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(1) Details of all reaction components

(1.1) Ligand library1

The ligands can be chemically grouped into four categories as listed in Table S1, which are 

(a) mono-N-protected amino acid (MPAA) [LA], (b) mono-N-protected α-amino-O-alkyl 

hydroxamic acid (MPAHA) [LB], (c) mono-N-protected amino alkyl amine (MPAAM) [LC], 

and (d) N-acyl-protected amino oxazoline (APAO) [LD]. There are 77 different ligands in 

total. 

Table S1. Identities and Notations of the Ligands

Table S1.A.  Subset LA

LA (mono-protected amino acid [MPAA]) (number of ligands = 27)
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Table S1.B. Subset LB

LB (mono-N-protected α-amino-O-alkyl hydroxamic acid (MPAHA)) 
(number of ligands = 28)
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Table S1.C. Subset LC

LC (mono-N-protected amino alkyl amine (MPAAM)) (number of ligands = 20)

AcHN
NMe2

AcHN
NEtMe

AcHN
NEt2

AcHN
NiPr2

LC-1 LC-2 LC-3 LC-4

AcHN
N

AcHN
N

AcHN
NMe2 AcHN

NMe2

LC-5 LC-6 LC-7 LC-8

AcHN
NMe2

AcHN
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F

F

AcHN
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Ph

Ph

AcHN
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LC-13 LC-14 LC-15 LC-16

AcHN
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AcHN

Ar

Ar
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AcHN

Ar

Ar

NMe2
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Ar

Ar
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Table S1.D. Subset LD

LD (N-acyl-protected amino oxazoline (APAO)) (number of ligands = 2)

AcHN N

O

Ph AcHN N

O

Ph

LD-1 LD-2

(1.2) Coupling partner library
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Table S2. Identities and Notations of the Coupling Partners

I

CO2Me

I

CH3
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Bpin Bpin

CH3
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F
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F
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F
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I

F
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I

CO2Me
PinB

S IAc O IOHC

Ph

Ph I

CP41 CP42 CP43 CP44 CP45
Ph

Me I

Ph

Et I

Ph

n-Bu I

Me

Me I

Me

I

CP46 CP47 CP48 CP49 CP50
BocN

I

CP51

(1.3) Substrate library

Table S3. Identities and Notations of the Substrates

NHArF

O

ArF = 4-CF3C6F4

Et

OH

O

OH

O
Et NHArF

O

ArF = 4-CF3C6F4

NHArF

O

ArF = 4-CNC6F4

Et

S1 S2 S3 S4 S5

(1.4) Base library

NaTFA, Na2CO3, NaHCO3, K2HPO4, Li3PO4, Na3PO4, K3PO4, LiH2PO4, Li2CO3, K2CO3, 

Cs2CO3, LiOAc, NaOAc, KOAc, CsOAc, NaH2PO4, Na2HPO4, KHCO3, KH2PO4, 

K2HPO4.3H2O

(1.5) Metal-catalyst precursor library

Pd(MeCN)2Cl2, Pd(TFA)2, Pd(C3H5)Cl2, Pd(PhCN)2Cl2, Pd(OTf)2(MeCN)4, Pd(OAc)2, 

Pd(BF4)2(MeCN)4, Pd(PPh3)2Cl2, Pd(OPiv)2

(1.6) Solvent library

Toluene, CHCl3, HFIP, t-AmylOH + H2O, t-BuOH + H2O, i-PrOH + H2O, i-BuOH + H2O, 

THF + H2O, HFIP + H2O, t-AmylOH, DCE, DCM, DMF, C6F6, TBME, MeCN, THF, 

Dioxane, Et2O, CCl4.

(1.7) Additive library 
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Ag2CO3, AgOAc, Ag2O

(2) Selection of chemically relevant model for feature extraction

Based on available mechanistic studies on similar C(sp3)−H functionalization reaction,2 

probable mechanistic pathway could follow the following series of steps- formation of active 

catalyst,  N-acyl group on the ligand act as a base to deprotonate the C(sp3)−H bond, 

oxidative addition of ArI, subsequent reductive elimination, and regeneration of the active 

mono-ligated catalyst (Fig. S1). Close mechanistic and structural approximation of 

intermediate 4 with C(sp3)−H activation TS [4-5]‡ makes it reasonable choice as a chemically 

relevant model for feature extraction. 

HO
OHMeO2C

I

Pd(OAc)2 (10 mol%),
ligand (20 mol%),
Ag2CO3 (1.5 equiv),
Na2CO3 (1.5 equiv),

HFIP (0.25 mL),
80 °C, 16 h

HO
O

MeO2C

AcHN

%yield = 82
%ee = 94

ligand

NMe2

ArI 1 2
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II

II
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Ar = C6H5

Fig S1. An illustrative example of (A) β-C(sp3)−H activation reaction, (B) proposed 

mechanism promoted by the Pd(OAc)2-MPAAM catalytic system. 

(3) Parameter selection

We employed physically meaningful descriptors derived from optimized molecule 

geometries.3 For site-specific properties, various local parameters such as NBO charge, 

vibrational frequencies, bond length, bond angle, dihedral angle, and so on are taken into 

account. Global parameters such as HOMO and LUMO energies, rotational constants, polar 

surface area, volume, and so on are used to represent the entire structural and geometrical 

properties. To account for the influence of the solvent, we used the continuum solvation 

model in our calculations. Furthermore, as the reactions are used in a wide range of reaction 
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conditions, we used them as descriptors. Experimental conditions like reaction temperature, 

time, amount of ligand/base, solvent dielectric are selected as descriptors.4 All these 

descriptors for MLS model are enlisted in Table S4 and Table S5.

Table S4. Parameter Details of Various Reacting Components in the MLS Model

metal-ligand-substrate (MLS) complex

Pd
YO

N

O

R15

H

X

O
R16

R14

1

2
3

4
5

6
7

8

9 10

11
12

13

14

15

1920

22

H H

local parameters
bond length (BL) 1-2, 5-6, 6-7, 11-12, 

4-20, 4-19, 6-22, 10-
15

bond angle (BA) 1-2-3, 3-4-20, 1-5-
4, 5-4-20, 5-6-7, 7-
6-22, 10-11-12, 
10-11-14, 1-12-11, 
5-1-12

dihedral angle (DA) 3-4-5-6, 4-5-1-2, 4-
5-6-7, 9-10-11-14, 9-
10-11-12, 1-5-6-7, 1-
12-11-14, 1-5-4-20, 
6-5-4-20

non-bonded distance 
(NB)

1-12, 7-12

charge (q) 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14, 
15, 19, 20, 22

NMR shift (NMR) 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 
13, 14, 15, 19, 20, 
22

vibrational frequency 
(VF) & intensity (VI)

6-7, 11-12, 9-13 sterimol(L, B1, B5) R14, R15, R16, X, Y

global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational constant (Rx), Area, 
Volume, PSA, Ovality
additional parameter
% buried volume (BV)9: The radius of the sphere has been set to 5.0 Å in this case, five 
different parameters are taken into consideration. These are BV, BV in NW quadrant, BV 
in SW quadrant, BV in NE quadrant and BV in SE quadrant.

coupling partner (CP)

R8

R7

R91 26

7

local parameters
bond length (BL) 1-2, 1-6, 1-7 NMR shift (NMR): 1, 2, 6

charge (q): 1, 2, 6
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global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational constant (Rx), Area, PSA

metal-catalyst precursor (MC)
local parameter
q(Pd)
global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational Constants (Rx, Ry), 
Volume, PSA, Ovality

base (B)
global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational Constants (Rx, Ry, Rz), 
Area, Volume, PSA, Ovality

additive (A)
local parameter
q(Ag)
global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational Constants (Rx, Ry, Rz), 
Area, Volume, PSA, Ovality
secondary parameters
dielectric constant of solvent (DC)
experimental parameters
amount of ligand - Eqv(L), amount of base - Eqv(B), amount of additive - Eqv(A), reaction 
time and reaction temperature.

Table. S5. List of Features (P1 - P153) in the MLS Model

P1 Rx-MLS P78 VF(C9=O13)-MLS
P2 DA3-4-5-6-MLS P79 VI(C9=O13)-MLS
P3 DA4-5-1-2-MLS P80 VF(C11-H12)-MLS
P4 DA4-5-6-7-MLS P81 VI(C11-H12)-MLS
P5 DA9-10-11-14-MLS P82 L-Y-MLS
P6 DA9-10-11-12-MLS P83 B1-Y-MLS
P7 DA1-5-6-7-MLS P84 B5-Y-MLS
P8 DA1-12-11-14-MLS P85 L-X-MLS
P9 DA1-5-4-20-MLS P86 B1-X-MLS
P10 DA6-5-4-20-MLS P87 B5-X-MLS
P11 BA1-2-3-MLS P88 L-R16-MLS
P12 BA3-4-20-MLS P89 B1-R16-MLS
P13 BA1-5-4-MLS P90 B5-R16-MLS
P14 BA5-4-20-MLS P91 BV-MLS
P15 BA5-6-7-MLS P92 BV-SW-MLS
P16 BA7-6-22-MLS P93 BV-NW-MLS
P17 BA10-11-12-MLS P94 BV-NE-MLS
P18 BA10-11-14-MLS P95 BV-SE-MLS
P19 BA1-12-11-MLS P96 Area-MLS
P20 BA5-1-12-MLS P97 Volume-MLS
P21 NB1-12-MLS P98 PSA-MLS
P22 NB7-12-MLS P99 Ovality-MLS
P23 BL1-2-MLS P100 HOMO-MC



S13

P24 BL5-6-MLS P101 LUMO-MC
P25 BL6-7-MLS P102 DM-MC
P26 BL11-12-MLS P103 Rx-MC
P27 BL4-20-MLS P104 Ry-MC
P28 BL4-19-MLS P105 Volume-MC
P29 BL6-22-MLS P106 PSA-MC
P30 BL10-15-MLS P107 Ovality-MC
P31 HOMO-MLS P108 q(Pd)-MC
P32 LUMO-MLS P109 DM-CP
P33 DM-MLS P110 HOMO-CP
P34 q1-MLS P111 LUMO-CP
P35 q2-MLS P112 Rx-CP
P36 q3-MLS P113 BL1-2-CP
P37 q4-MLS P114 BL1-6-CP
P38 q5-MLS P115 BL1-7-CP
P39 q6-MLS P116 NMR1-CP
P40 q7-MLS P117 NMR2-CP
P41 q8-MLS P118 NMR6-CP
P42 q9-MLS P119 NMR7-CP
P43 q10-MLS P120 q1-CP
P44 q11-MLS P121 q2-CP
P45 q12-MLS P122 q6-CP
P46 q13-MLS P123 Area-CP
P47 q14-MLS P124 Volume-CP
P48 q15-MLS P125 PSA-CP
P49 q19-MLS P126 Ovality-CP
P50 q20-MLS P127 Rx-B
P51 q22-MLS P128 Ry-B
P52 NMR1-MLS P129 Rz-B
P53 NMR2-MLS P130 DM-B
P54 NMR3-MLS P131 HOMO-B
P55 NMR4-MLS P132 LUMO-B
P56 NMR5-MLS P133 Area-B
P57 NMR6-MLS P134 Volume-B
P58 NMR7-MLS P135 PSA-B
P59 NMR8-MLS P136 Ovality-B
P60 NMR9-MLS P137 q(Ag)-A
P61 NMR10-MLS P138 Rx-A
P62 NMR11-MLS P139 Ry-A
P63 NMR12-MLS P140 Rz-A
P64 NMR13-MLS P141 HOMO-A
P65 NMR14-MLS P142 LUMO-A
P66 NMR15-MLS P143 DM-A
P67 NMR19-MLS P144 Area-A
P68 NMR20-MLS P145 Volume-A
P69 NMR22-MLS P146 PSA-A
P70 L-R14-MLS P147 Ovality-A
P71 B1-R14-MLS P148 Eqv(L)
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P72 B5-R14-MLS P149 Eqv(B)
P73 L-R15-MLS P150 Eqv(A)
P74 B1-R15-MLS P151 Time (H)   
P75 B5-R15-MLS P152 T (˚C)
P76 VF(C6=O7)-MLS P153 DC(Solvent)
P77 VI(C6=O7)-MLS

(4) Computational methods and programming details

All quantum chemical calculations in this study were done using the Gaussian 09 program.5 

All the geometries were optimized in the condensed phase using the dispersion-corrected 

hybrid density functional B3LYP-D3 with the 6-31G** basis set for all atoms except for 

palladium.6 We used the Stuttgart-Dresden double-basis (SDD) basis set with an effective 

core potential (ECP) for Pd, Ag, and Cs. For the Pd atom, 28 core electrons were represented 

using an ECP,7 while standard basis sets were used to explicitly treat 18 valence electrons. 

