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A: Distribution of the seven structure types in data for mono-metallic nanoparticle (MMNP) structure
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Fig. S1 | The distribution of the seven structure types in the dataset used for MMNP structure solution. In total,
the dataset consists of 3742 structures, whereof 361 are body-centered cubic (bcc), 703 are decahedral, 152 are
face-centered cubic (fcc), 2014 are hexagonal closed packed (hcp), 57 are icosahedral, 95 are octahedral and 361

are simple cubic (sc).

B: Fitting parameters and mean absolute error (MAE) measures of reconstructed MMNPs for analysis

of simulated pair distribution functions (PDFs)

In the PDF comparisons a scale-factor, a contraction/expansion-factor and an isotropic atomic displacement
parameter (ADP) are refined. This approach is taken in brute force methods such as clusterMining! for deciding
on the best cluster for a given measured PDF. It accounts for small differences in bond-length, scale-factor, and
thermal motion without changing the geometric arrangements of the atoms in the clusters



Table S1 | Refined parameters for MMNPs obtained from the DeepStruc algorithm for analysis of simulated

PDFs. The MAEs for the predicted xyz-coordinates are given along with the Ryp-values obtained in the PDF

fit. The structures are shown in Fig. 3 of the main paper.

Expansion/ R
Name #Atoms | Scale | contraction Biso MAE [A] MAE fit [A] P
[Yo]
factor
bcc 89 0.146 0.959 0.428 | 0.132+£0.086 | 0.083 +£0.068 21.2
Decahedral 105 0.107 1.030 0.238 | 0.140£0.095 | 0.116 +0.081 39.0
fec 171 0.117 0.957 0.284 | 0.182+0.073 0.116 £ 0.053 54.2
hcp 128 0.082 0.974 0.081 | 0.093 £0.041 0.043 +£0.025 10.8
Icosahedral 55 0.119 0.962 0.390 | 0.120£0.058 | 0.092 +£0.044 37.8
Octahedral 146 0.111 0.975 0.306 | 0.132+£0.056 | 0.106 +0.051 48.2
sc 177 0.158 0.984 0.210 | 0.091£0.045 | 0.091 £0.043 46.4
C: The Pt fcc Pair Distribution Functions (PDFs) from Quinson et al.
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Fig. S2 | The 3 PDFs from Quinson et al..> The size estimate were determined by Quinson et al. by fitting the

data using a spherical envelope.




The number of atoms in the particles were calculated as:
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Where V is the volume, r is the radius and APF is the atomic packing fraction which for fcc is 0.740. This

yields a number of 203 atoms (1.8 nm), 371 atoms (2.2 nm) and 1368 atoms (3.4 nm).

D: Implementation of the sampling and fitting process of the predicted structures from latent space

During the inference process, a PDF is embedded into the latent space using a normal distribution by the prior
neural network. Samples drawn from this normal distribution can be used to obtain predicted structures to be fit
to the PDF. For the simulated test set (seven structure types and stacking faulted) only a single sample was drawn
from the latent space to obtain structures for each of the PDFs. For the experimental data, in order to explore the
latent space to a larger extent, we scale the standard deviation (o) of the normal distribution by o: 3, 5 and 7.

We then chose to sample 1000 predicted structures for each of the three normal distributions (c: 3, 5 and 7) and
fit them to the data. For the experimental data we report the best fitted structure within each of the distributions
(Supplementary Information section E). Fig. S3 demonstrates the histogram of x- and y-positions in latent space
when sampling from a mean latent space position of (9.7, 14.8) using the o: 3 distribution for the Aui44(PET)s0.
We here sample from a normal distribution, however this could be optimized in many ways e.g. by drawing
structures from a uniform distribution, by sampling from latent space regions that are well-populated by the test
set, by favouring sampling from regions in the latent space that is populated by underrepresented structures, or
by introducing chemical knowledge into the sampling process. Another way to alter the latent space would be to
deviate from the isotropic normal distributions. The latent distribution of the CVAE is constrained to be a
symmetric normal distribution (with a diagonal covariance matrix). In some cases, this might be limiting and

one could consider allowing additional flexibility to the latent space structure. One of the ways of doing this is
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by relaxing the diagonal covariance matrix assumption, so that asymmetric normal distributions can be modelled.
This is previously studied by Jakub et al.> where more complex structures for the covariance matrix are modelled
for VAE-type models. This additional flexibility of the latent distribution increases the complexity of the learning

problem but could also provide efficient exploration of the latent space.
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Fig. S3 | Representative histogram of zo- and zi-positions in latent space when sampling from a mean latent
space position of (9.7, 14.8) using the o: 3 distribution for Aui44(PET)s0. The black dashed line indicates the

mean sampling position.



