1  C1CCc2ccccc2C1  O=C=O 

ClCCl  C1CCOC1  N#N 

CCOCC  Cc1ccccc1  C#C 

CC(C)NC(C)C  OC(=O)C(Cl)(Cl)Cl  CC#CC 

CN(C)C=O  OC(=O)C(F)(F)F  I[As](I)I 

CS(C)=O  O  NCCN 

CCO  OO  IC#CI 

CCOC(C)=O  C  CBr 

OCCO  S  BrI 

CCOC=O  N 

 

 

 



1.2 New Invariants of Crystal Structures: Pointwise Distance Distributions (PDD) 

To visualize the co-crystal space as a Minimum Spanning Tree in Figure 3, we applied new isometry 

invariants, which continuously quantify the similarity of any crystals using geometry.  

An isometry is any composition of translations, rotations or reflections. An isometry invariant of a crystal 

does not change under isometries applied to the input, and so is independent of transformations that do not 

affect the rigid structure of the crystal, as well as superfluous changes in representation like extensions of 

the unit cell.3 

The new isometry invariants are defined for any periodic sets, given by a finite motif of points which repeats 

periodically according to a lattice. A crystal structure can give rise to a periodic set either by taking a point 

in the center of each atom, or in the center of mass of each molecule.  

To construct the Pointwise Distance Distribution (PDD) invariant of a periodic set S with points p1, ..., pm 

in a unit cell, we first find for each motif point pi the row of ordered distances di1≤di2≤...≤dik to the first k 

nearest neighbors of pi in the infinite periodic set S.  

 

 

 
Figure S2. Computing the Pointwise Distance Distribution (PDD) for the unit square lattice. 

 
Two ordered rows of distances can be lexicographically compared as in a dictionary: a row (di1,di2,...,dik) is 

less than another row (d’i1,d’i2,...,d’ik) if, comparing two rows coordinate-wise, we find a strictly smaller 

distance in the former row, so dij<d’ij for some index j from {1,...,k}. 

After lexicographically sorting the rows, if any group of w rows are identical, replace them with one row 

and give the weight w/m (so unique rows have weight 1/m). Weights are canonically placed in the extra first 

column, giving a matrix with k+1 columns and no more than m rows.  

 



The resulting matrix is an isometry invariant [Ref 4, Thm 5], which was also proved to be complete at least 

in a general position, meaning that almost any two non-isometric periodic sets have different PDDs for large 

enough k [Ref 4, Thm 9]. We have no counter-examples to completeness and conjecture that PDD is complete 

for all periodic sets of points. 

To define a proper distance between PDDs, a base distance between rows of two PDDs (without weights) is 

required. This could be any metric between vectors. In the experiments we used the L_infinity, the maximum 

absolute difference between any corresponding elements of rows. Once a distance between rows is chosen, 

the Earth Mover’s Distance compares the weighted distributions of rows, finding an optimal matching 

between rows while respecting the weights, and the ‘cost’ for this optimal matching is a proper EMD metric 

satisfying all metric axioms and also the continuity under perturbations of points [Ref 4, Thm 7]. This 

distance has units of Angstroms, being a weighted sum of differences of inter-point distances. 

An invariant of periodic sets is continuous if small perturbations to the points of the input always result in a 

small distance between outputs. This continuity is needed to capture the notion of similarity between non-

isometric structures but is not satisfied by other invariants such as the reduced cell and is impossible with 

discrete invariants such as space groups, as in Figure S3 below.  

 

 
Figure S3. The Earth Mover’s Distance (EMD) between PDD of close structures is small [39b]. 