The fully optimized geometries of all stationary points were characterized by frequency 

calculations in order to verify that the optimized geometries have all positive Hessian indices. 

The Truhlar-Cramer SMD solvation model, which uses the full solute electron density 

without defining partial atomic charges, was used to incorporate the effect of continuum 

solvation.8 We used the continuum dielectric of applicable solvents in our computations as 

reported in the corresponding experimental studies which used different solvents. The 

optimized geometries as described above were then used to derive all of the stereo-electronic 

parameters. For the calculation of multi-dimensional Sterimol parameters: L, B1 and B5, we 

used the Python program developed by the Paton group.9 The percentage of buried volume 

was calculated by using SambVca 2.1 program developed by the Cavallo group.10

The code, data, and instructions are available at https://github.com/alhqlearn/ML-for-

Asymmetric-C-sp3-H-Reaction. Instructions for installing software used in the study are as 

follows. Download and install the following programs: (a) Spartan’16 Parallel Suite: We 

applied for 30-day Spartan'16 Parallel Suite demo license https://www.wavefun.com/ 

(Accessed on April 24th, 2018), (b) Python 3.6 (The anaconda distribution is recommended, 
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as it has packages required for the software to run: Download at 

https://www.anaconda.com/download/) (Accessed on June 23rd, 2018), (c) PyTorch 

(Download at https://pytorch.org/)

(5) Model building, results and analysis of various machine learning methods

(5.1) Synthetic data generation using SMOTE technique

Among the 240 reactions considered in this study, the experimental %ee distribution (Fig. 

S2) is such that only 57 samples are <80 %ee constituting the minority class while a large 

majority of them (183) are >80 %ee. The output values therefore indicate a class-imbalance, 

necessitating the use of synthetic data for improved training of the ML algorithms. We have 

generated synthetic samples using the SMOTE (SVM) method.11 SMOTE is an oversampling 

technique that adds synthetic data to the minority class. The SMOTE procedure consists of 

the following steps; (i) selects a sample (m) from the minority class, (ii) identifies the k-

nearest neighbors (k1, k2, k3, k4, k5) (default value is 5) of the chosen data point, (iii) 

synthetic sample (n1) is then created from the line connecting data point m and neighbor k1, 

(iv) the difference of the feature vector of the selected data point (fm) and neighbors (fk1) are 

calculated, (v) features of this new sample (fn1) is obtained as fn1 = fm + (fm - fk1)*r; r ∈ [0,1], 

where the features of data point fm are added with the difference multiplied with a random 

number (r) that ranges from 0 to 1. Similarly, several such synthetic data points are generated 

by iterating over all the minority class samples. 

https://pytorch.org/
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Fig S2. Experimentally reported %ee distributions in various class intervals

The dataset is divided into major and minor classes based on their output values (%ee), with a 

class boundary set to ≤80 %ee for the minority class. With the inclusion of the synthetic data 

in the minority class, the dimension of the feature matrix changes from 240x153 to 342x153. 

This dataset containing both the real and synthetic samples are used in training our ML 

models. The Smote.ipynb Python file provided in the Github link can be used to generate 

synthetic data. The README file of the Github repository contains step-by-step instructions 

for replicating this. 

(5.2) The cross-validation procedure for ML models other than DNN

The full dataset was randomly divided in a 80:20 ratio, with 80% of samples placed in the 

training and the remaining 20% in the test sets. The following 7-fold cross-validation strategy 

was used to identify the optimal hyperparameter for each machine learning method used in 

this study (Fig S3). Seven validation runs were used for each hyperparameter Hi (assuming 

the hyperparameter set is H= {H1, H2, H3, H4,…., Hn}). After doing 7 cross-validation runs, 

the average RMSE was calculated as Avg. RMSE[Hi] = ∑(RMSE[Fi])/7 for each of the 

hyper-parameters where [Fi] is the ith fold in the validation set (Fig S3). The hyperparameter 

with the lowest average RMSE was then chosen, which was subsequently used for model 
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building. The performance of the resulting model, on the basis of the test set RMSE is 

reported. We repeated this technique for 100 separate runs, with randomly chosen training 

and test samples, to get an unbiased estimation of generalization error. The construction of 

different partitions was controlled by seeding the random number generator with a seed value 

to ensure the reproducibility of the results. The final RMSE reported in the following sections 

is averaged over all these 100 runs.
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Fig S3. A general procedure for ML model building. Hyperparameter tuning was done on 

the validation set. Finally, the trained model was used to assess the test set.

(5.3) Hyperparameter optimization of DNN

A deep neural network (DNN) is made up of several fully connected input layer, one or more 

hidden layers, and a single output layer. A deep neural network (DNN) is typically trained by 

using a supervised learning back-propagation algorithm, with Adam optimization technique 
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to update and adjust the weights and biases of neurons. The performance of a DNN depends 

on several hyperparameters such as the number of hidden layers, number of neurons, learning 

rate, dropout rate, number of epochs etc. Hence, it is important to examine what combination 

of these hyperparameters is likely to provide a good model. The optimal architecture of DNN 

is essential for improved accuracy and faster convergence.

In this study, various DNN network architecture were examined. The data matrix used 

here has a sample x feature dimension of 342x153, where 240 were real and 102 were 

synthetic samples generated using the SMOTE technique (see section 5.1) and molecular 

features were collected from the MLS model (see section 3). The dataset is partitioned into 

train-validation-test sets with 64:16:20 ratio. The model was trained on the train set, and 

hyperparameter tuning was done on the validation set. Finally, the trained model was used to 

evaluate the model performance on the test set. To get an unbiased estimate of generalization 

error, we repeated this technique 100 times with randomly chosen training and test samples. 

The final train, validation, and test RMSEs tabulated in Table S6, are the average over all the 

100 runs. A default settings of our DNN use (a) Adam optimization function, (b) a learning 

rate of 0.001, (c) number of epochs 1000, and (d) Rectified Linear Unit (ReLU) as the 

activation function. The data provided in Table S6 help in comparing effect of different 

numbers of hidden layers and numbers of neurons in each hidden layer.

Table. S6. Train, Validation, and Test RMSEs Obtained by Varying the Number of Hidden 

Layers and Neurons. i Shown in Blod Font is the Optimal Model

DNN layers/neurons in each layer train validation test
[153, 128, 1] 7.58 ±0.43 7.25±1.12 8.14±1.21
[153, 300, 1] 5.2±0.27 6.11±1.00 7.05±1.44
[153, 53, 1] 12.56±0.26 10.54±1.22 10.91±1.53

[153, 400, 128, 1] 5.1±0.75 6.48±1.05 7.33±1.7
[153, 200, 128, 1] 4.87±0.83 6.33±1.04 7.08±1.35
[153, 70, 128, 1] 4.87±0.55 6.3±1.15 7.03±1.46

[153, 500, 250, 128, 1] 4.88±0.89 6.19±1.11 6.87±1.53
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[153, 500, 168, 128, 1] 4.97±0.82 6.17±1.02 6.84±1.39
[153, 500, 168, 70, 1] 4.89±1.02 6.24±1.23 7.04±1.6

[153, 75, 250, 168, 128, 1] 4.57±0.68 6.09±1.03 6.85±1.23
[153, 500, 250, 168, 128, 1] 4.86±0.76 6.17±1.23 6.91±1.34
[153, 700, 350, 168, 128, 1] 4.51±0.48 6.04±1.01 6.59±1.39

[153, 500, 150, 400, 168, 128, 1] 4.68±0.65 6.04±1.08 6.77±1.41
[153, 700, 400, 250, 168, 128, 1] 4.75±1.03 5.96±1.17 6.70±1.43
[153, 33, 150, 400, 168, 128, 1] 4.42±0.49 5.91±0.86 6.53±1.04
[153, 120, 150, 400, 168, 128, 1] 4.61±0.57 6.04±0.89 6.78±1.21
[153, 250, 150, 400, 168, 128, 1] 4.83±0.95 6.12±1.22 6.84±1.51
[153, 33, 50, 400, 168, 128, 1] 4.63±1.65 6.13±1.22 6.80±1.50
[153, 33, 150, 300, 168, 128, 1] 4.68±0.7 6.23±0.98 6.98±1.45
[153, 33, 150, 400, 200, 128, 1] 4.52±1.03 6.31±1.25 6.81±1.44

i learning rate=0.001, epoch=1000, activation function= ReLU, optimizer=Adam, dropout 
rate = 0.0

Varying the dropout rate is recommended as a technique to reduce over-fitting and 

improve generalization. The data provided in Table S7 can be used for comparing the effect 

of various dropout rates. 

Table. S7. Train, Validation, and Test RMSEs Obtained by Varying the Dropout Rates i 

Shown in Bold Font is the Optimal Model

dropout rate train validation test
0.0 4.42±0.49 5.91±0.86 6.53±1.04
0.1 3.96±0.38 5.86±0.82 6.74±1.11
0.2 3.94±0.47 5.88±0.88 6.79±1.12
0.3 3.88±0.46 5.83±0.88 6.64±1.09
0.4 3.88±0.38 5.91±0.79 6.77±1.12
0.5 4.01±0.49 6.03±0.98 6.82±1.23
0.6 4.10±0.44 6.11±0.89 6.87±1.21
0.7 4.14±0.43 5.90±0.87 6.74±1.23
0.8 4.02±0.57 6.00±0.97 6.79±1.22
0.9 4.22±0.39 6.13±0.77 6.76±0.97

i learning rate=0.001, epoch=1000, activation function= ReLU, optimizer=Adam, DNN 
architecture = [153, 33, 150, 400, 168, 128, 1]

Three initial learning rates (0.1, 0.01, and 0.0001) were also considered (Table S9). 

