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1. Retrosynthesis-based score for PC and NPNP datasets 
 

Supplementary Table 1. Statistics for different scores computed on the PC and NPNP datasets using 

as ground truth the class of the compound (PC vs NPNP) or the retrosynthesis-based score 

(ManifoldSA). 

 
PC vs 
NPNP 

ManifoldSA 

 
MCC PCC SRCC MCC 

SAScore 0.86 0.80 0.79 0.73 

SCScore 0.18 0.13 0.12 0.23 

SYBA 0.75 0.63 0.65 0.55 

RAscore 0.78 0.81 0.77 0.72 

IsolationForest 
(Supplementary 

Section 10) 
0.77 0.66 0.74 0.63 

CoPriNet 0.82 0.63 0.66 0.58 

Note: PC: purchasable compounds; NPNP: Non-purchasable natural products; PCC: Pearson correlation coefficient; SRCC: Spearman’s rank 

correlation coefficient; MCC: Matthew's correlation coefficient 

2. Comparison of testing datasets 
We characterized the differences between the set of PC vs NPNP compounds and PC vs Virtual 

Compounds by computing the distributions of several QED properties and also by comparing the 

regions of the chemical space that each dataset spans using Morgan fingerprints and dimensionality 

reduction techniques. From these calculations, it seems clear that PC compounds tend to be smaller 

than NPNP but with less aromatic rings and larger polar surface area values. The 2D representation 

of the chemical space also show non-overlapping regions, showing that the datasets are different 

from a fingerprint perspective. The same can be inferred from the 2D representation of the chemical 

space of the Virtual Compounds vs PC dataset. On the other hand, the Virtual Compounds vs PC QED 

descriptor distributions are similar except for the size. This result is perhaps no surprising as the 

main goal of commercial catalogues is to recapitulate molecules with good drug-like properties that 

are biased towards fixed values of these descriptors. However, Virtual Compounds exhibit one 

important difference with respect PC compounds: they tend to be far more expensive. This makes 

Virtual Compounds ideal to study the behaviour of CoPriNet when trying to predict prices that are 

systematically shifted with respect to the values of the training set. 



 

Supplementary Figure 1. CoPriNet test compound dataset (PC, blue) is substantially different from the test set of Non-Purchasable Natural Products (NPNP, 

orange) and the Virtual compounds (red). a-p) Histograms of QED descriptors for PC and NPNP compounds (a-h) and PC and Virtual compounds (i-p). Bottom, 

PCA + t-SNE 2D projection of the Morgan fingerprints (radius 2) of the PC and NPNP compounds (q) and PC and Virtual compounds (r). 

  



3. Synthetic similarity in structurally similar compounds 
It is well known that structurally similar compounds may have quite different synthetic accessibilities 

(see Supplementary Figure 2 and Supplementary Table 2), causing complexity-based measurements 

such as SAscore to underperform. However, in many benchmarks, such as the one conducted in this 

work, SAscore exhibits a decent performance, thus indicating that this problem is not so frequent. 

With the aim of shedding light to this question, we counted the number of compound pairs 

contained in our test dataset, that while being highly similar, exhibit totally different retrosynthesis 

scores (one regarded as synthesizable and the other as non-synthesizable). In our testing set, only 14 

molecule pairs out of the 257 pairs that exhibited Tanimoto similarity > 70%, exhibited this duality. 

Although this number might suggest that the high similarity-different synthesizability scenario is 

infrequent, we acknowledge that our dataset, a random subset of a commercial catalogue, may not 

be representative of many use cases. Thus, we performed an additional experiment in which we 

compute the same statistics for a dataset obtained computing similarity searches for 100 randomly 

sampled catalogue compounds. This scenario represents the typical use case in which we are 

interested in finding analogues of a compound of interest. In this case, and similarly to the previous 

experiment, we only found two examples for which some of the analogues were much more difficult 

to synthesize than the query molecule. Based on these two results, it seems plausible that this 

problem, while overly concerning, is infrequent for catalogue compounds, which could explain the 

perceived reliable performance of methods like SAscore and their potential risks when used with de 

novo generated molecules.    

 

 

Supplementary Figure 2. Three examples of pairs of highly similar molecules with opposite synthesizability. 