 

Figure S3 shows a unit square lattice with a point at (0.5,0.5) whose PDD consists of one row with the first 

four equal distances (1,1,1,1) shown in red, and a perturbed set obtained by extending the unit cell to 2x2 

and perturbing two points, giving the motif (0.5,0.4), (0.5,1.6), (1.5,0.5), (1.5,1.5). The initial matrix has two 

pairs of identical rows of distances: (0.8,1.005,1.005, 1.2) in blue and (1,1,1.005,1.005) in red. The final 



PDD has the two above rows with weight 0.5. In this case, the Earth Mover’s distance (with k=4) is equal to 

the average L_infinity distance between the initial row and two perturbed rows, so EMD=0.5(|0.8-1|+|1.005-

1|) = 0.102. 

 

 

Figure S4. The four motif points of the set in Figure S3 give two repeated sets of distances because of the 

reflectional symmetry in the horizontal line cutting the unit cell in half. Since both rows appear twice out of 

four total rows, they both have the weight 2/4=1/2.  

 

1.3 Creating the external validation datasets 

The external validation dataset was created from published work on experimental co-crystal screening. The 

SMILES strings were then canonicalized to be in same format as the CCDC canonical SMILES. The publicly 

available sources alongside with more details regarding the type of the reported co-crystals and the experimental 

methods tested are discussed below in chronological order: 

1. Karki et al, 2010 (Artemisinin dataset): An experimental screening was performed using liquid-assisted 

grinding (LAG) was performed using a short-list of 75 chemically diverse co-formers which are reported in the 

Supporting Information (Figure S1-S75).5 Only 2 out of the 75 co-formers resulted in observation of a co-crystal, 

forming a dataset of 73 negatives and 2 positive pairs. 

2. Grecu et al, 2014 (MEPS dataset): This work presents an ab initio co-crystal screening approach, namely 

molecular electrostatic potential surfaces (MEPS), which is validated using experimental co-crystal screens 

reported in literature. These screens involve 18 APIs tested with a wide range of co-formers.6 The names of the 

tested co-formers as well as the positive or negative outcome of the co-crystal screen were extracted from the 

Supporting Information of the paper. The MEPS paper reports 303 negative and 129 positive molecular pairs. 

However, as Wang et al stated,7 five pairs that have been reported as negatives which were experimentally 



proven to be positive in later publications. These pairs involve pyrazinecarboxamide with 3,5-dihydroxybenzoic 

acid (ACOPOA), oxalic acid (UZODUK), malonic acid (SIHRAE), adipic acid (KOVSAR), and glutaric acid 

(SIHQOR). Moreover, Grecu et al report two pairs molecular pairs which form salts instead of co-crystals i.e., 

indomethacin and N-methyl-D-glucamine, indomethacin and tromethamine. These two pairs were labelled as 

negative. Taking into consideration these corrections, the final MEPS dataset consists of 300 negatives and 132 

positive pairs. 

3. Wicker et al, 2017 (H-bond synthons dataset): A set of 20 target molecules was screened for co-

crystallization against 34 substituted aromatic acid and amide co-formers. Major consideration was given in the 

incorporation of the four main hydrogen-bond supramolecular synthons between the molecular pairs.8 The 

experimental screening involves solid state grinding and the co-crystal formation assessment was based upon 

changes in the PXRD pattern when accompanied in IR by a shift of the characteristic peaks traditionally involved 

in hydrogen bonding. In some cases, Differential Scanning Calorimetry (DSC) was also used to assess co-crystal 

formation. The whole process revealed a dataset of 408 negative and 272 positive molecular pairs. 

4. Mapp et al, 2017 (Propyphenazone dataset): Propyphenazone, an  analgesic drug with limited or no 

hydrogen bonding functionality, was screened against 89 co-formers.9 The experimental methods mainly used 

were solvent drop and neat grinding. Solution crystallization experiments were also performed for some of the 

combinations that were difficult to characterize after the grinding experiments. The co-crystal formation 

assessment was performed based on the PXRD patterns which are different from those of the parent materials. 

This process resulted in a dataset of 81 negative and 8 positive molecular pairs. 