Tables S9 and S10 show the results with different number of epochs and activation functions.
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Table. S8. Train, Validation, and Test RMSEs Obtained by Varying the Number of Epoch i 

Shown in Bold Font is the Optimal Model  

epoch train validation test
500 5.36±0.82 6.85±1.29 7.14±1.11
1000 4.42±0.49 5.91±0.86 6.53±1.04
1500 3.86±0.49 5.69±0.79 6.38±0.97
2000 3.44± 0.50 5.70± 0.90 6.35± 0.94

i learning rate=0.001, activation function= ReLU, optimizer=Adam, dropout ratio = 0.0, DNN 
architecture = [153, 33, 150, 400, 168, 128, 1] 

Table. S9. Train, Validation, and Test RMSEs Obtained by Varying the Learning Rate i 

Shown in Bold Font is the Optimal Model  

learning rate train validation test
0.1 17.71±0.38 15.67±1.32 15.03±1.72
0.01 13.38±4.44 11.55±3.58 11.91±3.23
0.001 4.42±0.49 5.91±0.86 6.53±1.04
0.0001 5.59±0.22 6.62±0.80 6.94±0.99

i epoch=1000, activation function= ReLU, optimizer=Adam, dropout ratio = 0.0, DNN 
architecture = [153, 33, 150, 400, 168, 128, 1]

Table. S10. Train, Validation, and Test RMSEs Obtained by Varying Activation Functions i 

Shown in Bold Font is the Optimal Model i 

activation function train validation test
ReLU 4.42±0.49 5.91±0.86 6.53±1.04

LeakyReLU 4.41±0.76 5.97±1.11 6.76±1.33
Tanh 17.93±0.36 15.76±1.12 16.35±1.35

Sigmoid 24.01±0.19 21.88±0.68 25.96±0.94
Tanh (2000) j 17.70±0.38 15.66±1.30 15.04±1.71

Sigmoid (2000) j 17.71±0.38 15.64±1.27 15.24±1.64
i learning rate=0.001, epoch=1000, optimizer=Adam, dropout ratio = 0.0, DNN architecture = 
[153, 33, 150, 400, 168, 128, 1]. j A total of 2000 epochs were used to train the DNN model. 

In line with the current practices in ML community, we built DNN model with a 

70:10:20 train-validation-test ratio. The train, validation, and test RMSEs were found to be 

4.4±0.7, 5.9±1.0, and 6.5±1.1 %ee, respectively, which is nearly similar to the result obtained 

using 64:16:20 train-validation-test split.
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(5.4) Details of various ML methods 

In the current study, we used the ML methods enlisted below. The direct use of default 

parameters as in the scikit-learn package led to overfitting with all of these techniques, hence 

demanded rigorous hyperparameter optimization. The chosen hyperparameters for each 

method are listed below. We have used scikit-learn12 (python machine learning package) for 

all methods, and "pytorch" for deep neural network.

(I) Random Forest (RF)

Default parameters and hyperparameters13 used in the RF algorithm are provided in Table 

S11.

Table S11. List of Parameters used for the RF

method default parameters hyperparameters
RF bootstrap=True, criterion='mse', 

max_depth=10000,max_features='auto', 
max_leaf_nodes=None, 
min_impurity_decrease=0.0, 
min_impurity_split=None, 
min_samples_leaf=1, 
min_samples_split=2, 
min_weight_fraction_leaf=0.0, 
n_jobs=1, oob_score=False, 
random_state=42, verbose=0, 
warm_start=False

n_estimators
{100,200,….,1900,
2000}

(II) k-Nearest Neighbors (kNN)

The default parameters and hyperparameters used in the kNN algorithm are provided in Table 

S12.

Table S12. List of Parameters used for the kNN

method default parameters hyperparameters
kNN weights=’uniform’, algorithm=’auto’, 

leaf_size=30, p=2 , 
metric=’minkowski’, 
metric_params=None, n_jobs=1

n_neighbors {2,3,…,30}

(III) Gradient Boosting (GB)
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Default parameters and hyperparameters used in the gradient boosting algorithm are provided 

in Table S13.

Table S13. List of Parameters used for GB

method default parameters hyperparameters
GB loss='huber', learning_rate=0.1, 

n_estimators=800, criterion='mse', 
min_samples_split=2, 
min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, 
max_depth=1, 
min_impurity_decrease=0.0, 
min_impurity_split=None, init=None, 
random_state=42, max_features=None, 
verbose=0, max_leaf_nodes=None, 
warm_start=False, presort='auto'

Subsample 
(0.1,0.2,……,0.9) 
Alpha {10-5 ,10-4 ,10-3 
, 10-2 ,0.1,0.5,0.9}

(IV) Decision Tree (DT)

The default parameters and hyperparameters used in the DT algorithm are provided in Table 

S14.

Table S14. List of Parameters used for DT

method default parameters hyperparameters
DT criterion='mse', splitter='best', 

min_samples_split=2, 
min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, 
max_features=None,                              
random_state=42, 
max_leaf_nodes=None, 
min_impurity_decrease=0.0,                                  
min_impurity_split=None, 
presort=False

max_depth 
{1000,2000,…..,10000}

(V) Deep Neural Network (DNN)

Neural networks are composed of (multiple) layers of interconnected computation modules 

(so-called neurons). Each neuron uses parameters or weights, as well as a nonlinear activation 

function, to process its input (i.e., the values received from previous neurons). The 

architecture of neural network is given in Table S15.

Table S15. List of Parameters used for DNN
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DNN number of hidden layers = 6, number of neurons in each layer = [153, 33, 
150, 400, 168, 128, 1], learning rate = 0.001, epoch = 1000, activation 
function= ReLU, optimizer=Adam

(VI) Gaussian Process Regression (GPR)

Gaussian process regression models are nonparametric kernel-based probabilistic models. A 

kernel is used to define the covariance of a prior distribution over the target functions in 

GPR. We have considered radial basis function (RBF) as kernel functions. The final kernels 

were created by multiplying the constant kernel with a kernel function (RBF) of the GPR and 

then adding a white kernel. The default parameters and hyperparameters used in the GPR 

algorithm are provided in Table S16.

Table S16. List of Parameters used for GPR algorithm with different kernel

method default parameters hyperparameters
RBF kernel = ConstantKernel() * 

RBF(length_scale_bounds=(1e-05, 
100000.0)) + WhiteKernel()  

kernel=kernel, alpha=1e-10, 
optimizer='fmin_l_bfgs_b', 
n_restarts_optimizer=0, 
normalize_y=False, 
copy_X_train=True,random_state=42

length_scale { 0.01, 0.1, 
1, 2, 3, 5, 10, 20, 50, 
100}

(5.5) Predictive performance of different ML algorithms for various subsets

We have created individual ML algorithms for each of the four ligand families denoted as LA, 

LB, LC, and LD. Only reactions from that family are included in each of these individual 

models. The training set contains both real and synthetic samples from that family, while the 

test set contains only real reactions. The individual performances are tabulated in the tables 

below.

In the combined set, test set is made up of reactions, chosen at random, from one or 

more ligand sets. Subsequently, we have combined the reactions from two different ligand 

families to create a new dataset (LA-LB). Similarly, more diverse models were created by 

combining reactions from the LA, LB, and LC families to make a new ML model. All the 240 
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reactions were combined to create the final unified set representing maximum diversity in the 

dataset composed of LA, LB, LC, and LD.

Table S17. Train and Test RMSEs Obtained using the RF Algorithm for Various Subsets

set train test 
LA 2.19±0.09 4.64±1.03
LB 2.66±0.19 6.64±2.55
LC 3.05±0.34 6.16±2.35
LD 2.79±0.25 7.96±3.25

LA-LB 3.49±0.11 5.93±1.36
LA-LB-LC 4.39±0.09 6.12±0.89

LA-LB-LC-LD 4.85±0.10 6.31±0.71

Table S18. Train and Test RMSEs Obtained using the kNN Algorithm for Various Subsets

set train test 
LA 2.69±0.30 5.67±1.67
LB 7.17±1.77 8.18±3.82
LC 3.15±0.34 5.71±1.95
LD 4.87±0.75 8.57±2.46

LA-LB 3.68±0.28 6.90±2.13
LA-LB-LC 3.68±0.66 6.41±1.37

LA-LB-LC-LD 3.48±0.25 6.36±1.04

Table S19. Train and Test RMSEs Obtained using the GB Algorithm for Various Subsetsi

set train test
LA 2.09±0.46 5.70±1.23
LB 1.17±0.42 7.48±2.41
LC 1.93±0.78 5.77±2.11
LD 1.68±0.43 8.11±2.85

LA-LB 3.65±0.55 7.31±1.59
LA-LB-LC 3.68±0.77 6.50±1.01

LA-LB-LC-LD 3.43±0.21 6.47±0.77
i Ligand subsets with very small number of samples (LB, number of samples = 56) and (LD, 
number of samples = 36) results in significant over-fitting. 

Table S20. Train and Test RMSEs Obtained using the DT Algorithm for Various Subsetsi

set train test
LA 2.44±0.11 5.53±1.62
LB 1.53±0.19 7.76±3.33
LC 2.45±0.14 6.73±2.88
LD 1.18±0.19 7.52±3.81

LA-LB 3.82±0.14 6.18±1.64
LA-LB-LC 5.01±0.13 6.98±1.25

LA-LB-LC-LD 5.81±0.15 7.46±1.26
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i Ligand subsets with very small number of samples (LB, number of samples = 56) and (LD, 
number of samples = 36) results in significant over-fitting.

Table S21. Train and Test RMSEs Obtained using the DNN Algorithm for Various Subsets i 

set train test
LA 2.22±0.37 5.27±1.49
LB 3.56±0.84 7.56±2.91
LC 2.96±0.50 4.78±1.45
LD 5.40±0.70 8.02±2.28

LA-LB 3.58±0.59 6.05±1.76
LA-LB-LC 3.54±0.45 5.82±0.93

LA-LB-LC-LD 4.48±0.46 6.32±0.90
i All of these results were obtained using an 80:20 train-test ratio, with 80% of samples in the 
training set and 20% in the test set, this ensures an equitable comparison of different ML 
models.

Table S22. Train and Test RMSEs Obtained using the GPRRBF Algorithm for Various 
Subsets 

set train test
LA 1.97±0.8 6.09±2.3
LB 4.91±0.46 7.19±2.43
LC 1.60±0.15 4.51±1.91
LD 6.49±0.45 8.71±2.4

LA-LB 3.55±0.58 6.35±1.49
LA-LB-LC 2.22±0.2 6.26±1.17

LA-LB-LC-LD 3.64±0.14 6.32±0.89

(5.6) Performance of the DNN model in terms of the R-squared value

best run a run closest to the average performance  

Fig S4. Performance of the DNN expressed in terms of the R-squared value for 48 test 

samples in the best run with an RMSE of 4.1 %ee and a typical run of RMSE 6.3 %ee which 

is the closest to the to the average RMSE over 100 runs.
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 (6) Performance with the real dataset consisting of 240 reactions as obtained using the 

DNN algorithm

Table S23. Train and Test RMSEs Obtained using DNN Algorithm using Real Data for 

Various Subsets 

set train test 
LA 2.82±0.41 6.62±1.99
LB 3.4±0.57 8.32±3.16
LC 3.04±0.63 9.99±5.77
LD 5.34±0.66 9.20±2.94

LA-LB 3.4±0.43 8.05±2.43
LA-LB-LC 3.41±0.62 8.67±2.65

LA-LB-LC-LD 4.47±0.78 8.58±2.53

The reduction in the test RMSE after adding synthetic data for all the subsets clearly 

indicates that the problem of class imbalance could be reasonably addressed (Fig S5).