Supplementary Table 2. Different SA measurements for highly similar molecules with opposite synthesizability. 

Molecule ManifoldS
A 

IsolationF
orest 

SYBA SAscore RAScore SCScore CoPriNet 

A1 0.19 0.14 -7.91 3.83 0.82 3.63 4.42 

A2 0.75 0.14 6.10 3.74 0.89 4.52 4.36 

B1 0.00 0.16 31.61 1.91 1.00 1.88 2.84 

B2 0.92 0.16 37.52 1.75 1.00 2.02 2.98 

C1 0.00 0.15 1.27 2.21 0.99 2.48 3.13 

C2 0.92 0.15 6.33 2.20 0.99 2.47 2.88 

 



4. SA measurements for Gao and Coley datasets 
In this section we employed some of the datasets compiled by Gao and Coley (Gao and Coley 2020) 

and we complemented them by computing additional SA scores that were not studied in the original 

publication. Overall, the SAscore better reproduced retrosynthesis predictions, but performance 

varies depending on the dataset. 

 

 

Supplementary Figure 3. Scores distributions for all datasets considered in Gao & Coley (Gao and Coley 2020) classified according to retrosynthesis 

predictions. a-e) Synthetic accessibility/feasibility scores computed with SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), SYBA (Voršilák et 

al. 2020), RAscore (AZ_RA) (Amol Thakkar et al. 2021), and proposed IsolationForest. f) ROC curves for the scores a-e using as ground truth retrosynthesis 

predictions. 

 



 

Supplementary Figure 4. Scores distributions for the ZINC dataset obtained from Gao & Coley (Gao and Coley 2020)classified according to retrosynthesis 

predictions. a-e) Synthetic accessibility/feasibility scores computed with SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), SYBA (Voršilák et 

al. 2020), RAscore (AZ_RA) (Amol Thakkar et al. 2021), and proposed IsolationForest. f) ROC curves for the scores a-e using as ground truth retrosynthesis 

predictions. 



 

Supplementary Figure 5. Scores distributions for the Sheridan et al. (Sheridan et al. 2014) dataset obtained from Gao & Coley (Gao and Coley 2020) and 

classified according to retrosynthesis predictions. a-e) Synthetic accessibility/feasibility scores computed with SAscore (Ertl and Schuffenhauer 2009), SCScore 

(Coley et al. 2018), SYBA (Voršilák et al. 2020), RAscore (AZ_RA) (Amol Thakkar et al. 2021), and proposed IsolationForest. f) ROC curves for the scores a-e 

using as ground truth retrosynthesis predictions. 



 

Supplementary Figure 6. Scores distributions for the MOSES dataset obtained from Gao & Coley (Gao and Coley 2020) and classified according to 

retrosynthesis predictions. a-e) Synthetic accessibility/feasibility scores computed with SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), 

SYBA (Voršilák et al. 2020), RAscore (AZ_RA) (Amol Thakkar et al. 2021), and proposed IsolationForest. f) ROC curves for the scores a-e using as ground truth 

retrosynthesis predictions. 



 

Supplementary Figure 7. Scores distributions for the guacamol dataset obtained from Gao & Coley (Gao and Coley 2020) and classified according to 

retrosynthesis predictions. a-e) Synthetic accessibility/feasibility scores computed with SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), 

SYBA (Voršilák et al. 2020), RAscore (AZ_RA) (Amol Thakkar et al. 2021), and proposed IsolationForest. f) ROC curves for the scores a-e using as ground truth 

retrosynthesis predictions 



 

Supplementary Figure 8. Scores distributions for the GDB dataset obtained from Gao & Coley (Gao and Coley 2020) classified according to retrosynthesis 

predictions. a-e) Synthetic accessibility/feasibility scores computed with SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), SYBA (Voršilák et 

al. 2020), RAscore (AZ_RA) (Amol Thakkar et al. 2021), and proposed IsolationForest. f) ROC curves for the scores a-e using as ground truth retrosynthesis 

predictions. 

 

 



 

Supplementary Figure 9. Scores distributions for the goal_hard_cwa dataset obtained from Gao & Coley (Gao and Coley 2020) classified according to 

retrosynthesis predictions. The dataset contains de novo generated molecules optimized against multi-property objective functions and SAscore. a-e) 

Synthetic accessibility/feasibility scores computed with SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), SYBA (Voršilák et al. 2020), RAscore 

(AZ_RA) (Amol Thakkar et al. 2021), and proposed IsolationForest. f) ROC curves for the scores a-e using as ground truth retrosynthesis predictions.  