E: Comparing the DeepStruc with baseline algorithms

To evaluate the results, we compare our results with two different approaches that can be used to identify the
structural model.

The first approach is the brute-force approach, further described in the part E.1, proposed by Banerjee et. al.,!
which is fitting all constructed MMNP structures to the dataset and reporting the Ry, value. The second approach
is a tree-based supervised learning algorithm, further described in part E.2, which has been trained on the same
MMNP structures set as DeepStruc but using 100 PDFs with different simulation parameters for each MMNP
structure. The range of simulation parameters used is shown in Table S5. While the brute-force method is directly
providing us with the best fit, it is computationally expensive. The tree-based algorithm can, like DeepStruc,
predict the chemical structure based on its PDF in less than a second. However, the brute-force approach and the
tree-based algorithm cannot map a low-dimensional space of chemical structures that can be used to analyse
similarities between structures. Also, they are constrained to the structural database whereas the regular CVAE
without a graph-based input and the DeepStruc algorithm has generative capabilities which make it possible to
both interpolate and extrapolate slightly from the training distribution. Fig. S2 illustrates a comparison of the
results of the brute-force, tree-based and DeepStruc. The fits from the brute-force approach have a slightly lower
Rywp value than the fits from the tree-based approach and DeepStruc. However, the brute-force approach is at
least 3 orders of magnitude slower and consumes at least 4 orders of magnitudes more CO: than the Machine
Learning (ML) algorithms after they have been trained, see section E.3.. The training process of the ML
algorithms has to be done only once compared to the brute-force algorithm which has to be redone on every

experimental dataset that is collected.
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Fig. S4 | Comparing DeepStruc with baseline models. DeepStruc are used to predict a structure from each of
the three different datasets, Auisa(p-MBA)eo, the Pt fcc and Auias(PET)s0>* as described in section D. The
structures predicted by DeepStruc are compared to the top-3 predictions from the brute-force approach and the
tree-based model. The fits have been made using a scaling factor, an isotropic expansion of the structure and an

isotropic atomic displacement parameter (ADP) in DiffPy-CMI.>



E.1.: Brute-force modelling

Brute-force metal mining was done by creating MMNPs with the Python library atomic simulation environment
(ASE) module® and fitting them to the data iteratively in DiffPy-CMI®, from 0 to 30 A, as proposed by Banerjee
et al.! The advantage of the brute-force approach is that it directly yields the Ry, value of the fit of the structure
to the dataset. The disadvantage is that it is computationally expensive. In this project, the results of the brute-

force approach are used as a baseline for the predictions from the ML predictions.

E.2.: Using a tree-based classification algorithm to predict a MMNP from a PDF

A gradient boosting decision tree (GBDT) algorithm was trained to do the classification job of predicting the
MMNPs from a PDF.” For each MMNP, 130 PDFs were simulated with parameters in the range shown in Table
S5. The GBDT algorithm is trained on 100 of the PDFs, 15 of the PDFs were used for validating the model
during the training process and 15 of the PDFs were used to calculate the accuracy of the model after the training
process (test set). The model is trained with a learning rate on 0.15, max depth on 3 and an early stopping criteria

on 5 rounds of no improvement.

Table S2 | DiffPy-CMI simulation parameters for PDF data of the data used to train the tree-based classifier.

Imin (A) 0.0 Qumin (A1) 0-2 Biso (A2) 0.1-1
Imax (A) 30.0 Qmax (A1) 12-25 Delta2 (A2) 2.0
I'step (A) 0.1 Qadamp (A-l) 0.01-0.04

The loss curve, Fig. S5, illustrates that the GBDT did not improve significantly after about 100 epochs.
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Fig. S5 | Loss curve from the training process of the GBDT.