LA LB LC LD
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Fig S5. Comparison between test RMSEs of only real and real + synthetic datasets 

obtained using DNN algorithm. The error bars denote the standard deviations.

(7) A comparison of test and train RMSEs noted in different ML models

Overfitting is used to describe when a ML model fits its training data much superior whereas 

the trained algorithm is unable to make accurate predictions on the unseen data. As low-data 

ML models are prone to overfitting, it is important to evaluate overfitting for all models. This 
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is done by comparing train and test RMSEs. The following plots shows the variation train and 

test RMSEs for all 100 runs. 

Fig S6. Plots of train and test RMSEs as obtained in different ML models across 100 runs.

(8) Performance analysis of ML models in different class intervals

During the model development phase, we considered 100 distinct runs with different test 

samples. The effect of the 80:20 train-test split ratio on the total number of 240 real samples 

results in 48 test samples, on which predictions were done. The prediction error in various 
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ranges such as 0-5, 5-10, 10-15, and >15 %ee for these 48 samples are shown below. The 

prediction error is the difference between the actual (experimental) and ML predicted %ee.

best average best average

Random Forest k-Nearest Neighbors

Gradient Boosting Decision Tree

GPRRBF

0-5 %ee

5-10 %ee

>15 %ee

10-15 %ee

Fig S7. Performance of different ML algorithms in terms of the absolute error calculated as 

the difference between the predicted and actual %ee for 48 test samples in the best run and 

a typical run with an RMSE closest to the average RMSE over 100 runs. The pie charts 

show the number of samples exhibiting different ranges of the absolute error. The numbers 

in red color shown adjacent to the respective colored strips (for a given range of 

quantitative agreement with the experimental %ee) indicate the number of samples.

(9) Effect of train-test splitting

Table S24. Train and Test RMSEs for Different train-test Splits Obtained using the DNN 

Algorithm
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train-test split ratio train test 
90:10 4.50±0.40 6.14±1.31
80:20 4.48±0.46 6.32±0.90
70:30 4.36±0.54 6.39±0.83
60:40 4.27±0.42 6.59±0.70
50:50 4.18±0.57 6.75±0.67

(10) Assessment of feature importance

(10.1) Randomization of features

The outputs are shuffled at random among the rows (samples) such that no descriptor is 

associated to its true output value. This modified dataset is then augmented with synthetic 

data using SMOTE (SVM) technique. With these randomized feature values, we re-trained 

the model using DNN algorithm. The test and train RMSEs were found to be 17.72±3.05 and 

10.44±1.53 respectively.

(10.2) Normally distributed set of random numbers

By replacing the original features with random numbers, with a mean of zero and a standard 

deviation of one, we created a new dataset. It is important to highlight that none of these 

generated values resemble or are related to the actual chemical descriptors. We trained our 

model on this new dataset augmented with synthetic data using the DNN algorithm. Inferior 

performances compared to that obtained with the original chemical descriptors are evident 

from the test and train RMSEs of 18.16±4.14 and 0.75±0.17 respectively.

(10.3) One-hot encoding

One-hot encoding can be used as a baseline model to examine the validity an ML model. In 

this experiment, each reaction component was encoded as a "one-hot" vector i.e., a binary 

vector 1 or 0 that only indicates the presence or absence of that component. With this one-hot 

encoded data, we trained our DNN algorithm. The test and train RMSEs were respectively 

found to be 14.98±2.31 and 1.83±0.27.
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(11) Correlation analysis

We used correlation analysis to examine the interdependencies between the features. Measure 

of co-linearity expressed as correlation coefficient in the range from +1 to -1. A positive 

correlation indicates that both variables move in the same direction, whereas a negative 

correlation indicates that as the value of one variable increases, the value of the other variable 

decreases. Value of zero indicates no co-linearity between the features. We performed the 

correlation analysis on the full feature matrix (240x153), the result is shown in Fig S8.

For feature selection, we have chosen one of the features among the features with a 

correlation coefficient of 0.9 or higher (Table S25). The full feature matrix reduced to 

240x114 form the original 240x153 dimension. We have used these 114 features to build the 

ML models with the DNN algorithm (Table S26). The test and train RMSEs were found to be 

inferior as compared to the performances with the original feature matrix (Table S27). 

Similarly, by setting the correlation coefficient to 0.8, the number of features is reduced to 83 

(Table S28 S29). The DNN model with these 83 features resulted much poorer performance 

compared to the original feature list (Table S27).
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Fig S8. Pearson correlation matrix for full feature matrix 

Table S25. List of Correlated Features Obtained after the Removal of the Correlated Features 

with Correlation Coefficient > 0.9. See Table S4 for Details of Feature

S. No. parameters correlated parameters

1
DA9-10-11-14-
MLS

DA9-10-11-14-MLS, BA1-12-11-MLS          

2
DA1-12-11-14-
MLS

DA1-12-11-14-MLS, NMR11-MLS, NMR14-MLS          

3 BA5-6-7-MLS BA5-6-7-MLS, NMR6-MLS          
4 BA10-11-14-MLS BA10-11-14-MLS, q12-MLS, NMR10-MLS, NMR11-MLS          

5 BA1-12-11-MLS
DA9-10-11-14-MLS, BA1-12-11-MLS, q11-MLS, VI(C11-
H12)-MLS          

6 BL1-2-MLS BL1-2-MLS, NMR2-MLS, NMR3-MLS          
7 BL6-7-MLS BL6-7-MLS, q1-MLS, NMR2-MLS          
8 BL10-15-MLS BL10-15-MLS, q10-MLS, NMR15-MLS, L-R16-MLS, B1-
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R16-MLS, B5-R16-MLS          
9 HOMO-MLS HOMO-MLS, LUMO-MLS, NMR5-MLS, PSA-MLS          

10 LUMO-MLS HOMO-MLS, LUMO-MLS          
11 DM-MLS DM-MLS, q4-MLS, B1-Y-MLS          
12 q1-MLS BL6-7-MLS, q1-MLS, NMR2-MLS          
13 q4-MLS DM-MLS, q4-MLS, NMR3-MLS, B1-Y-MLS          
14 q6-MLS q6-MLS, NMR7-MLS, L-R15-MLS, B5-R15-MLS          
15 q9-MLS q9-MLS, Eqv(L)          

16 q10-MLS
BL10-15-MLS, q10-MLS, NMR15-MLS, L-R16-MLS, B1-
R16-MLS, B5-R16-MLS          

17 q11-MLS BA1-12-11-MLS, q11-MLS, VI(C11-H12)-MLS          

18 q12-MLS
BA10-11-14-MLS, q12-MLS, NMR10-MLS, NMR11-
MLS, NMR14-MLS          

19 NMR2-MLS BL1-2-MLS, BL6-7-MLS, q1-MLS, NMR2-MLS          
20 NMR3-MLS BL1-2-MLS, q4-MLS, NMR3-MLS          
21 NMR5-MLS HOMO-MLS, NMR5-MLS, PSA-MLS          
22 NMR6-MLS BA5-6-7-MLS, NMR6-MLS, L-R15-MLS          
23 NMR7-MLS q6-MLS, NMR7-MLS, L-R15-MLS          

24 NMR10-MLS
BA10-11-14-MLS, q12-MLS, NMR10-MLS, NMR11-
MLS, NMR14-MLS          

25 NMR11-MLS
DA1-12-11-14-MLS, BA10-11-14-MLS, q12-MLS, 
NMR10-MLS, NMR11-MLS, NMR14-MLS          

26 NMR14-MLS
DA1-12-11-14-MLS, q12-MLS, NMR10-MLS, NMR11-
MLS, NMR14-MLS          

27 NMR15-MLS
BL10-15-MLS, q10-MLS, NMR15-MLS, L-R16-MLS, B1-
R16-MLS, B5-R16-MLS          

28 L-R15-MLS
q6-MLS, NMR6-MLS, NMR7-MLS, L-R15-MLS, B5-R15-
MLS          

29 B5-R15-MLS q6-MLS, L-R15-MLS, B5-R15-MLS          
30 VI(C11-H12)-MLS BA1-12-11-MLS, q11-MLS, VI(C11-H12)-MLS          
31 L-Y-MLS L-Y-MLS, B5-Y-MLS          
32 B1-Y-MLS DM-MLS, q4-MLS, B1-Y-MLS          
33 B5-Y-MLS L-Y-MLS, B5-Y-MLS          
34 L-X-MLS L-X-MLS, B5-X-MLS          
35 B5-X-MLS L-X-MLS, B5-X-MLS          

36 L-R16-MLS
BL10-15-MLS, q10-MLS, NMR15-MLS, L-R16-MLS, B1-
R16-MLS, B5-R16-MLS          

37 B1-R16-MLS
BL10-15-MLS, q10-MLS, NMR15-MLS, L-R16-MLS, B1-
R16-MLS, B5-R16-MLS          

38 B5-R16-MLS
BL10-15-MLS, q10-MLS, NMR15-MLS, L-R16-MLS, B1-
R16-MLS, B5-R16-MLS          

39 Area-MLS Area-MLS, Volume-MLS, Ovality-MLS          
40 Volume-MLS Area-MLS, Volume-MLS, Ovality-MLS          
41 PSA-MLS HOMO-MLS, NMR5-MLS, PSA-MLS          
42 Ovality-MLS Area-MLS, Volume-MLS, Ovality-MLS          
43 PSA-MC PSA-MC, q(Pd)-MC          
44 q(Pd)-MC PSA-MC, q(Pd)-MC          
45 BL1-7-CP BL1-7-CP, q1-CP          
46 q1-CP BL1-7-CP, q1-CP          
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47 Area-CP Area-CP, Volume-CP, Ovality-CP          
48 Volume-CP Area-CP, Volume-CP, Ovality-CP          
49 Ovality-CP Area-CP, Volume-CP, Ovality-CP          
50 Ry-B Ry-B, Rz-B          
51 Rz-B Ry-B, Rz-B          
52 Area-B Area-B, Volume-B, Ovality-B          
53 Volume-B Area-B, Volume-B, Ovality-B          
54 Ovality-B Area-B, Volume-B, Ovality-B          
55 q(Ag)-A q(Ag)-A, Area-A, Volume-A          
56 Ry-A Ry-A, Rz-A          
57 Rz-A Ry-A, Rz-A          
58 Area-A q(Ag)-A, Area-A, Volume-A          
59 Volume-A q(Ag)-A, Area-A, Volume-A          
60 Eqv(L) q9-MLS, Eqv(L)          

Table S26. List of 115 Features used for Building DNN Model

S. No. parameters S. No. parameters S. No. parameters
1 Rx-MLS 40 q14-MLS 79 Ovality-MC
2 DA3-4-5-6-MLS 41 q15-MLS 80 DM-CP
3 DA4-5-1-2-MLS 42 q19-MLS 81 HOMO-CP
4 DA4-5-6-7-MLS 43 q20-MLS 82 LUMO-CP