 

 



 

Supplementary Figure 10. Scores distributions for the goal_hard_cwo dataset obtained from Gao & Coley (Gao and Coley 2020) classified according to 

retrosynthesis predictions. The dataset contains de novo generated and optimized molecules against different multi-property objective functions. a-e) 

Synthetic accessibility/feasibility scores computed with SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), SYBA (Voršilák et al. 2020), RAscore 

(AZ_RA) (Amol Thakkar et al. 2021), and proposed IsolationForest. f) ROC curves for the scores a-e using as ground truth retrosynthesis predictions 

  



5. SA measurements correlation 

 

Supplementary Figure 11. Spearman’s rank correlation coefficient (absolute value) for different SA measurements (SAscore (Ertl and Schuffenhauer 2009), 

SCScore (Coley et al. 2018), SYBA (Voršilák et al. 2020), RAscore (Amol Thakkar et al. 2021))  for the dataset of purchasable compounds (PC) and non-

purchasable natural products (NPNP). The different scores exhibit quite different behaviour depending on the dataset leading to different most correlated 

scores. 

  



6. Comparison with other approaches 
 

Supplementary Table 3. Retrosynthesis-based price estimation compared to CoPriNet 

 Original test set Virtual test set  
PCC SRCC PCC SRCC 

CoPriNet 0.77 0.80 0.27 0.56 

Min building blocks price 0.73 0.75 0.52 0.68 

Best building blocks price 0.85 0.87 0.62 0.75 

 

Supplementary Figure 12. QS$R model performance when trained on the CoPriNet training set. a-b) Density heatmap for CoPriNet test set compound prices 

against QS$R model (a) and CoPriNet model (b) predictions when both are trained on the CoPriNet training set. Colour bar for (a-b) is shown in c). Compound 

prices are displayed as natural logarithm of catalogue prices. The absolute value of the Spearman’s Correlation Coefficient is displayed in parenthesis (SRCC). 

d) Training curves for the CoPriNet model (blue and green) and the QS$R model (orange and red). Training loss (blue and orange) and validation loss (green 

and orange) are potted against the step number. 

7. CoPriNet generalizability to virtual compounds. 
CoPriNet predictions and SA measurements were computed for the testing dataset of virtual 

compounds obtained from the Mcule catalogue. The catalogue prices for these compounds are 

estimations provided by the vendors and exhibit quite a different distribution (see Supplementary 

Figure 13 a) compared to the distribution of prices in CoPriNet training/validation/testing sets, with 

most of the compounds showing larger prices. This is not surprising since virtual compounds need to 

be synthesized and success is not guaranteed. Additionally, the fact that different vendors have 

different price estimation protocols makes the problem even harder. 

From direct inspection of Supplementary Figure 13, it is obvious that for this dataset the relationship 

between price and SA is far weaker as there is a massive drop in correlation for all scores. 

Nevertheless, CoPriNet correlation stills remains well above the other methods. Looking at 

Supplementary Figure 13 f, it can be observed that CoPriNet predictions systematically 

underestimate prices, which is also not surprising as the price distribution of the training set is 

shifted towards lower prices. Although this systematic bias in the predictions for this set of 



compounds prevents CoPriNet from obtaining accurate price estimations, its impact in compound 

ranking by price is far less severe, as the smaller drop in SRCC demonstrates. Indeed, as 

Supplementary Figure 14 shows, much of this lack of linear correlation is caused by the differences 

in compound prices depending on the vendors. However, within a particular vendor, CoPriNet 

predictions also exhibit good linear correlation, suggesting generalizability beyond the training 

dataset. 

It is possible that the reason behind CoPriNet under-pricing virtual compounds are the extra fees 

that are applied to compounds never synthesized before. We have, therefore, also trained a model 

using a training set of virtual compounds only. This model is able to achieve excellent performance 

for the test dataset of virtual compounds (see Supplementary Figure 13 bottom), with a SRCC of 0.9. 