5. Przybyłek et al, 2018 (Phenolic acids dataset): This work is related to the development of a theoretical co-

crystal screening model based on 1D and 2D molecular descriptors for phenolic acid co-crystals.10 A dataset 

containing both phenolic acid co-crystals and eutectics was created from the authors for validating their 

approach. The reported molecular pairs were extracted from the Supporting Information Table S1. A duplicate 

pair was found, namely paliperidone- hydroxybenzoic acid, which was removed, resulting in a dataset of 58 

negative and 167 positive molecular pairs.  



6. Przybyłek et al, 2019 (Dicarboxylic acids dataset): This work is related to the testing of a theoretical co-

crystal screening model based on 1D and 2D molecular descriptors for dicarboxylic acid co-crystals.11 A dataset 

containing both dicarboxylic acid co-crystals and eutectics was created from the authors. The reported molecular 

pairs were extracted from the Supporting Information Table S1. Two duplicate pairs were found, namely 2-

pyridone-adipic acid and exemestane-maleic acid, which were removed, resulting in a dataset of 104 negative 

and 606 positive molecular pairs. 

7. Sarkar et al, 2020 ((des)loratadine dataset): This work involves the experimental screening of two APIs, 

namely loratadine and desloratadine, against 41 potential co-formers.12 The experimental method used was 

solvent-assisted grinding and the co-crystallization assessment was based on the IR spectrum. If IR spectrum of 

the molecular mixture had a shift greater than 3 cm-1 in several modes, the mixture was characterized as a 

successful co-crystal, whereas consistent un-changed peaks were characterized as unsuccessful co-crystal. This 

process resulted in a dataset of 17 negative and 65 positive molecular pairs. 

8. Khalaji et al, 2021 (Linezolid dataset): Linezolid, an antibacterial drug, was experimentally screened against 

19 different co-formers. The experimental technique used was liquid-assisted grinding (LAG) testing three 

different solvents, i.e., methanol, toluene and water. The co-crystal formation was assessed from the PXRD 

patterns.13 This process resulted in 9 negative and 10 positive molecular pairs. 

9. Vriza et al, 2021 (Pyrene dataset): Pyrene was screened against 6 polyaromatic hydrocarbons for the 

formation of π-π co-crystals. The co-crystallization reactions were performed after dissolving the molecular 

mixtures in dicloromethane under 45oC with continuous stirring. The co-crystals started forming after slow 

evaporation in open air. The co-crystal formation was verified by the PXRD patterns.14 This process resulted in 

4 negative and 2 positive molecular pairs. 

10. Devogelaer et al, 2021 (Praziquantel dataset): Praziquantel, an anthelmintic drug, was screened against 30 

co-formers.15 The experimental techniques used were liquid assisted grinding and solvent evaporation. The co-

crystal formation was verified by the PXRD patterns. This process resulted in 18 negative and 12 positive 

molecular pairs. 



11. Wu et al, 2021 (Mop dataset): In this work, 2-amino-4,6-dimethoxypyrimidine (MOP) was experimentally 

screened with 63 co-formers.16 The experimental techniques used were liquid assisted grinding and the resulted 

powders were characterized by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) 

to identify possible solid forms. This process resulted in 22 negative and 41 positive molecular pairs. 

All the datasets were further combined and the duplicate molecular pairs were removed to create the final 

external validation database.  

 

1.4 Molecular Pair representations using pretrained models 

The two pretrained with self-supervised learning networks which have been used to learn the molecular 

fingerprints of the molecular pairs are analysed below: 

1.4.1 GNN pretrained model 

The GNN model is pretrained with Attribute Masking, where the input node/edge attributes, i.e., the atom type 

in the molecular graph, are randomly masked with special masked indicators. The training task of the GNN 

model is to predict the masked nodes based on the neighboring structure (Figure S5).17 The pretrained GNN was 

acquired from the following repository: http://snap.stanford.edu/gnn-pretrain.  