5
DA9-10-11-14-
MLS 44 q22-MLS 83 Rx-CP

6
DA9-10-11-12-
MLS 45 NMR1-MLS 84 BL1-2-CP

7 DA1-5-6-7-MLS 46 NMR4-MLS 85 BL1-6-CP

8
DA1-12-11-14-
MLS 47 NMR8-MLS 86 BL1-7-CP

9 DA1-5-4-20-MLS 48 NMR9-MLS 87 NMR1-CP
10 DA6-5-4-20-MLS 49 NMR12-MLS 88 NMR2-CP
11 BA1-2-3-MLS 50 NMR13-MLS 89 NMR6-CP
12 BA3-4-20-MLS 51 NMR19-MLS 90 NMR7-CP
13 BA1-5-4-MLS 52 NMR20-MLS 91 q2-CP
14 BA5-4-20-MLS 53 NMR22-MLS 92 q6-CP
15 BA5-6-7-MLS 54 L-R14-MLS 93 Area-CP
16 BA7-6-22-MLS 55 B1-R14-MLS 94 PSA-CP
17 BA10-11-12-MLS 56 B5-R14-MLS 95 Rx-B
18 BA10-11-14-MLS 57 B1-R15-MLS 96 Ry-B
19 BA5-1-12-MLS 58 VF(C6=O7)-MLS 97 DM-B
20 NB1-12-MLS 59 VI(C6=O7)-MLS 98 HOMO-B

21 NB7-12-MLS 60
VF(C9=O13)-
MLS 99 LUMO-B

22 BL1-2-MLS 61 VI(C9=O13)-MLS 100 Area-B

23 BL5-6-MLS 62
VF(C11-H12)-
MLS 101 PSA-B

24 BL6-7-MLS 63 L-Y-MLS 102 q(Ag)-A
25 BL11-12-MLS 64 L-X-MLS 103 Rx-A
26 BL4-20-MLS 65 B1-X-MLS 104 Ry-A
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27 BL4-19-MLS 66 BV-MLS 105 HOMO-A
28 BL6-22-MLS 67 BV-SW-MLS 106 LUMO-A
29 BL10-15-MLS 68 BV-NW-MLS 107 DM-A
30 HOMO-MLS 69 BV-NE-MLS 108 PSA-A
31 DM-MLS 70 BV-SE-MLS 109 Ovality-A
32 q2-MLS 71 Area-MLS 110 Eqv(B)
33 q3-MLS 72 HOMO-MC 111 Eqv(A)
34 q5-MLS 73 LUMO-MC 112 Time(H)   
35 q6-MLS 74 DM-MC 113 T (?C)
36 q7-MLS 75 Rx-MC 114 DC(Solvent)
37 q8-MLS 76 Ry-MC
38 q9-MLS 77 Volume-MC
39 q13-MLS 78 PSA-MC

Table S27. Performance comparison after reduction of features based on correlation matrix

number of features train test
114 6.58±1.34 8.57±1.78
83 3.77±0.43 8.25±1.39

Table S28. List of Correlated Features Obtained after Removing the Correlated Features with 

Correlation Coefficient > 0.8

S. No. parameters correlated parameters
1 DA4-5-1-2-MLS DA4-5-1-2-MLS, BL6-7-MLS, q9-MLS

2
DA9-10-11-14-
MLS

DA9-10-11-14-MLS, BA1-12-11-MLS, BL10-15-MLS, q10-
MLS, q11-MLS, NMR15-MLS, VI(C11-H12)-MLS, B1-
R16-MLS, B5-R16-MLS

3
DA1-12-11-14-
MLS

DA1-12-11-14-MLS, BA10-11-12-MLS, BA10-11-14-MLS, 
q12-MLS, NMR10-MLS, NMR11-MLS, NMR14-MLS

4 BA1-2-3-MLS
BA1-2-3-MLS, q3-MLS, NMR5-MLS, NMR6-MLS, 
VF(C6=O7)-MLS, PSA-MLS

5 BA5-6-7-MLS

BA5-6-7-MLS, HOMO-MLS, q6-MLS, NMR5-MLS, 
NMR6-MLS, NMR7-MLS, L-R15-MLS, B5-R15-MLS, 
VF(C6=O7)-MLS, PSA-MLS

6
BA10-11-12-
MLS

DA1-12-11-14-MLS, BA10-11-12-MLS, BA10-11-14-MLS, 
q12-MLS, NMR9-MLS, NMR10-MLS, NMR11-MLS

7
BA10-11-14-
MLS

DA1-12-11-14-MLS, BA10-11-12-MLS, BA10-11-14-MLS, 
q12-MLS, q14-MLS, q15-MLS, NMR10-MLS, NMR11-
MLS, NMR14-MLS

8 BA1-12-11-MLS

DA9-10-11-14-MLS, BA1-12-11-MLS, BL10-15-MLS, q10-
MLS, q11-MLS, NMR15-MLS, VI(C11-H12)-MLS, B1-
R16-MLS, B5-R16-MLS

9 NB1-12-MLS NB1-12-MLS, VF(C11-H12)-MLS

10 BL1-2-MLS
BL1-2-MLS, BL6-7-MLS, q1-MLS, q4-MLS, NMR2-MLS, 
NMR3-MLS

11 BL6-7-MLS
DA4-5-1-2-MLS, BL1-2-MLS, BL6-7-MLS, q1-MLS, q5-
MLS, q9-MLS, NMR2-MLS, Eqv(L)
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12 BL11-12-MLS BL11-12-MLS, NMR12-MLS

13 BL10-15-MLS

DA9-10-11-14-MLS, BA1-12-11-MLS, BL10-15-MLS, q10-
MLS, NMR15-MLS, L-R16-MLS, B1-R16-MLS, B5-R16-
MLS

14 HOMO-MLS
BA5-6-7-MLS, HOMO-MLS, LUMO-MLS, NMR5-MLS, 
PSA-MLS

15 LUMO-MLS HOMO-MLS, LUMO-MLS, NMR5-MLS, PSA-MLS
16 DM-MLS DM-MLS, q4-MLS, B1-Y-MLS

17 q1-MLS
BL1-2-MLS, BL6-7-MLS, q1-MLS, q5-MLS, q9-MLS, 
NMR2-MLS

18 q2-MLS q2-MLS, BV-SE-MLS
19 q3-MLS BA1-2-3-MLS, q3-MLS
20 q4-MLS BL1-2-MLS, DM-MLS, q4-MLS, NMR3-MLS, B1-Y-MLS

21 q5-MLS
BL6-7-MLS, q1-MLS, q5-MLS, q9-MLS, q14-MLS, B1-
R15-MLS

22 q6-MLS
BA5-6-7-MLS, q6-MLS, NMR6-MLS, NMR7-MLS, L-R15-
MLS, B5-R15-MLS

23 q7-MLS q7-MLS, q13-MLS
24 q8-MLS q8-MLS, q13-MLS

25 q9-MLS
DA4-5-1-2-MLS, BL6-7-MLS, q1-MLS, q5-MLS, q9-MLS, 
NMR2-MLS, Eqv(L)

26 q10-MLS

DA9-10-11-14-MLS, BA1-12-11-MLS, BL10-15-MLS, q10-
MLS, q11-MLS, NMR15-MLS, L-R16-MLS, B1-R16-MLS, 
B5-R16-MLS

27 q11-MLS
DA9-10-11-14-MLS, BA1-12-11-MLS, q10-MLS, q11-MLS, 
NMR12-MLS, VI(C11-H12)-MLS

28 q12-MLS

DA1-12-11-14-MLS, BA10-11-12-MLS, BA10-11-14-MLS, 
q12-MLS, q15-MLS, NMR9-MLS, NMR10-MLS, NMR11-
MLS, NMR14-MLS

29 q13-MLS q7-MLS, q8-MLS, q13-MLS, VF(C6=O7)-MLS
30 q14-MLS BA10-11-14-MLS, q5-MLS, q14-MLS, q15-MLS

31 q15-MLS
BA10-11-14-MLS, q12-MLS, q14-MLS, q15-MLS, NMR10-
MLS, T (?C)

32 NMR1-MLS NMR1-MLS, L-X-MLS, B5-X-MLS, Time(H)   

33 NMR2-MLS
BL1-2-MLS, BL6-7-MLS, q1-MLS, q9-MLS, NMR2-MLS, 
NMR3-MLS

34 NMR3-MLS
BL1-2-MLS, q4-MLS, NMR2-MLS, NMR3-MLS, NMR13-
MLS

35 NMR5-MLS
BA1-2-3-MLS, BA5-6-7-MLS, HOMO-MLS, LUMO-MLS, 
NMR5-MLS, NMR6-MLS, VF(C6=O7)-MLS, PSA-MLS

36 NMR6-MLS

BA1-2-3-MLS, BA5-6-7-MLS, q6-MLS, NMR5-MLS, 
NMR6-MLS, NMR7-MLS, L-R15-MLS, B5-R15-MLS, 
VF(C6=O7)-MLS

37 NMR7-MLS
BA5-6-7-MLS, q6-MLS, NMR6-MLS, NMR7-MLS, L-R15-
MLS, B5-R15-MLS

38 NMR9-MLS
BA10-11-12-MLS, q12-MLS, NMR9-MLS, VF(C9=O13)-
MLS, T (?C)

39 NMR10-MLS
DA1-12-11-14-MLS, BA10-11-12-MLS, BA10-11-14-MLS, 
q12-MLS, q15-MLS, NMR10-MLS, NMR11-MLS, NMR14-
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MLS

40 NMR11-MLS
DA1-12-11-14-MLS, BA10-11-12-MLS, BA10-11-14-MLS, 
q12-MLS, NMR10-MLS, NMR11-MLS, NMR14-MLS

41 NMR12-MLS
BL11-12-MLS, q11-MLS, NMR12-MLS, VI(C11-H12)-
MLS

42 NMR13-MLS NMR3-MLS, NMR13-MLS

43 NMR14-MLS
DA1-12-11-14-MLS, BA10-11-14-MLS, q12-MLS, NMR10-
MLS, NMR11-MLS, NMR14-MLS

44 NMR15-MLS

DA9-10-11-14-MLS, BA1-12-11-MLS, BL10-15-MLS, q10-
MLS, NMR15-MLS, L-R16-MLS, B1-R16-MLS, B5-R16-
MLS

45 B5-R14-MLS B5-R14-MLS, BV-NW-MLS, BV-NE-MLS

46 L-R15-MLS
BA5-6-7-MLS, q6-MLS, NMR6-MLS, NMR7-MLS, L-R15-
MLS, B5-R15-MLS

47 B1-R15-MLS q5-MLS, B1-R15-MLS

48 B5-R15-MLS
BA5-6-7-MLS, q6-MLS, NMR6-MLS, NMR7-MLS, L-R15-
MLS, B5-R15-MLS

49 VF(C6=O7)-MLS
BA1-2-3-MLS, BA5-6-7-MLS, q13-MLS, NMR5-MLS, 
NMR6-MLS, VF(C6=O7)-MLS

50
VF(C9=O13)-
MLS NMR9-MLS, VF(C9=O13)-MLS

51
VF(C11-H12)-
MLS NB1-12-MLS, VF(C11-H12)-MLS

52
VI(C11-H12)-
MLS

DA9-10-11-14-MLS, BA1-12-11-MLS, q11-MLS, NMR12-
MLS, VI(C11-H12)-MLS

53 L-Y-MLS L-Y-MLS, B5-Y-MLS, L-X-MLS
54 B1-Y-MLS DM-MLS, q4-MLS, B1-Y-MLS
55 B5-Y-MLS L-Y-MLS, B5-Y-MLS

56 L-X-MLS
NMR1-MLS, L-Y-MLS, L-X-MLS, B5-X-MLS, Eqv(B), 
Time(H)   

57 B5-X-MLS NMR1-MLS, L-X-MLS, B5-X-MLS, Eqv(B), Time(H)   

58 L-R16-MLS
BL10-15-MLS, q10-MLS, NMR15-MLS, L-R16-MLS, B1-
R16-MLS, B5-R16-MLS

59 B1-R16-MLS

DA9-10-11-14-MLS, BA1-12-11-MLS, BL10-15-MLS, q10-
MLS, NMR15-MLS, L-R16-MLS, B1-R16-MLS, B5-R16-
MLS

60 B5-R16-MLS

DA9-10-11-14-MLS, BA1-12-11-MLS, BL10-15-MLS, q10-
MLS, NMR15-MLS, L-R16-MLS, B1-R16-MLS, B5-R16-
MLS

61 BV-MLS BV-MLS, BV-NW-MLS
62 BV-NW-MLS B5-R14-MLS, BV-MLS, BV-NW-MLS
63 BV-NE-MLS B5-R14-MLS, BV-NE-MLS
64 BV-SE-MLS q2-MLS, BV-SE-MLS
65 Area-MLS Area-MLS, Volume-MLS, Ovality-MLS
66 Volume-MLS Area-MLS, Volume-MLS, Ovality-MLS