However, when evaluated on the PC dataset, the model tends to overprice all compounds and the 

overall performance is far worse (SRCC=0.07), which suggest poor generalization. Given these 

results, an alternative approach aimed to generalize better for the two scenarios could be combining 

a model trained with in-stock compounds and a model trained with virtual compounds, or a model 

trained on a mixture of both virtual and in-stock compounds. The challenge of this approach would 

be to define the weight for each model or dataset and how to properly evaluate the performance, 

since the proportion of each compound type is not known in advance. One way to circumvent this 

problem for a particular user could be to recalibrate such weights given its historical data. 

Supplementary Table 4. Absolute value of the Pearson’s correlation coefficient (PCC) and the Spearman’s rank correlation coefficient (SRCC) for CoPriNet and 

SA measurements against estimated price for the testing dataset of virtual compounds obtained from the Mcule catalogue.  

 Original test set Virtual test set  
PCC SRCC PCC SRCC 

CoPriNet 0.77 0.80 0.27 0.56 

SAscore 0.16 0.16 0.03 0.00 

RAscore 0.16 0.16 0.03 0.05 

SCScore 0.32 0.32 0.19 0.32 

SYBA 0.35 0.41 0.02 0.28 



 

Supplementary Figure 13. Top. Synthetic accessibility scores correlate poorly with virtual compound price while CoPriNet prediction exhibits better 

correlation. a) Histogram of the compound prices of the virtual compounds test set; b-e) Density heatmaps for CoPriNet virtual compounds test set compound 

prices against four different SA scores: SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), SYBA (Voršilák et al. 2020) and RAscore 

(Amol Thakkar et al. 2021); f) Density heatmap for CoPriNet virtual compounds test set compound prices against CoPriNet predictions. Compound prices are 

displayed as natural logarithm of catalogue prices. The absolute value of the Spearman’s Rank Correlation Coefficient is displayed in parenthesis (SRCC). g) 

Colour bar showing percentages of the total test size per bucket. Bottom. CoPriNet model trained on virtual compounds can accurately predict virtual 

compound prices (left), but it fails to predict prices for in-stock compounds (PC, right). 



Supplementary Figure 14. Different vendors use different pricing strategies for virtual compounds, which makes price prediction challenging, but has little 

impact for compound ranking within a given catalogue. Compound price, in $/mmol, against CoPriNet predictions for the compounds included in the test set 

of virtual compounds (a, same data as in Supplementary Figure 13) and the set of in-stock compounds (e, PC), coloured by vendor. For visualization reasons, 

only the top-10 most frequent vendors have been displayed. Subplots b-d display the per-vendor distributions of compound molecular weight, SAscore and 

number of rotatable bonds for the virtual compounds set and f-h for the set of in-stock compounds.

 

Supplementary Figure 15. Linear model combining SA scores do not predict compound prices accurately. a) linear regression model trained on purchasable in-

stock compounds and evaluated on the CoPriNet test set (PC). b) linear regression model trained on virtual compounds and evaluated on the CoPriNet virtual 

compounds test set. Linear models combine four SA scores: SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), SYBA (Voršilák et al. 2020) and 

RAscore (Amol Thakkar et al. 2021). 

8. CoPriNet generalizability over time. 
CoPriNet predictions and SA measurements were computed for the testing dataset comprised of in-

stock compounds that were present on the June 2021 Mcule database release but that were not 



present in the March 2021 release, the one used for training. Supplementary Figure 16  shows that, 

as in all other experiments, CoPriNet scores (f) correlate much better with compound price than any 

other SA score (b-e). Although it is true that the correlation is not as strong as in the default testing 

set (PCC of 0.65 vs 0.77 and SRCC 0f 0.54 vs 0.81), it is important to highlight that prices are not 

static values and tend to change over time, as shown in Supplementary Figure 16  (g) for the 

compounds that were present in both releases. As a consequence, drops in performance are 

expected based on the evolution of compound prices. 

