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Data Preparation

In this section, detailed information regarding each step of the data preparation is presented starting 

from the raw ChEMBL data.1 

ChEMBL Processing

1. Initial Filtering of ChEMBL Data 

Dataset size: 1,941,410 SMILES to 1,676,918 SMILES

Initial filtering of the raw ChEMBL data was adapted from our previous Lib-INVENT work for 

library design by Fialkova et al.2 with some modifications. The following criteria was used:

1) Permitted Elements: {C, N, O, F, S, Cl, Br}

The Prior model used in this work does not support phosphorus

2) Number of Heavy Atoms ≤ 90

3) Remove Salts

4) Neutralize Charges

5) Sanitize Molecules (according to RDKit)

6) Number of Atoms ≥ 6

Remove molecules that are small

7) Molecular Weight ≤ 1500 Da

8) Number of Rings ≤ 10

9) Number of Aromatic Rings ≤ 8

10) Heteroatom Ratio (Number of Carbon Atoms over Total Number of Atoms) > 0.5



2. Reaction-based Slicing

Dataset size: 1,676,918 SMILES to 41,373,724 Tuples

The filtered ChEMBL SMILES strings were sliced (maximum of 2 cuts permitted) to generate

tuples with the form3:  (Linker, Warheads, Full Molecule)

The specific reaction SMIRKS used are provided as a Supplementary File and are identical to the 

ones used in our previous Lib-INVENT work.2

At this step, the only criterion used to filter the resulting tuples from slicing was:

Warhead Molecular Weight ≤ 500 Da

3. Keep only Tuples with 2 Warheads

Dataset size: 41,373,724 Tuples to 29,915,654 Tuples

Since we are interested in the task of linking two molecular subunits, the tuples generated by 

making a single cut were removed. The tuples remaining are those that have 3 components: 2 

warheads and a linker.

4. Remove Duplicates

Dataset size: 29,915,654 Tuples to 29,915,654 Tuples

There were no duplicate tuples.



5. Tuples Filtering

Starting Dataset size: 29,915,654 Tuples

The purpose of this step was to remove unrealistic linkers and warheads. The final dataset 

adhered to the following criteria:

1) Linker Effective Length > 2 

Dataset size: 21,158,512 Tuples

This criterion removes linkers where the attachment atoms are separated by a single atom.

2) Linker Length Ratio > 0.7

Dataset size: 11,918,600 Tuples

The ‘Linker Length Ratio’ is defined as the ‘Linker Effective Length’ (number of bonds 

between the attachment atoms) divided by the ‘Linker Maximum Graph Length’ (longest 

sequence of bonds in the linker). This criterion removes linkers with extensive branching.

3) Linker and Warheads Maximum Ring Size = 8

Dataset size: 11,675,329 Tuples

This criterion removes linkers and warheads with rings greater than 8 atoms.

4) Linker Molecular Weight ≤ 500 Da

Dataset size: 10,615,401 Tuples

This criterion removes excessively large linkers. We note that 500 Da linkers are still quite 

large, but it allows the Prior (trained using this data) to be successful in linking molecular 

subunits of even a few atoms (essentially constructing a full small molecule).

5) Linker Max Number of Rings <= 10

Dataset size: 10,615,394 Tuples

This criterion removes linkers with more than 10 rings. There were only 7 examples of these 

linkers as shown by the dataset size from criterion 4 to 5.



6. Remove Rare SMILES Tokens

Dataset size: 10,615,394 Tuples to 10,613,969 Tuples

The purpose of this filtering step was to remove SMILES tokens that were both rare, i.e., low 

frequency of occurrence, and/or represent undesirable atoms, e.g., carbanions which are highly 

reactive. The Prior generative model is more efficient after removal of rare tokens as it does not 

need to keep track of the conditional probabilities associated with them during the generative 

process.