 

Figure S5. Visualization of the attribute masking technique 

For the node level self-supervised pretraining Hu et al used 2M unlabelled molecules from ZINC15 database. 

The model was trained with Adam optimizer with a learning rate of 0.001 for 100 epochs using a batch size of 

256. 

 



1.4.2 ChemBERTa pretrained model 

ChemBERTA uses the Byte-Pair Encoder (BPE) tokenization strategy as provided from the HuggingFace 

tokenizers library.18 BPE is a hybrid between character and word-level representations, which allows for the 

handling of large vocabularies in natural language corpora. This tokenization strategy finds the best word 

segmentation by iteratively and greedily merging frequent pairs of characters. 

 

2 Machine learning procedures 

 

Table S3. Hyperparameters optimization. 

Hyperparameters Values range 

Learning rate [10-2 ,10-3, 10-4, 3*10-4, 10-5] 

Batch size [32, 64, 128, 256] 

Number of epochs  [10, 50, 100] 

Weight decay [10-3, 10-4 , 10-5 , 10-6 ] 

Dropout [0.1, 0.2, 0.3, 0.4] 

 

 

 

 

 



2.1 Hyperparameters selection with wandb 

Figure S6. Hyperparameter optimization using the Mordred library for extracting the molecular features. The 

optimal hyperparameters identified with the wandb library screening are the following: learning rate = 1e-04, 

number of epochs = 100, batch size =128, dropout=0.1 and weight decay =1e-05. 

 

Figure S7. Hyperparameter optimization using the Morgan Fingerprint. The optimal hyperparameters identified 

with the wandb library screening are the following: learning rate = 1e-03, number of epochs = 100, batch size 

=64, dropout=0.1 and weight decay =1e-05.  

 

 



Figure S8. Hyperparameter optimization using the NLP (ChemBERTa) fingerprint. The optimal 

hyperparameters identified with the wandb library screening were : learning rate = 1e-05, number of epochs = 

100, batch size =64, dropout=0.1 and weight decay =1e-04. 

 

 

2.2 Algorithm performance  

2.2.1 Algorithms performance per dataset 

 

Figure S9. Models accuracy per dataset 

 

 



 

Figure S10. Models accuracy on an external dataset (MOP dataset) 

 
 

 

 

 

 

 

 



2.3 Final models 

 

 

Figure S11. Scores distribution of the different models on the external validation sets. The real positives 

(orange bars) have higher scores than the true negatives (blue bars) for all four models. A better 

discrimination between the two classes is achieved for the ECFP4 and GNN models. 

 

from sklearn.metrics import roc_curve 
def get_threshold(labels, scores): 
  fpr, tpr, thresholds = roc_curve(labels, scores) 
  gmeans = np.sqrt(tpr * (1 - fpr)) 
  ix = np.argmax(gmeans) 
  threshold = thresholds[ix] 
  return threshold 
 

Figure S12. Code explaining the threshold selection using the Receiver Operating Characteristic (ROC) 
curve from the scikit-learn library.19 The ROC curve features the relationship between the true positive and 
the false positive rate. The optimal threshold is the point where the true positive rate is maximized whilst the 
false positive rate is minimized. 



 

 

Figure S13. Confusion matrices of the four different models based on the representation techniques.  

 

 

 

 

 

 



 

2.4 Comparison with other methods per API 

Our two best models were compared to other methods for co-crystal screening which report their accuracy on 
the external validation data. The reported labelled from the other methods are shown in Table S3. 

