
1

Electronic Supporting Information (ESI)

FEREBUS: A High-Performance Modern Gaussian Process 

Regression Engine

Matthew Burn and Paul Popelier

Department of Chemistry, The University of Manchester, Manchester, M13 9PL, (Great) Britain

*To whom correspondence should be addressed:

Phone: +44 161 3064511. E-mail: pla@manchester.ac.uk

Table of Contents
1 FEREBUS BENCHMARKS 2

1.1  HARDWARE 2
1.2  OPTIMISATION PARAMETERS 2
1.3  TIMINGS 3

2 KERNEL INTERPRETER 4

3 LIKELIHOOD FUNCTIONS 6

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2022

mailto:pla@manchester.ac.uk


2

1 FEREBUS Benchmarks
1.1 Hardware
Table S1. CPU Node Architecture used.

Architecture Skylake
CPU 2×16-core Intel Xeon Gold 6130 @ 2.10GHz
Memory 192Gb RAM

Table S2. GPU Node Architecture used.

Architecture Skylake
GPU Nvidia v100-SXM2-16GB (Volta)
CPU 2×16-core Intel Xeon Gold 6130 @ 2.10GHz
Memory 192Gb RAM

1.2 Optimisation Parameters
Table S3. PSO Parameters used.

Parameter Value
Iterations 1000
Swarm Size 64
Inertia Weight 0.729
Cognitive Learning Rate 1.494
Social Learning Rate 1.494
Stopping Criterion No Stopping Criteria

Table S4. Model Parameters used.

Number of Training Points 2130
Number of Dimensions 51
Mean Constant
Kernel RBF



3

1.3 Timings

Table S5. CPU benchmark timings.

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠 Time Taken Parallel Efficiency
1 13:02:10
2 06:37:04 98%
4 03:18:14 99%
8 01:40:18 97%
16 00:51:14 95%
32 00:27:20 89%

Table S6. GPU benchmark timings.

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠 Time Taken Parallel Efficiency
1 02:52:05
2 01:31:49 94%
4 00:44:51 96%
8 00:29:17 73%

Table S7. Comparison between CPU and GPU benchmarks.

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠 CPU Time Taken GPU Time Taken Speedup Factor
1 13:02:10 02:52:05 4.55
2 06:37:04 01:31:49 4.32
4 03:18:14 00:44:51 4.42
8 01:40:18 00:29:17 3.43



4

2 Kernel Interpreter

     In FEREBUS, a composite consists of multiple kernels combined through the addition and 
multiplication operations. Adding and multiplying kernels is as simple as implementing two composite 
kernel types:  and  for adding and multiplying kernels, respectively:𝑘𝑠𝑢𝑚 𝑘𝑝𝑟𝑜𝑑

𝑘𝑠𝑢𝑚(𝑥, 𝑥 ∗ ) = 𝑘1(𝑥, 𝑥 ∗ ) + 𝑘2(𝑥, 𝑥 ∗ ) (S1)

𝑘𝑝𝑟𝑜𝑑(𝑥, 𝑥 ∗ ) = 𝑘1(𝑥, 𝑥 ∗ ) × 𝑘2(𝑥, 𝑥 ∗ ) (S2)

      Interpreting the composite kernel written as a string of characters in a config file (such as ‘k1*k2’) 
involves the use of a kernel interpreter. A kernel interpreter is a subroutine designed to take a string of 
characters and return a kernel to be used by the GPR model. The method for generating the composite 
kernel involves lexing the input string into tokens, parsing these tokens into an abstract syntax tree 
(AST), and then interpreting the AST into a composite kernel.

      The first step (lexing) uses a lexical analyser (also known as lexer) to scan the input characters 
separating the characters into tokens. A token is a single unit of an expression, which can be a number, 
a variable name, an operator and so on. A full list of tokens is shown in the Table S8. If the lexer comes 
across an unknown token, it will exit with an error.

Table S8. All token types used within the FEREBUS kernel lexer.

Token Name Example

Number 1, 2.0, 1e-3, etc.

Add Operator +

Subtract Operator -

Multiply Operator *

Divide Operator /

Left Pathenthesis (

Right Parenthesis )

Variable Name k1, k2, myvar1, 
myvar2, etc.

