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Appendix

A1 Chemical language transformation pipeline

Fig. A1: Order of transformation steps in SMILES preprocessing
pipeline. Upon the user’s specification of boolean variables for each of the listed,
optional SMILES transformations, the shown pipeline is executed. In a first step,
the user decides whether the input SMILES should be converted into canonical
SMILES or not. In the next steps, the user can specify whether the bond di-
rection ((E) or (Z), or rather the removal of back- and forward slashes in the
string) or the chirality information should be present. Then, if stated, the trans-
formation of the aromatic moiety into a kekulized representation takes place.
At last, the algorithm explicitly adds bond information and hydrogen atoms to
the SMILES string, if defined by the user. Note that the same pipeline can be
applied to SELFIES [39], in that case the SMILES is converted to SELFIES
after the shown pipeline.
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Fig. A2: When stereoinformation is removed from the original SMILES
string (left), then it represents multiple molecules (right). This figure
shows the different ways to remove information of (S,E )-4-phenylbut-3-en-2-ol.
The SMILES strings are also represented by the corresponding molecules. A:
Stereoinformation on a tetrahedral stereocenter is represented in the SMILES
string by @ and @@. Here, @ lists the neighbors clockwise, whereas @@ lists the
neighbors anticlockwise. The SMILES string with the removed information cor-
responds to two molecules. B: Stereoinformation on a double bond is represented
by /.../ or \...\(both corresponding to a (Z ) double bond) and /...\or \.../ (both
corresponding to an (E ) double bond) in the SMILES string. Again, the SMILES
string with the removed information corresponds to two molecules. C: When
both, the stereoinformation on the double bond and on the stereocenter, are
removed, four molecules are possible from that SMILES representation.
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Fig. A3: Number of unique SMILES that can be obtained per molecule
from the Tox21 dataset. For each molecule, we measured the number of
unique SMILES sequences obtained through augmentation. We made two as-
sumptions. First, if no new SMILES sequence was generated for 1000 augmen-
tations, we assumed that all augmentations had been generated. Secondly, when
10, 000 unique SMILES were generated, we proceeded with the next molecule
(to save runtime).
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Table A1: Differences between the original Tox21 dataset [90] and the
MoleculeNet distribution [11]

Official Dataset DeepChem Dataset

total number of entries 12707 8014

number of unique compounds 8982 (70.7%) 8011 (99.97%)

number of canonical SMILES 1831 (14.4%) 7831 (97.7%)

number of compounds
with aromatic rings

8582 (67.5%) 2581 (32.3%)

number of kekulized compounds 3269 (25.7%) 0 (0.0%)

number of compounds
with directed double bonds

837 (6.6%) 466 (5.8%)

number of compound
with stereocenters

2247 (17.7%) 1322 (16.5%)

number of compounds
with directed double bonds

and stereocenters
159 (1.3%) 106 (1.3%)

number of compounds
with countermolecules/-ions

2557 (20.1%) 246 (3.1%)

number of compounds
with counterions

1082 (8.5%) 141 (1.8%)

number of compounds
with molecule twice

0 (0.0%) 56 (0.7%)
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A1.1 Effect of number of attention heads on model performance

Fig. A4: Ablation study on the number of attention heads across
MoleculeNet datasets. In this experiment, we vary the number of atten-
tion heads (m) of our model and evaluate its performance on all datasets from
MoleculeNet - BACE (1 task), Clintox (2 tasks), SIDER (27 tasks), BBBP (1
task), Tox21 (12 tasks) and HIV (1 task). We consider m ∈ {1, 3, 6, 12}. Each
experiment is repeated 10 times.

(a) Mean ROC-AUC and its 95% CI. The performance
varies little, except for BACE which shows the best per-
formance for m = 6 heads. SIDER is excluded since the
model performance was constant(= 0.66).

(b) ROC-AUC is
averaged across all
MoleculeNet datasets
for each head size.

m Size AUC

1 1.7M 0.827±0.1

3 3.1M 0.819±0.1

6 5.3M 0.831±0.1

12 9.6M 0.828±0.1

A1.2 Tox21 Results
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ROC-AUC
Embedding Augment: 7 Augment: 3

one-hot 0.842 ± 0.004 0.855 ± 0.003
learned 0.832 ± 0.005 0.851 ± 0.003

pretrained (fixed) 0.845 ± 0.005 0.853 ± 0.002
pretrained (flexible) 0.847 ± 0.004 0.853 ± 0.003

Table A2: Ablation study on different SMILES embeddings on the Tox21
dataset [90]. For the results in the main manuscript, the learned embeddings were
used. The pretrained embeddings were taken from (author?) [46] who trained a VAE
on ChEMBL data [124]. In the flexible configuration the embeddings were finetuned
on the Tox21 dataset. Without augmentation, the advantage of pretrained embeddings
was significant, especially compared to learned embeddings.

