SolvBERT for solvation free energy and solubility prediction:

a demonstration of an NLP model for predicting the properties of molecular complexes

Jiahui Yu¹, Chengwei Zhang², Yingying Cheng², Yun-Fang Yang², Yuan-Bin She², Fengfan Liu¹, Weike Su¹, An Su^{*2}

- 1. National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- 2. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China

Corresponding author:

Prof. An Su College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China Email: ansu@zjut.edu.cn

Supporting Information

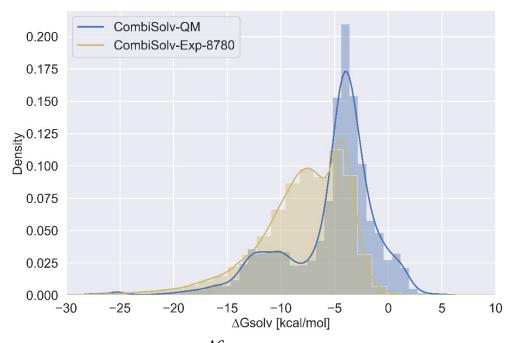
1. Methods for measuring the solubility of out-of-sample solute-solvent combinations

The static gravimetric method was used to determine the solubility of solutes in pure solvents¹. The detailed processes of the experiments are listed as follows:

(1) The mass of the solute is weighed on an analytical balance at about 1g.

(2) Use SolvBERT to predict the mass of solvent needed and calculate the approximate amount needed

(3) Add the solvent slowly, stirring while adding, and let stand to ensure that there are no obvious fine particles in the supernatant.


(4) Take about 2ml of the supernatant and transfer it to a Petri dish using a syringe with an organic membrane filter (to remove fine particles that cannot be separated by precipitation)

(5) Petri dishes containing the saturated solution were quickly weighed and then placed in a desiccator at 333.15 K for approximately 24 hours to evaporate all solvents.

(6) Remove the residual solid from the Petri dish after evaporation and weigh after cooling to room temperature. Remove from the desiccator, cool to room temperature and weigh. Weigh the process until the Petri dish with residual solids has no significant weight loss.

			comb	ination	S			
Chemica I	Chemica Molecular		Molecular		Mass fraction	CAS registry	Sour	
l name	formula	Weigł	Weight(g/mol)		purity(%)	number	ce	
O-methyl-N-	C ₂ H	5 119	9	57538	- Oinadao Da	exin Chemical Co	Itd	
nitroisourea	N ₃ O	.08	8	27-9	Qiliguao Do		., Lu.	
3-Methyl-2-	C_8H	7 181	9	5437-	- Sahn Cl	Sahn Chemical Technology		
nitrobenzoic ac	id NO.	4 .15	8	38-7	(Sha	(Shanghai) Co., Ltd.		
2-Amino-5-chlor	CINC	0 185	9	20776	Accela	Accela ChemBio Co., Ltd.		
methylbenzoic a	cid 2	.61	7	67-4	1100014			
1 4	C ₁₀ H	I ₆ 158	9	130-	Anhui Zes	Anhui Zesheng Technology Co.,		
1,4-naphthoquin	One O ₂	.15	7	15-4		Ltd.		
A	$C_{14}H$	I ₁ 178	9	120-	Copyrig	Copyright Shanghai Aladdin		
Anthracene	0	.23	8	12-7	Biochemica	Biochemical Technology Co., Ltd.		
4-Chlorophtal	ic C ₈ H	a 182	9	118-	Shanghai Eon Chemical			
anhydride	ClO	3 .56	8	45-6	Technology Co., Ltd.			
Acetone	C ₃ H		9 9.	67-64	e	Shanghai Maclean Biochemica		
110000110	0	08	5	1	Tech	nology Co., Ltd.		
	C ₂ H	₆ 46.	9	64-17	- Shanghai	Shanghai Maclean Biochemical		
Ethanol	0	07	9. 5	5	Tech	Technology Co., Ltd.		
	CH	4 32.	9	67-56	- Shangha	Shanghai Lingfeng Chemic		
Methanol	0	042	9. 5	1	Re	agent Co., Ltd.		
	C ₄ H	8 88.	9	141-	Shanghai	Maclean Biocher	nical	
Ethyl acetate	O ₂	•	9. 5	78-6	e e	Technology Co., Ltd.		
	opanol C ₃ H ₈ O		9	71-23	- Hangzhou	Bongyi Chemica	1 Co	
1-Propanol			9. 5	8	804	Ltd.		
D . 14	CH_2	C 84.	9	75-09	- Shanghai	Maclean Biocher	nical	
Dichlorometha	ne l_2	933	9. 5	2	e	nnology Co., Ltd		

Table S1. Materials for measuring the solubility of out-of-sample solute-solvent combinations

Figure S1. The distribution of ${}^{\Delta G_{solv}}$ for the CombiSolv-QM and CombiSolv-Exp-8780 databases.

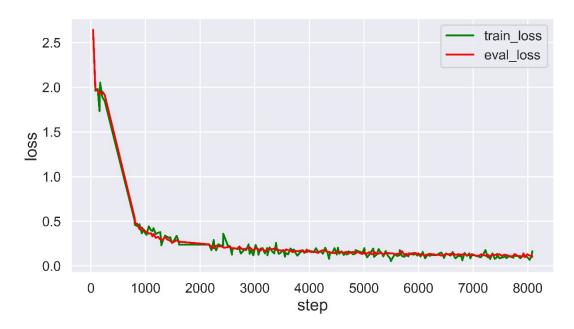


Figure S2. The learning curves for the training of SolvBERT model

number	learning_rate	hidden_dropout_rate	R2	RMSE	MAE	
1	0.0004	0.1	0.966	0.78	0.50	
2	0.0005	0.4	0.951	0.94	0.55	
3	0.00009	0.1	0.97	0.77	0.46	
5	0.0001	0.2	0.97	0.77	0.46	
6	0.00007	0.1	0.978	0.79	0.48	
7	0.0001	0.1	0.949	1.00	0.61	
8	0.00008	0.2	0.974	0.71	0.49	
9	0.00002	0.4	0.974	0.71	0.49	
10	0.00008	0.4	0.981	0.60	0.37	

Table S2. Hyperparameter optimization for SolvBERT

Table S3. Hyperparameter optimization for GCN

number	dropout	lr	r2
1	0.2	0.002	0.84
2	0.8	0.0018	0.59
3	0.3	0.0007	0.74
4	0.3	0.002	0.87
5	0.3	0.0002	0.76
6	0.4	0.00002	0.52
7	0.2	0.0016	0.84
8	0.1	0.0004	0.80
9	0.2	0.004	0.89
10	0.1	0.004	0.92

References

1. Huang, H.; Qiu, J.; He, H.; Guo, Y.; Liu, H.; Hu, S.; Han, J.; Zhao, Y.; Wang, P., Solubility Behavior and Polymorphism of N-Acetyl-dl-methionine in 16 Individual Solvents from 283.15 to 323.15 K. *Journal of Chemical & Engineering Data* **2021**, *66* (5), 2182-2191.