 

Supplementary Figure 16.  CoPriNet predictions are relatively robust over time, as shown when evaluated on the temporal test set that is comprised of 

molecules that were added to the June 2021 Mcule release and were not present in the March 2021 release. a) Histogram of the temporal test compound 

prices (compounds that were added to the new version of the catalogue); b-e) Density heatmaps for the temporal test set compound prices against four 

different SA scores: SAscore (Ertl and Schuffenhauer 2009), SCScore (Coley et al. 2018), SYBA (Voršilák et al. 2020) and RAscore (Amol Thakkar et al. 2021); f) 

Density heatmap for the temporal test set compound prices against CoPriNet predictions. Compound prices are displayed as natural logarithm of catalogue 

prices. The absolute value of the Spearman’s Rank Correlation Coefficient is displayed in parenthesis (SRCC). h) Colour bar for subplots b-g displaying the 

percentage of the temporal test dataset in each bucket. 



9. GNN hyperparameters 
The hyperparameters of our method were selected by random search using the validation error as 

optimization goal. The model showed robustness against hyperparameter choices. The selected 

hyperparameters and the candidate values were: 

• Number of layers: 10 [4 ,6, 10] 

• PNA: 

o Node channels: 75 [25, 50, 75, 100] 

o Edge channels 50 [25, 50, 75, 100] 

o Towers: 5 [1, 5] 

• Dense layers: 2 [1,2,3] 

o Units: 50 [25, 50, 75, 100] 

o Dropout 0 [0, 0.5] 

o Set2set: Steps: 6 [4, 6] 

10. Purchasability as a ground truth for SA 
While the correlation between SA scores and price is weak, main text Figure 3 shows that more 

expensive compounds tend to be less synthetically accessible. This suggests that the purchasability 

of the compounds, and more specifically their prices, could be reasonable criteria for compiling 

datasets for machine learning-based SA estimators. Such ground truth could be regarded as a 

refined version of the presence in a commercial catalogue that is exploited in the SYBA method 

(Voršilák et al., 2020). However, with the aim of avoiding the usage of artificially generated negative 

compounds, instead of a binary classifier, we have employed a simple anomaly detection method, 

the isolation forest (Liu et al., 2008). Anomaly detection methods allow to identify instances that 

differ from the training examples, thus only requiring a dataset of positive compound. This allows a 

better understanding on the ground truth data impact on the results. 

We implemented an isolation forest model (Liu et al., 2008) with 2000 trees, each trained on a 

random 10% subset of the data. The training set is constructed as a random subset of 1M 

inexpensive in-stock compounds (price < 250$/g) extracted from the Mcule dataset. This dataset is 

comparable in size to the SYBA training set. The price threshold selection has only a minor impact in 

the model performance (see Supplementary Table 5). Compounds are encoded using 209 

descriptors computed with RDKit version 2020.09.1 (RDKit) (see Supplementary Material 6 for a 

complete list). 

Our best performing isolation forest, trained on compounds with prices <$250/g, is able to compete 

with most of the studied SA scores. Thus, when evaluated on the SYBA testing set, the most similar 

approach, we measured a ROC AUC of 0.99, comparable to the one reported for SYBA. More 

interestingly, as shown in Supplementary Table 1, the isolation forest produces score distributions 

for the NPNP and PC datasets that are as separable as in some of the other methods. Indeed, for this 

experiment, the isolation forest score correlates better with the retrosynthesis-based score than the 

SCScore or SYBA. Similar results are obtained when evaluated in additional dataset, as displayed in 

Supplementary Material Section 3, which suggests that this simple proof-of-concept is able to 

compete with state-of-the-art approaches. 

 

 



Supplementary Table 5. Correlation for the IsolationForest scores against the retrosynthesis-based score ManifoldSA on 

the validation set depending on the composition of the training set. It is important to note that less than 5% of the 

compounds included in the datasets have prices >500$/g, thus the difference between threshold 500 and infinite is minor. 

 Validation set 

Price < PCC SRCC 

50 0.733 0.618 

250 0.738 0.623 

500 0.737 0.615 

Inf 0.734 0.616 
 

Supplementary Table 6. Name of the descriptors used for the anomaly detection approach (IsolationForest). 