Dataset BACE BBBP Tox21 Clintox SIDER
Average

# of tasks 1 1 12 2 27

Ours 0.861±0.039 0.915±0.023 0.795±0.050 0.896±0.006 0.619±0.037 0.817±0.031

TF Robust 0.824±0.022 0.860±0.087 0.698±0.012 0.765±0.085 0.607±0.033 0.751±0.048

GraphConv 0.854±0.011 0.877±0.036 0.772±0.041 0.845±0.051 0.593±0.035 0.788±0.03

Weave 0.791±0.008 0.837±0.065 0.741±0.044 0.823±0.023 0.543±0.034 0.747±0.035

SchNet 0.750±0.033 0.847±0.024 0.767±0.025 0.717±0.042 0.545±0.038 0.725±0.032

MPNN 0.815±0.044 0.913±0.041 0.808±0.024 0.879±0.054 0.595±0.030 0.802±0.04

MGCN 0.734±0.030 0.850±0.064 0.707±0.016 0.634±0.042 0.552±0.018 0.695±0.034

AttentiveFP 0.863±0.015 0.908±0.050 0.807±0.020 0.933±0.020 0.605±0.060 0.823±0.033

N-GRAM 0.876±0.035 0.912±0.013 0.769±0.027 0.855±0.037 0.632±0.005 0.808±0.023

[107] 0.851±0.027 0.915±0.040 0.811±0.015 0.762±0.058 0.614±0.006 0.791±0.029

GROVER 0.878±0.016 0.936±0.008 0.819±0.020 0.925±0.013 0.656±0.006 0.843±0.013

Table A3: ROC-AUC values for different algorithms evaluated on
MoleculeNet datasets split using a scaffold splitting strategy. For each
dataset the average ROC-AUC across the tasks is reported. Results for our
model were obtained by measuring test performance for 10 repeated scaffold
splits. All other numbers are taken from (author?) [13] who trained all models
on 3 repeated scaffold splits.

A1.3 Case Study on Toxicophoric Substructure
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Trimethoxy(2-7-oxabicyclo[4.1.0]heptan-3-ylethyl)silane

The molecule trimethoxy(2-7-oxabicyclo[4.1.0]heptan-3-ylethyl)silane has a
toxicophoric substructure (green part), the epoxide. This substructure is of
dark color, meaning that the attention weight from the Tox21 model is high.
Epoxides are electrophilic structures that can be attacked by a nucleophile,
for example the bases of the DNA (forming an epoxide-DNA adduct [125])
or amino acids in proteins, even active sites of proteins (such as aspartic acid
[126]). The nucleophilic attack leads to a reduction of the strain caused by the
small ring structure.
Epoxides have environmental effects [95, 96]. They are also known to cause
skin sensitization [127] and are carcinogenic, mutagenic and genotoxic [128].
Therefore, on bottles of the compound above, the following hazard statements
(H phrases) need to be writtena:

– H317: May cause an allergic skin reaction.
– H341: Suspected of causing genetic defects.
– H351: Suspected of causing cancer.
– H412: Harmful to aquatic life with long lasting effects.

That does not mean that epoxides are not used in drug discovery: despite the
hazardous properties of epoxides, or rather because of them, the main thera-
peutic interest is as anticancer agents. Here, they act via enzyme inhibition,
induction of cell cycle arrest and apoptosis. Selected molecules are used in
treatments against heart failure, infections or gastrointestinal diseases [129].

a https://www.sigmaaldrich.com/DE/en/sds/ALDRICH/413321

Fig. A5: Case study on trimethoxy(2-7-oxabicyclo[4.1.0]heptan-3-
ylethyl)silane. The highest attention weights of the molecule are focussed on
the well-known toxicophoric epoxide (cf. Figure 3 B).

https://www.sigmaaldrich.com/DE/en/sds/ALDRICH/413321