67 PSA-MLS
BA1-2-3-MLS, BA5-6-7-MLS, HOMO-MLS, LUMO-MLS, 
NMR5-MLS, PSA-MLS

68 Ovality-MLS Area-MLS, Volume-MLS, Ovality-MLS
69 Rx-MC Rx-MC, Ry-MC, q(Pd)-MC



S37

70 Ry-MC Rx-MC, Ry-MC
71 Volume-MC Volume-MC, Ovality-MC
72 PSA-MC PSA-MC, q(Pd)-MC
73 Ovality-MC Volume-MC, Ovality-MC
74 q(Pd)-MC Rx-MC, PSA-MC, q(Pd)-MC
75 BL1-7-CP BL1-7-CP, q1-CP
76 NMR1-CP NMR1-CP, NMR7-CP
77 NMR7-CP NMR1-CP, NMR7-CP, Area-CP, Volume-CP, Ovality-CP
78 q1-CP BL1-7-CP, q1-CP
79 Area-CP NMR7-CP, Area-CP, Volume-CP, Ovality-CP
80 Volume-CP NMR7-CP, Area-CP, Volume-CP, Ovality-CP
81 Ovality-CP NMR7-CP, Area-CP, Volume-CP, Ovality-CP
82 Ry-B Ry-B, Rz-B
83 Rz-B Ry-B, Rz-B
84 DM-B DM-B, Area-B, Volume-B, Ovality-B
85 Area-B DM-B, Area-B, Volume-B, Ovality-B
86 Volume-B DM-B, Area-B, Volume-B, Ovality-B
87 PSA-B PSA-B, Ovality-B
88 Ovality-B DM-B, Area-B, Volume-B, PSA-B, Ovality-B
89 q(Ag)-A q(Ag)-A, Area-A, Volume-A
90 Rx-A Rx-A, Rz-A
91 Ry-A Ry-A, Rz-A
92 Rz-A Rx-A, Ry-A, Rz-A
93 Area-A q(Ag)-A, Area-A, Volume-A
94 Volume-A q(Ag)-A, Area-A, Volume-A
95 Eqv(L) BL6-7-MLS, q9-MLS, Eqv(L)
96 Eqv(B) L-X-MLS, B5-X-MLS, Eqv(B)
97 Time(H)   NMR1-MLS, L-X-MLS, B5-X-MLS, Time(H)   
98 T (?C) q15-MLS, NMR9-MLS, T (?C)

Table S29. List of 115 Features used for Building DNN Model

S. No. parameters S. No. parameters S. No. parameters
1 Rx-MLS 29 q8-MLS 57 LUMO-CP
2 DA3-4-5-6-MLS 30 q19-MLS 58 Rx-CP
3 DA4-5-1-2-MLS 31 q20-MLS 59 BL1-2-CP
4 DA4-5-6-7-MLS 32 q22-MLS 60 BL1-6-CP
5 DA9-10-11-14-MLS 33 NMR1-MLS 61 BL1-7-CP
6 DA9-10-11-12-MLS 34 NMR4-MLS 62 NMR1-CP
7 DA1-5-6-7-MLS 35 NMR8-MLS 63 NMR2-CP
8 DA1-12-11-14-MLS 36 NMR19-MLS 64 NMR6-CP
9 DA1-5-4-20-MLS 37 NMR20-MLS 65 q2-CP
10 DA6-5-4-20-MLS 38 NMR22-MLS 66 q6-CP
11 BA1-2-3-MLS 39 L-R14-MLS 67 PSA-CP
12 BA3-4-20-MLS 40 B1-R14-MLS 68 Rx-B
13 BA1-5-4-MLS 41 B5-R14-MLS 69 Ry-B
14 BA5-4-20-MLS 42 VI(C6=O7)-MLS 70 DM-B

15 BA5-6-7-MLS 43
VI(C9=O13)-
MLS 71 HOMO-B
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16 BA7-6-22-MLS 44 L-Y-MLS 72 LUMO-B
17 BA5-1-12-MLS 45 B1-X-MLS 73 PSA-B
18 NB1-12-MLS 46 BV-MLS 74 q(Ag)-A
19 NB7-12-MLS 47 BV-SW-MLS 75 Rx-A
20 BL1-2-MLS 48 Area-MLS 76 Ry-A
21 BL5-6-MLS 49 HOMO-MC 77 HOMO-A
22 BL11-12-MLS 50 LUMO-MC 78 LUMO-A
23 BL4-20-MLS 51 DM-MC 79 DM-A
24 BL4-19-MLS 52 Rx-MC 80 PSA-A
25 BL6-22-MLS 53 Volume-MC 81 Ovality-A
26 DM-MLS 54 PSA-MC 82 Eqv(A)
27 q2-MLS 55 DM-CP 83 DC(Solvent)
28 q7-MLS 56 HOMO-CP

(12) Details of parameters and performance of different ML algorithm for the 

Unbound/Free ligand model

We considered a simpler model in which each of the reacting components, i.e., ligand, 

catalyst, and coupling partner, was treated as a free entity in its native state. Features were 

collected from the optimized geometries (following the procedure as described in section 4) 

of all these individual molecules. Tables S30 and S31 lists the parameters of these 

components.

Table S30. Parameter Details of Various Reacting Components for the Unbound Model

ligand (L)

9

10

11

YO

N

O

R15

R14

1

2
3 4

5
67

H

H

H

8

local parameters
bond length (BL) 1-2, 2-3, 3-4, 5-6, 4-

9, 5-10, 1-11, 3-8, 3-
7

dihedral angle (DA) 1-2-3-4, 2-3-4-5, 2-
3-4-9, 3-4-5-6, 1-2-
3-8, 1-2-3-7, 7-3-4-5

bond angle (BA) 1-2-3, 2-3-4, 3-4-
5, 3-4-9, 8-3-4, 8-
3-2, 8-3-7, 4-5-10, 
2-1-11

charge (q) 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11

NMR shift (NMR) 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11

vibrational frequency 5-6, 4-9 sterimol(L, B1, B5) R14, R15, Y
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(VF) & intensity (VI)
global parameters
HOMO energy, LUMO energy, Dipole Moment (DM), Rotational Constants (Rx, Ry), Area, 
Volume, PSA, Ovality

substrate (S)

1

2
3

4
5

6

7

8

12

H

X

O
R16

H

H

local parameters
bond length (BL) 1-2, 4-5, 4-7, 3-8, 1-

12
bond angle (BA) 1-2-3, 3-4-5, 4-3-

8, 2-1-12, 3-2-6

dihedral angle (DA) 2-3-4-5, 12-1-2-6 NMR shift (NMR) 1, 2, 3, 4, 5, 6, 7, 
8, 12

charge (q) 1, 2, 3, 4, 6 sterimol(L, B1, B5) R16, X
global parameters
HOMO energy, LUMO energy, Dipole Moment (DM), rotational constant (Rx), Volume, 
PSA

coupling partner (CP)

R8

R7

R91 26

7

local parameters
bond length (BL) bond length (BL) bond length (BL)

global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational constant (Rx), Area, PSA

metal-catalyst precursor (MC)
local parameter
q(Pd)
global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational Constants (Rx, Ry), 
Volume, PSA, Ovality

base (B)
global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational Constants (Rx, Ry, Rz), 
Area, Volume, PSA, Ovality

additive (A)
local parameter
q(Ag)
global parameters
HOMO energy, LUMO energy, Dipole moment (DM), Rotational Constants (Rx, Ry, Rz), 
Area, Volume, PSA, Ovality
secondary parameters
dielectric constant of solvent (DC)
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experimental parameters
amount of ligand - Eqv(L), amount of base - Eqv(B), amount of additive - Eqv(A), reaction 
time and reaction temperature.

Table S31. Full List of Features for the Unbound Model

P1 Rx-L P81 BA1-2-3-S
P2 Ry-L P82 BA3-4-5-S
P3 DA1-2-3-4-L P83 BA4-3-8-S
P4 DA2-3-4-5-L P84 BA2-1-12-S
P5 DA2-3-4-9-L P85 BA3-2-6-S
P6 DA3-4-5-6-L P86 DA2-3-4-5-S
P7 DA1-2-3-8-L P87 DA12-1-2-6-S
P8 DA1-2-3-7-L P88 HOMO-S
P9 DA7-3-4-5-L P89 LUMO-S
P10 BA1-2-3-L P90 Rx-S
P11 BA2-3-4-L P91 NMR1-S
P12 BA3-4-5-L P92 NMR2-S
P13 BA3-4-9-L P93 NMR3-S
P14 BA8-3-4-L P94 NMR4-S
P15 BA8-3-2-L P95 NMR5-S
P16 BA8-3-7-L P96 NMR6-S
P17 BA4-5-10-L P97 NMR7-S
P18 BA2-1-11-L P98 NMR8-S
P19 BL1-2-L P99 NMR12-S
P20 BL2-3-L P100 q1-S
P21 BL3-4-L P101 q2-S
P22 BL5-6-L P102 q3-S
P23 BL4-9-L P103 q4-S
P24 BL5-10-L P104 q6-S
P25 BL1-11-L P105 Volume-S
P26 BL3-8-L P106 PSA-S
P27 BL3-7-L P107 HOMO-MC
P28 HOMO-L P108 LUMO-MC
P29 LUMO-L P109 DM-MC
P30 DM-L P110 Rx-MC
P31 q1-L P111 Ry-MC
P32 q2-L P112 Volume-MC
P33 q3-L P113 PSA-MC
P34 q4-L P114 Ovality-MC
P35 q5-L P115 q(Pd)-MC
P36 q6-L P116 DM-CP
P37 q7-L P117 HOMO-CP
P38 q8-L P118 LUMO-CP
P39 q9-L P119 Rx-CP
P40 q10-L P120 BL1-2-CP
P41 q11-L P121 BL1-6-CP
P42 NMR1-L P122 BL1-7-CP
P43 NMR2-L P123 NMR1-CP
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P44 NMR3-L P124 NMR2-CP
P45 NMR4-L P125 NMR6-CP
P46 NMR5-L P126 NMR7-CP
P47 NMR6-L P127 q1-CP
P48 NMR7-L P128 q2-CP
P49 NMR8-L P129 q6-CP
P50 NMR9-L P130 Area-CP
P51 NMR10-L P131 Volume-CP
P52 NMR11-L P132 PSA-CP
P53 L-R14-L P133 Ovality-CP
P54 B1-R14-L P134 Rx-B
P55 B5-R14-L P135 Ry-B
P56 L-R15-L P136 Rz-B
P57 B1-R15-L P137 DM-B
P58 B5-R15-L P138 HOMO-B
P59 L-Y-L P139 LUMO-B
P60 B1-Y-L P140 Area-B
P61 B5-Y-L P141 Volume-B
P62 Area-L P142 PSA-B
P63 Volume-L P143 Ovality-B
P64 PSA-L P144 q(Ag)-A
P65 Ovality-L P145 Rx-A
P66 VF(C5=O6)-L P146 Ry-A
P67 VI(C5=O6)-L P147 Rz-A
P68 VF(N4-H9)-L P148 HOMO-A
P69 VI(N4-H9)-L P149 LUMO-A
P70 L-X-S P150 DM-A
P71 B1-X-S P151 Area-A
P72 B5-X-S P152 Volume-A
P73 L-R16-S P153 PSA-A
P74 B1-R16-S P154 Ovality-A
P75 B5-R16-S P155 Eqv(L)
P76 BL1-2-S P156 Eqv(B)
P77 BL4-5-S P157 Eqv(A)
P78 BL4-7-S P158 Time(H)   
P79 BL3-8-S P159 T (˚C)
P80 BL1-12-S P160 DC(Solvent)