MaxEStateIndex HeavyAtomCount PEOE_VSA4 fr_benzene 

MinEStateIndex NHOHCount PEOE_VSA5 fr_benzodiazepine 

MaxAbsEStateIndex NOCount PEOE_VSA6 fr_bicyclic 

MinAbsEStateIndex 
NumAliphaticCarboc

ycles 
PEOE_VSA7 fr_diazo 

qed 
NumAliphaticHetero

cycles 
PEOE_VSA8 fr_dihydropyridine 

MolWt NumAliphaticRings PEOE_VSA9 fr_epoxide 

HeavyAtomMolWt 
NumAromaticCarboc

ycles 
SMR_VSA1 fr_ester 

ExactMolWt 
NumAromaticHetero

cycles 
SMR_VSA10 fr_ether 

NumValenceElectrons NumAromaticRings SMR_VSA2 fr_furan 

NumRadicalElectrons NumHAcceptors SMR_VSA3 fr_guanido 

MaxPartialCharge NumHDonors SMR_VSA4 fr_halogen 

MinPartialCharge NumHeteroatoms SMR_VSA5 fr_hdrzine 

MaxAbsPartialCharge NumRotatableBonds SMR_VSA6 fr_hdrzone 

MinAbsPartialCharge 
NumSaturatedCarboc

ycles 
SMR_VSA7 fr_imidazole 

FpDensityMorgan1 
NumSaturatedHetero

cycles 
SMR_VSA8 fr_imide 

FpDensityMorgan2 NumSaturatedRings SMR_VSA9 fr_isocyan 

FpDensityMorgan3 RingCount SlogP_VSA1 fr_isothiocyan 

BCUT2D_MWHI MolLogP SlogP_VSA10 fr_ketone 

BCUT2D_MWLOW MolMR SlogP_VSA11 fr_ketone_Topliss 

BCUT2D_CHGHI fr_Al_COO SlogP_VSA12 fr_lactam 

BCUT2D_CHGLO fr_Al_OH SlogP_VSA2 fr_lactone 

BCUT2D_LOGPHI fr_Al_OH_noTert SlogP_VSA3 fr_methoxy 

BCUT2D_LOGPLOW fr_ArN SlogP_VSA4 fr_morpholine 

BCUT2D_MRHI fr_Ar_COO SlogP_VSA5 fr_nitrile 

BCUT2D_MRLOW fr_Ar_N SlogP_VSA6 fr_nitro 

BalabanJ fr_Ar_NH SlogP_VSA7 fr_nitro_arom 

BertzCT fr_Ar_OH SlogP_VSA8 
fr_nitro_arom_nonorth

o 

Chi0 fr_COO SlogP_VSA9 fr_nitroso 

Chi0n fr_COO2 TPSA fr_oxazole 

Chi0v fr_C_O EState_VSA1 fr_oxime 

Chi1 fr_C_O_noCOO EState_VSA10 fr_para_hydroxylation 

Chi1n fr_C_S EState_VSA11 fr_phenol 



Chi1v fr_HOCCN EState_VSA2 
fr_phenol_noOrthoHb

ond 

Chi2n fr_Imine EState_VSA3 fr_phos_acid 

Chi2v fr_NH0 EState_VSA4 fr_phos_ester 

Chi3n fr_NH1 EState_VSA5 fr_piperdine 

Chi3v fr_NH2 EState_VSA6 fr_piperzine 

Chi4n fr_N_O EState_VSA7 fr_priamide 

Chi4v fr_Ndealkylation1 EState_VSA8 fr_prisulfonamd 

HallKierAlpha fr_Ndealkylation2 EState_VSA9 fr_pyridine 

Ipc fr_Nhpyrrole VSA_EState1 fr_quatN 

Kappa1 fr_SH VSA_EState10 fr_sulfide 

Kappa2 fr_aldehyde VSA_EState2 fr_sulfonamd 

Kappa3 fr_alkyl_carbamate VSA_EState3 fr_sulfone 

LabuteASA fr_alkyl_halide VSA_EState4 fr_term_acetylene 

PEOE_VSA1 fr_allylic_oxid VSA_EState5 fr_tetrazole 

PEOE_VSA10 fr_amide VSA_EState6 fr_thiazole 

PEOE_VSA11 fr_amidine VSA_EState7 fr_thiocyan 

PEOE_VSA12 fr_aniline VSA_EState8 fr_thiophene 

PEOE_VSA13 fr_aryl_methyl VSA_EState9 fr_unbrch_alkane 

PEOE_VSA14 fr_azide FractionCSP3 fr_urea 

PEOE_VSA2 fr_azo PEOE_VSA3 nStereo 

fr_barbitur 
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