Table S3. Reported AUC from other methods tested on the APIs 

API  MEPS*  Wang**  COSMO‐RS*** 

Piracetam   0.93  0.895

Paracetamol  0.7676  0.543 0.6

Diclofenac  0.75  0.857

Pyrazinamide  0.841  0.876

Acetazolamide  0.794  0.311

Indomethacin  0.68  0.658 0.54

Drug_candidate  0.792  0.986

Furosemide  0.65  0.894

Nalidixicacid  1  0.948

3‐Cyanophenol  0.76  0.911 0.98

4‐Cyanophenol  0.89  0.964 1

3‐Cyanopyridine  0.94  1

4‐Cyanopyridine  0.95  0.911 0.96

Benzamide  0.4  0.738 0.71

Itraconazole  0.8125  0.844 1

Bicalutamide  0.68  0.688 0.94

Meloxicam  0.633  0.733 0.67

Nicotinamide  1  1 0.92

 

*Reported in the paper: https://pubs.acs.org/doi/abs/10.1021/cg401339v  

**Reported in the paper: https://pubs.acs.org/doi/10.1021/acs.cgd.0c00767  

***Reported in the paper: https://europepmc.org/article/med/32969658 

 

For direct comparison with the CCGnet model the github repository https://github.com/Saoge123/ccgnet was 

used only for those APIs that are not contained in the training set of CCGnet. 

 

 

 

 



 

2.5 Interpretability with Shapley 

 

Figure S14. Shapley additive explanations categorized according to the type of interactions between 

the molecular pairs. Each molecule is represented as a vector containing the Mordred descriptors. The 

notation _1 and _2 indicate the first or second molecule in the pair. a) global interpretation of the whole 

co-crystals dataset and local interpretations of b) hydrogen bonded pairs, c) halogen bonded pair, d) 

weakly bonded molecular pairs. The pink colour refers to high values of the molecular features and the 

blue to low values, whereas the x axis refers to the model’s scores being high or the right and low on 

the left. 



As for the co-crystal formation the type of interactions among the molecular pairs plays a crucial role, 

we got insights for what affected co-crystallization based on which bonding group the pairs belong to. 

Molecular descriptors representation is straight-forward and the weight of each feature can be directly 

extracted with SHAP. According to Figure S11a representing the Shapley global interpretation, we can 

observe that as the dataset is dominated by H-bond interactions the most important features are related 

to the OH group (MAXsOH,MINsOH) and the N group (MAXaaN, MinaaN). According to the Shapley 

local interpretations we can derive i) the important features for hydrogen bonded pairs (Figure S11b) 

where the existence of OH (MAXsOH,MINsOH), NH2 (MAXsNH2, MINsNH2) and N groups 

(MAXaaN, MinaaN) are highlighted as the most important contributing factors, ii) the dominating 

features for the halogen bonded co-crystals (Figure S11) are those related to the existence of F groups 

(MINsF, MAXsF) and iii) in the case of weak interactions the existence of electronegative groups such 

as terminal triple bonded N (≡N)  groups (MAXtN, MINtN) or F groups (MINsF) was found to be the 

most important for the formation of that type of weak bonding. It can be concluded that the top important 

descriptors of each category are mostly related to the existence of some functional groups in the 

molecules that form the pairs and not a physical property. That could be the reason why using the 

molecular fingerprints for the co-crystallization prediction shown a good performance in the tested 

systems.  

 

 

 

 

 

 

 

 

 

 



2.6 Using the GUI  

The code is publicly available at https://github.com/lrcfmd/MolecularSetTransformer, which also 

includes a web interface for enabling the wider use of our pretrained models. See Figures S14-S16 for 

screenshots demonstrating the use of the wed interface. 

 

Figure S15. The user can insert the SMILES strings of the molecular pairs on the empty boxes on the 

left of the main screen. Then the user can select the desired pretrained model between the ECP4 and 

GNN representation. By pressing  the predict button, the selected model will calculate the score and 

uncertainty of each given pair and print the results on the main page. 

 

 



 

 

 

 

 

Figure S16. A downloadable table is printed reporting the given SMILES strings of the two molecules, 

the score and the uncertainty of each pair. 

 



 

Figure S17. The ranking plot is shown for the user given molecular pairs (default dataset: artemisinin). 

The points with high uncertainty are colored in red. After clicking on each point the image of the 

molecules is printed on the main page. 
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