(12.1) Performance with different ML algorithms for different subsets

Table S32. Train and Test RMSEs Obtained using the RF Algorithm for Various Subsets

set train test 
LA 2.29±0.12 4.68±1.47
LB 2.55±0.2 6.17±1.7
LC 3.13±0.24 6.92±1.92
LD 2.86±0.26 8.04±3.42

LA-LB 4.28±0.19 8.11±2.35
LA-LB-LC 5.35±0.18 8.34±2.05
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LA-LB-LC-LD 5.22±0.11 7.52±1.05

Table S33. Train and Test RMSEs Obtained using the kNN Algorithm for Various Subsets 

set train test 
LA 2.65±0.21 4.65±1.24
LB 4.66±1.57 8.09±2.36
LC 6.07±1.53 10.98±6.55
LD 4.71±1.09 8.73±2.48

LA-LB 3.78±0.3 7.59±2.54
LA-LB-LC 4.58±0.89 8.07±3.02

LA-LB-LC-LD 4.02±0.43 7.86±2.47

Table S34. Train and Test RMSEs Obtained using the GB Algorithm for Various Subsetsi 

set train test
LA 1.95±0.46 5.00±1.27
LB 1.77±0.57 7.77±2.10
LC 2.34±0.86 7.44±3.08
LD 1.39±0.33 7.74±2.92

LA-LB 3.52±0.84 8.67±2.05
LA-LB-LC 3.82±0.66 8.47±1.41

LA-LB-LC-LD 4.09±0.25 8.31±1.32
i Ligand subsets with very small number of samples (LB, number of samples = 56) and (LD, 
number of samples = 36) results in significant over-fitting. 

Table S35. Train and Test RMSEs Obtained using the DT Algorithm for Various Subsetsi 

set train test 
LA 2.73±0.12 5.72±1.65
LB 1.57±0.19 7.03±2.33
LC 2.95±0.19 7.9±2.49
LD 1.16±0.15 7.92±4.43

LA-LB 4.34±0.28 8.73±3.33
LA-LB-LC 6.66±0.35 10.08±3.19

LA-LB-LC-LD 6.27±0.32 9.97±2.02
i Ligand subsets with very small number of samples (LB, number of samples = 56) and (LD, 
number of samples = 36) results in significant over-fitting. 

Table S36. Train and Test RMSEs Obtained using the DNN Algorithm for Various Subsets 

set train test 
LA 2.96±0.40 5.32±1.40
LB 4.95±1.13 7.96±2.26
LC 7.44±2.11 10.17±4.16
LD 5.79±0.34 7.99±1.84

LA-LB 5.45±2.01 7.51±2.18
LA-LB-LC 6.70±1.50 8.55±2.67

LA-LB-LC-LD 7.91±1.33 8.54±2.00
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 Table S37. Train and Test RMSEs Obtained using the GPRRBF Algorithm for Various 

Subsets i

set train test 
LA 1.6±0.39 4.7±1.51
LB 6.81±1.19 7.84±2.35
LC 0.98±1.3 17.15±10.96
LD 6.91±0.37 8.65±2.17

LA-LB 3.75±0.77 6.39±1.82
LA-LB-LC 1.94±0.38 10.37±4.33

LA-LB-LC-LD 3.01±0.32 8.97±2.94
i Ligand subsets with relatively smaller number of samples (LA, number of samples = 69) and 
(LC, number of samples = 79) results in significant over-fitting.

 (13) Performance of the DNN algorithm for MLS model with different binary and 

ternary combinations of samples

Table S38. Train and Test RMSEs Obtained using the DNN Algorithm for Various Subsets 

set train test
LA-LD 4.29±0.38 6.50±1.29
LA-LC 3.16±0.54 5.80±1.11
LB-LC 4.59±0.49 6.49±1.20
LB-LD 2.76±0.47 4.99±0.89
LC-LD 4.24±0.70 7.60±3.42

LA-LB-LD 4.91±0.45 6.99±1.19
LA-LC-LD 4.11±0.54 7.07±2.60
LB-LC-LD 4.53±0.43 7.79±2.43

(14) Details of out-of-bag sets

External validation is essential for determining the quality of a machine learning model. An 

out-of-sample test, which involves testing the model performance on samples that are not 

present in the training set, is a better way to assess the model generalizability. We have 

considered three different sets of out-of-bag samples as listed in the following section.

(14.1) Set-1

Ligand diversity

LD (N-acyl-protected amino oxazoline (APAO)) 
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N

O

AcHN

LD-3

Coupling partner diversity

Table S39. Identities and Notations of the Coupling Partners used for Pd(II)-Catalyzed 

Enantioselective Arylation of the Cyclobutyl Carboxylic Amide

I

CH3

I

COMe

I

NO2

I

CF3

I

CN

I

F

CP2 CP24 CP25 CP26 CP27 CP28
I

Cl

I

Br

I

CF3

I

F

I

Cl

I

Me

CP29 CP30 CP35 CP36 CP37 CP38
I

OMe

I I

CO2Me

I

OMe

I

O

O
I

F

CP39 CP40 CP41 CP56 CP55 CP89

I

CH3H3C

I

CF3F3C

CP90 CP91

Table S40. Identities and Notations of the Coupling Partners used for Pd(II)-Catalyzed 

Enantioselective Alkenylation of the Cyclobutyl Carboxylic Amide

I

Me

I

F

I

Cl

I

CP68 CP69 CP72 CP73

Br

I
IMeO ICl IBr
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CP74 CP76 CP78 CP79

I

Br

I

CF3
I

F

Br

I

CP81 CP82 CP83 CP85

I

Me

I

Me

CP87 CP88
(14.2) Set-2

Ligand diversity

LD (N-acyl-protected amino oxazoline [APAO])

AcHN N

O

Ph N

O

PhAcHN

Ph

LD-1 LD-4

Substrate diversity

acyclic substrate 

Ar = 4-(CF3)-C6F4

O

NHArF

H

H

S6

Coupling partner diversity

Table S41. Identities and Notations of the Coupling Partners used for Pd(II)-Catalyzed 

Enantioselective C−H Arylation of Isobutyric Acid 

I

CH3

I

NO2

I

CF3

I

F

I

Cl

I

Br

CP2 CP25 CP26 CP28 CP29 CP30
I

OCF3

I

CO2Me

I

F

I

Cl

I

Me

I

OMe

CP32 CP33 CP36 CP37 CP38 CP39
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I I

BrF

I

I

O

O

I

O

O
I

OMe

CP40 CP52 CP53 CP54 CP55 CP56

S IMe S I

I

Ph

I

OTBS

I

OTBS

I

OBn

CP57 CP58 CP59 CP60 CP61 CP62
I

NBnBoc

I

Br

I

I

I

OMe

OMe

I

FF

F

CP63 CP64 CP65 CP66 CP67

Table S42. Identities and Notations of the Coupling Partners used for Pd(II)-Catalyzed 

Enantioselective Vinylation of Isobutyric Acid

I

Me

I

MeO

I

Ph

I

CP68 CP69 CP70 CP71

F

I

Cl

I

Br

I

F3C

I

CP72 CP73 CP74 CP75
IMeO IF ICl IBr

CP76 CP77 CP78 CP79

I

F

I

Br

I

CF3
I

F

Br

CP80 CP81 CP82 CP83
IBr

Br

I I

OMe

CP84 CP85 CP86

(14.3) Set-3

Ligand diversity
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LE (mono-N-protected aminoethyl thioether (MPAThio)) 

NHAc

S
Ph

LE-1

Substrate diversity

Table S43. Identities and Notations of the Substrates used for γ-C(sp3)−H Arylation of Free 

Cyclopropylmethylamine

H

R13

NH2
R13 =

3 5

S7 S8 S9 S10 S11

O

F

4

CF3

4

S12 S13 S14 S15 S16
OBn

3

OMe

3

OPh OMe

S17 S18 S19 S20 S21

F Cl

S22 S23

Table S44. Variance Analysis to Understand the Effect of Inclusion of Randomized Samples 

in the Training Set for Predictions on the Out-of-Bag Samples 

feature variance before addition 
of samples

variance after inclusion 
of four samples

variance 
difference

VF(C9=O13)-MLS 420.4970688 30027.13541 29606.64
VI(C9=O13)-MLS 63731.9411 72633.71554 8901.774

NMR2-MLS 4274.198402 5441.466174 1167.268
NMR1-MLS 1343.426868 1598.388449 254.9616
NMR9-MLS 5.667467416 247.620762 241.9533
NMR8-MLS 23.01744518 237.9591261 214.9417
Area-MLS 18066.93177 17854.36202 212.5698

Volume-MLS 21162.45422 20972.27192 190.1823
VF(C11-H12)-MLS 13800.39711 13960.94809 160.551

NMR13-MLS 103.0361718 221.2909603 118.2548
VI(C6=O7)-MLS 22074.19406 22165.08087 90.88682
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Area-CP 2748.941174 2821.361494 72.42032
NMR3-MLS 2612.476455 2684.487823 72.01137
Volume-CP 2754.571195 2823.184739 68.61354

BA10-11-14-MLS 6.373564591 37.65649288 31.28293
NMR7-MLS 1866.966003 1837.195294 29.77071

Area-B 518.8457345 547.5890209 28.74329
Volume-MC 1917.789869 1891.176001 26.61387
Volume-B 334.09499 359.0887874 24.9938

VF(C6=O7)-MLS 1062.719007 1085.650668 22.93166
NMR15-MLS 3665.106113 3683.207868 18.10176

Area-A 3.537894889 21.41916759 17.88127
Volume-A 4.08883604 19.34769639 15.25886

PSA-B 249.7082519 262.9220656 13.21381
VI(C11-H12)-MLS 27727.06607 27714.79066 12.27541

To examine the unexpectedly higher performance of the trained DNN on the Set-3 

OOB samples, we have compared the feature variance in our datasets (a) before and (b) after 

the inclusion of the four randomized samples to the training set. Interestingly, a features 

exhibited, as described in Fig S9, are found to exhibit large differences in the variance upon 

adding four OOB samples. The vibrational frequency and intensity of (C9–X13, where X = O 

or H) are the top two features with the largest difference in variance. It may further be noted 

that the samples in the training set contains a carbonyl group (C=O) whereas and in Set-3, it 

is a C–H bond. The 25 features with the high variance difference are listed in the Table S44. 