End Of File

     Once the input string has been lexed into tokens they must be parsed into an AST to allow the 
interpreter to determine the order in which the tokens must be evaluated. The parser forms expressions 
within a tree that can be evaluated, a single node at a time, in order to return the desired result. The parser 
is not only responsible for identifying expressions from the tokens but also for preserving the correct 
mathematical order of operations (including parentheses). The parser is implemented using the well- 
known recursive descent parsing algorithm. Figure S1 shows a schematic for an example interpreter 
workflow. It is the parser’s responsibility to determine the correctness of the expression. If the expression 
is incorrect (for example, if a parenthesis is missing), the parser will exit with an error. 



5

  Figure S1. Schematic for interpreting an example composite kernel: (a) composite kernel input string, 
(b) lexed tokens, and (c) AST produced by the recursive descent parser.

     The kernel interpreter then walks through the AST (which is always read from top to bottom) from 
the head node (the first node, in the case of Figure S1, the ‘+’ operation node) substituting any variable 
names with the kernel matching the variable name defined in the config file. The kernel interpreter works 
within a namespace defined by the config file. If a variable name appears that does not correspond to a 
kernel defined in the FEREBUS config file, the interpreter will exit with an error. Once the AST has been 
successfully walked through, a composite kernel is returned, to be used by the GPR model for 
hyperparameter optimisation.



6

3 Likelihood Functions

    The optimisation of the GPR model’s hyperparameters requires a cost function in order to provide a 
best fit to the training data. The standard cost function used for Gaussian processes is the marginal 
likelihood function denoted . For a given training set (training inputs, , and training outputs ) and 𝐿𝐿 𝑋 𝑦
hyperparameters ( ), the marginal log-likelihood is defined as follows,𝜃

𝐿𝐿(𝑦│𝑋,𝜃) =‒
1
2

(𝑦 ‒ 𝜇)⊤𝑅 ‒ 1(𝑦 ‒ 𝜇) ‒
1
2

𝑙𝑛|𝑅| ‒
𝑛
2

𝑙𝑛2𝜋 (S3)

     By setting the derivative of the log-likelihood with respect to the mean to zero, the mean is optimised 
analytically such as to produce the concentrated mean, , or𝜇̂

𝑑𝐿𝐿
𝑑𝜇

= 0⇒𝜇̂ =
1⊤𝑅 ‒ 1𝑦

1⊤𝑅 ‒ 11
(S4)

where  denotes a vector of ones in the same shape as the training output vector, . The concentrated 1 𝑦
mean may then be used to calculate the concentrated variance, 

𝜎̂2 = (𝑦 ‒ 𝜇̂)⊤𝑅 ‒ 1(𝑦 ‒ 𝜇̂) (S5)

    The concentrated variance may then be substituted into the marginal log-likelihood equation (S3) to 
produce the concentrated log-likelihood ( ),̂𝐿𝐿

̂𝐿𝐿(𝑦│𝑋,𝜃) =‒
1
2

𝜎̂2 ‒
1
2

𝑙𝑛|𝑅| ‒
𝑛
2

𝑙𝑛2𝜋 (S6)

       FEREBUS implements both likelihood functions thereby allowing the user to select the likelihood 
function based upon their use case with the default likelihood function being the marginal log-likelihood. 
In practice we observed that the concentrated likelihood function produces a more accurate model but 
takes more PSO iterations to optimise. The difference in predictive accuracy between the two likelihood 
functions depends on the system being modelled as shown by the plots in Figures S2 and S3. Thus, 
providing the option to select the appropriate likelihood function to the user is necessary.



7

Figure S2. Plots showing the likelihood value versus the PSO iteration for several systems.

Figure S3. Plots showing the prediction errors from the models resulting from the optimisations shown 
in Figure S2.



8

Table S9. Table showing the model details, RMSE and maximum prediction errors (kJ mol-1) for the 
atomic energies in each model shown in Figures S2 and S3.

Marginal Concentrated
System Name 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑛𝑡𝑟𝑎𝑖𝑛

RMSE Max Error RMSE Max Error

Water 3 59 0.20 1.34 0.10 0.94
Ammonia 6 421 0.11 0.58 0.13 0.69
Methanol 12 636 0.58 3.66 0.56 2.07
N-methylacetaimde (NMA) 30 887 0.43 2.23 0.39 1.50
Glycine 51 2130 0.86 3.24 0.80 2.98
Ibuprofen 93 2264 0.83 8.59 0.78 3.33