The model subsequently predicts with an 83.87 % accuracy on the test set. Accuracy from top 3 is 95.95 % and
accuracy for top 5 is 97.89 %. The GBDT algorithm does often yield very similar results to the brute-force
modelling method, despite for Aui44(PET)s0, where it does not identify the icosahedral structure as the best fitting
structure. We believe this is because the icosahedral structure was underrepresented in the model, which can be

fixed with data augmentation.
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E.3.: Tracking the CO; emission of DeepStruc and the baseline models using CarbonTracker?

Table S3 | CO; cost due to the energy consumption of the brute-force approach, the tree-based classifier and

DeepStruc to determine the structure of the three experimental files - Au144(PET)s0, Aui44(p-MBA)eo and the Pt

fce MMNP 2# Generating the MMNPs takes about 2 hours and 53 min (0.12 kWh).

Method Training process (kWh / min) Prediction process (Wh / sec)
Brute-Force - 250/ 51840
Tree-based Classifier 0.76 /1229 0/0
DeepStruc 3.81/872 0/0
DeepStruc (stacking fault) 1.86/514 0/0

F: MAE measures of reconstructed stacking faulted nanoparticles

Table S4 | Refined parameters for stacking faulted structure obtained from the DeepStruc algorithm for

analysis of simulated PDFs. The MAEs for predicted xyz-coordinates is given along with the Ryp-values

obtained in the PDF fit. The structures are shown in Fig. 6 of the main paper.

Expansion/ R
Name #Atoms | Scale contraction Biso MAE [A] MAE fit [A] o
P [Yo]
actor

HCP 72 0.007 1.010 0.193 0.047 £0.026 0.038 £0.027 15.2
SF 1 72 0.007 1.003 0.266 0.026 £0.016 0.023 £0.015 8.6

SF 2 72 0.006 1.000 0.268 0.031 £0.014 0.031+£0.014 25.6

fec 72 0.006 1.000 0.227 0.029 £0.011 0.029 £0.011 6.8
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G: Simulation parameters of the PDFs

All PDFs used for conditioning DeepStruc were simulated using the DiffPy-CMI library.’

Table S5 | DiffPy-CMI simulation parameters for the PDFs of the seven structure types used in Fig. 1-5.

min (A) 2.0 Qumin (A7) 0.7 Biso (A2) 0.3
Imax (A) 30.0 Qmax (A1) 25.0 Delta2 (A2) 0.0
I'step (A) 0.1 Qadamp (A_l) 0.04

Table S6 | DiffPy-CMI simulation parameters for the PDFs of the stacking faulted structures in Fig. 6.

min (A) 0.0 Qumin (A7) 0.7 Biso (A2) 0.0
Imax (A) 20.0 Qmax (A1) 25.0 Delta2 (A2) 0.0
I'step (A) 0.1 Qadamp (A_l) 0.04

H: Normalisation of the PDFs
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Fig. S6 | PDF and normalised PDF of the Aui44(p-MBA)¢o dataset from Jensen et al.!®

I: Graph representation of MMNPs

Figure S7 shows a decahedron consisting of seven atoms alongside the components describing it in our chosen

graph representation. Atoms 3 and 4 are connected through an edge, indicated by a yellow square in the adjacency

matrix. Atoms being further separated than the lattice constant, such as atoms 3 and 5, do not have an edge

indicated by the black square in the adjacency matrix. Further, the edges in our graphs are undirected as we

consider them to be bonds, hence the flow of information through bonded atoms are independent of direction.
Chemical structure Graph representation
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Fig. S7 | The chemical structure is shown in Euclidean space and has all atoms numbered. Atom number 3 has
four neighbours each with a bond distance of approximately 2.76 A. The graph representation is a mathematical
approach to describe a chemical structure which maintains the interatomic relationship (edges) during translation,
rotation and permutation. By adding the xyz-coordinates to the nodes and linking them through the adjacency

matrix, the geometrical information can be transferred to the learning process of DeepStruc.
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