With these characteristics, the migration of four samples seems to improve the learning 

capability of the DNN to be deployed for predicting samples from Set-3 out-of-bag.

(A) (B)

Pd
OO

N

O
H

O

O
H

H
H

1

2
3

4
5

6
7
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9 10

11
12

13

14

15

1920

22

VF(C9O13)
VI(C9O13)

NMR2
NMR1
NMR9

Pd
SO

N

O
H

H2N

H

H
H

Ph

3
1

2
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4
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12
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19

20

22

VF(C9H13)
VI(C9O13)

NMR2
NMR1
NMR9

Fig S9. A representative example of the MLS model employed for feature extraction for a 

(A) typical sample in the general training set, and (B) one from Set-3 out-of-bag sample 



S49

exhibiting larger differences in the feature variance. Only relevant features with highest 

differences in variance between the test and out-of-bag sets are shown here. See Table S5 

for additional details of features.

15. Selective Reduction of Features

We have handpicked a set of features to assess the importance of features in the learning of 

the DNN model (Table S45). As can be seen, the removal of the mechanistically important 

features, resulted in a test RMSE of 9.92±1.79 %ee.

Table S45. Train and Test RMSEs Obtained using the DNN Model with Reduced Number of 

Features

features removed = 62 train test
type of features: NPA charges, NMR, 
sterimol, vibrational frequency and 
vibrational intensity, buried volume

7.97±1.31 13.39±3.08

features retained = 91
features ‘Rx-MLS', 'DA3-4-5-6-MLS', 'DA4-5-1-2-MLS', 'DA4-5-6-7-MLS', 'DA9-10-11-

14-MLS', 'DA9-10-11-12-MLS', 'DA1-5-6-7-MLS', 'DA1-12-11-14-MLS', 'DA1-
5-4-20-MLS', 'DA6-5-4-20-MLS', 'BA1-2-3-MLS', 'BA3-4-20-MLS', 'BA1-5-4-
MLS', 'BA5-4-20-MLS', 'BA5-6-7-MLS', 'BA7-6-22-MLS', 'BA10-11-12-MLS', 
'BA10-11-14-MLS', 'BA1-12-11-MLS', 'BA5-1-12-MLS', 'NB1-12-MLS', 'NB7-
12-MLS', 'BL1-2-MLS', 'BL5-6-MLS', 'BL6-7-MLS', 'BL11-12-MLS', 'BL4-20-
MLS', 'BL4-19-MLS', 'BL6-22-MLS', 'BL10-15-MLS', 'HOMO-MLS', 'LUMO-
MLS', 'DM-MLS', 'Area-MLS', 'Volume-MLS', 'PSA-MLS', 'Ovality-MLS', 
'HOMO-MC', 'LUMO-MC', 'DM-MC', 'Rx-MC', 'Ry-MC', 'Volume-MC', 'PSA-
MC', 'Ovality-MC', 'q(Pd)-MC', 'DM-CP', 'HOMO-CP', 'LUMO-CP', 'Rx-CP', 
'BL1-2-CP', 'BL1-6-CP', 'BL1-7-CP', 'NMR1-CP', 'NMR2-CP', 'NMR6-CP', 
'NMR7-CP', 'q1-CP', 'q2-CP', 'q6-CP', 'Area-CP', 'Volume-CP', 'PSA-CP', 
'Ovality-CP', 'Rx-B', 'Ry-B', 'Rz-B', 'DM-B', 'HOMO-B', 'LUMO-B', 'Area-B', 
'Volume-B', 'PSA-B', 'Ovality-B', 'q(Ag)-A', 'Rx-A', 'Ry-A', 'Rz-A', 'HOMO-A', 
'LUMO-A', 'DM-A', 'Area-A', 'Volume-A', 'PSA-A', 'Ovality-A', 'Eqv(L)', 
'Eqv(B)', 'Eqv(A)', 'Time(H)', 'T (˚C)', 'DC(Solvent)'

16. ML Model Interpretability using SHAP (Shapley Additive Explainability)

Interpretability is important to gather additional trust of ML models, which in turn, can help 

in making informed decisions about how to improve them. The interpretation of complex 

DNN model findings adds a layer of model validation, converting it to a grey box rather than 
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a black box model. In this work, we used the Shapley additive explanations (SHAP) method, 

which is an used to explain the ML model predictions.14 The SHAP method is based on the 

Shapley values that quantify the contributions of individual participants to a collaborative 

game in the context of game theory.15 This idea is extended to feature attributions by treating 

a team performance as an output and each player contribution as the feature significance. The 

best test run (RMSE of 4.1 %ee) of the trained DNN model based on molecular features 

derived from the MLS entity was selected. The trained model was then used in the feature 

attribution procedure. Herein, we have employed the DeepExplainer to approximate SHAP 

values for DNN, which is an enhanced version of the DeepLIFT algorithm (Deep SHAP).16 

17. Conformational Sampling using CREST

The CREST sampler is used for carrying out additional conformational analyses. A 

representative set of eight different MLS complexes, from three subsets (LA, LC, LD) was 

subjected to the CREST sampling first. The single point energy calculations were performed 

on all the CREST derived conformers using the DFT(B3LYP-D3) method. The two lowest 

energy conformers (denoted as crest conformer set 1 and crest conformer set 2) were chosen 

for further geometry optimization using same level of theory, and the energies were then 

compared with the original geometries (Table S46). Ten out of the sixteen CREST 

conformers were found to be of higher energies than the original conformers of different 

ligand sets. The six lower energy conformers, identified by the sampler showed only a 

modest difference (~ 0.5 kcal/mol lower) as compared to the original conformer. It may also 

be noted that our initial geometry optimization was performed by considering various 

possible noncovalent interactions (lone pair–π, π–π stacking, C–H…π) and C  H…Pd agostic 

interaction that are likely in the metal-ligand-substrate (MLS) complex. These findings 

indicate that the geometries of the MLS entity and the molecular descriptors collected from 

them are adequate for the present study. 
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Table S46. Comparison of energies (in kcal/mol) between the conformers obtained through 

the CREST sampling and the original conformer of the MLS entity

MLS 
entity

original 
(kcal/mol)

crest conformer set 1 
(kcal/mol)

crest conformer set 2 
(kcal/mol)

LA-2-s2 0 0.4 0.4
LA-3-s2 0 -0.7 -0.5
LA-4-s2 0 0.2 0.2
LA-5-s2 0 -0.4 0.2
LD-1-s3 0 3.5 3.5
LD-2-s4 0 0.3 0.3
LC-1-s2 0 -0.5 -0.2
LC-2-s2 0 -0.02 0.6

Additionally, we have extracted descriptors from the CREST sampled MLS conformers. To 

examine the variation in descriptor value, we have calculated % change in each of the 

descriptor values as, ΔD = ((Dorg – DCREST)/Dorg)*100, where Dorg and DCREST respectively 

denote the descriptor values of our original MLS entity and that of the CREST conformer. 

For each of the 16 conformers, the % change was then plotted in the form of a heat map in 

Fig. S10. The larger number of cells spanned by the green color indicates that majority of 

descriptors did not change with respect to the descriptors obtained from the original 

conformer. Some of the parameters (e.g., dihedral angles DA4-5-1-2-MLS and DA1-5-6-7-

MLS) showed a large variation as these are for different conformers. For the higher energy 

conformers of the LD-1-s3 MLS system (Table S46), the vibrational intensity and NMR 

values (VI(C6=O7)-MLS, VI(C11-H12)-MLS, and NMR7) were found to be different than 

the original conformer. 
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Fig S10. Heat map for variation in descriptor value in case of CREST conformers. Columns 2 to 16 

represent various conformers while the rows are the descriptors.
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Using the descriptors obtained from the CREST conformers, two new datasets were formed 

by replacing original descriptors. Test and train RMSE obtained by using our DNN algorithm 

on these new datasets are tabulated in Table S47. An increase in the test RMSE for both the 

new conformer sets further demonstrates that the molecular descriptor derived from original 

MLS conformers are more suitable for the system examined in this study.

Table S47. Comparison of the model performance obtained using the original conformer of 

the MLS entity and the additional conformers as obtained through the CREST sampling

Dataset train test
original MLS dataset 4.48±0.46 6.32±0.90

CREST conformation set 1 4.53±0.41 6.45±0.95
CREST conformation set 2 4.57±0.53 6.42±1.02

18. Analyses of Performance of the DNN in the Low %ee Region

In the case of Pd-catalyzed enantioselective -C(sp3)−H functionalization using the MPAA 

ligand family only very few examples are experimentally known with low %ee. Such a 

distribution of %ee is therefore the ground truth pertaining to this catalytic asymmetric 

transformation.

Additional analyses were performed as follows, 

(A) The test RMSEs of reactions belonging to different class intervals were evaluated, which 

are found to be >80 (5.73), <80 (8.08), <60 (6.37). Good performance noted in the <60%ee 

class suggests the model generalizability even for low %ee reactions.

(B) Another out-of-bag (OOB) set from the original 240 reactions was also created. Four 

samples with <80 %ee were chosen at random as the new OOB set, leaving 236 reactions for 

the training set. This new OOB set was evaluated using the DNN model trained on 236 

reactions. This process was repeated using five such OOB sets, with each run carrying 4 new 

randomly chosen samples in the OOB set. Similarly, another set of OOB consisting of 6 

radomly chosen reactions were also considered, results of both these are provided in Table 



S54

S47. These findings demonstrate that the MLS model is effective in predicting low %ee 

reactions as well.

Table S47. Test RMSEs Obtained using the DNN Model with Different OOB sets with 

samples with <80 %ee

randomly chosen 4 reactions randomly chosen 6 reactions
runs RMSE runs RMSE

1 7.42 1 8.89
2 9.17 2 7.41
3 8.53 3 8.54
4 8.09 4 7.84
5 5.87 5 6.54

avg.±std. dev. 7.82±1.13 avg.±std. dev. 7.84±0.83

19. Workflow for New Experiment Planning

 

HO
O

MeO2C

MeO2C

I

HO
OH
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Fig S11. A step-by-step workflow is provided for doing new experiments. a Select the 

catalyst and ligand when designing a new reaction. b The Github repository contains a 

representative set of Cartesian coordinates for all reacting components. c,d Use the methods 

described in Sections 3 and 4 for quantum chemical calculations and feature extraction. e Use 

the DNN-new-exp.py python file from the Github repository for out-of-bag samples 

prediction.
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