Linker Rare Tokens:

[O], [O+], %10, [C-], [NH-], [c+]

Warhead Rare Tokens:

[O+], [C+]

Train/Validation Set Splitting

A validation set was generated by holding out unique Bemis-Murcko scaffolds containing at least two 

rings.4  This was done by iterating over all tuples in the overall dataset such that for each tuple, all other 

tuples containing the same scaffold was removed. This process was repeated until at least 300,000 

tuples were held out. See the Supplementary File for a list of all scaffolds in the SMILES format held out 

in the validation set. The final sizes of the datasets were:

Training: 10,313,109 Tuples (contains none of the scaffolds in the validation set)

Validation: 300,860 Tuples (contains 294 unique Bemis-Murcko scaffolds)



Prior Training

1. Train/Validation Set SMILES Randomization

The SMILES in the train and validation sets were randomized (generating 20 training and 

validation SMILES files, each with randomized SMILES) such that resulting Prior is able to 

generalize better in ‘chemical space’.5

2. Train Prior

The Prior was trained for 20 epochs using the teacher forcing algorithm6 following the same 

protocol as our Lib-INVENT work.2 The Prior from epoch 4 was kept as it showed the best 

performance without overfitting. The vocabulary of the Prior is as follows:

Warhead Vocabulary (37 Tokens):

['<pad>', '$', '^', '#', '(', ')', '*', '-', '1', '2', '3', '4', '5', '6', '7', '8', '=', 'Br', 'C', 'Cl', 'F', 'N', 'O', 'S', '[N+]', 

'[N-]', '[O-]', '[S+]', '[n+]', '[nH]', '[o+]', '[s+]', 'c', 'n', 'o', 's', '|’]

In this work, we are interested only in linking two molecular subunits. The ‘|’ token separates 

the warheads in the tuple such that any given tuple has the form:

(Linker, Warhead 1 | Warhead 2, Full Molecule)

Linker Vocabulary (36 Tokens):

['<pad>', '$', '^', '#', '(', ')', '-', '1', '2', '3', '4', '5', '6', '7', '8', '=', 'Br', 'C', 'Cl', 'F', 'N', 'O', 'S', '[*]', '[N+]', 

'[N-]', '[O-]', '[S+]', '[n+]', '[nH]', '[o+]', '[s+]', 'c', 'n', 'o', 's']



Link-INVENT Scoring Function

The Scoring Function specifies the components to optimize via reinforcement learning (RL). The Scoring 

Function formulation is identical to the previously reported REINVENT platform and thus shares the 

same implementation.7 The previously existing components operate on the full molecule as the first 

application of REINVENT was for small molecules.7–9 In addition to these components, linker specific 

components have been implemented in Link-INVENT to provide control over the linker itself. This section 

lists all the supported components.

Linker Specific Components:

1. ‘Linker Effective Length’ (number of bonds between the attachment atoms)

2. ‘Linker Maximum Graph Length’ (longest sequence of bonds)

3. ‘Linker Length Ratio’ (‘Linker Effective Length’ over ‘Linker Maximum Graph Length’)

4. ‘Linker Number of Rings’

5. ‘Linker Number of Aromatic Rings’

6. ‘Linker Number of Aliphatic Rings’

7. ‘Linker Number of sp3 Atoms’

8. ‘Linker Number of sp2 Atoms’

9. ‘Linker Number of sp Atoms’

10. ‘Linker Number of Hydrogen Bond Donors’

11. ‘Linker Number of Hydrogen Bond Acceptors’

12. ‘Linker Molecular Weight’

13. ‘Linker Ratio of Rotatable Bonds’ (number of rotatable bonds over total number of bonds)

 



Molecular Docking Protocol

This section contains all details related to performing molecular docking for Experiment 2: Fragment 

Linking10,11 and Experiment 3: Scaffold Hopping.12,13

Target Preparation

The target structures for Experiment 1: Fragment Linking10,11 and Experiment 2: Scaffold Hopping12,13 

were extracted from the corresponding PDB structures released (5CU4 and 5CEO, respectively). 

Schrodinger’s Protein Preparation Wizard in Maestro (2019-4 release)14 was used to pre-process the raw 

PDB structures using default parameters except for H-bond optimizer at pH 7.4. All waters beyond 3.0 

het groups were removed. 

Receptor Grid Generation

Schrodinger’s Receptor Grid Generation in Maestro (2019-4 release)14 was used with default settings to 

generate the receptor grids. Using the pre-processed proteins from the previous step, the reference 

ligand was used to define the molecular docking box.

LigPrep Ligand Embedding

All linked molecules proposed by Link-INVENT underwent LigPrep with default parameters except for 

the following: use Epik with pH 7.0 ± 1.0 and allow a maximum of 2 stereoisomers.15 LigPrep was 

parallelized over 8 CPU cores on an Amazon Web Services (AWS) p3.8xlarge EC2 instance using 

‘DockStream’.16



Glide Molecular Docking

All ligands prepared by LigPrep were docked in the generated receptor grids using Glide with default 

parameters (Standard Precision).17–20 Docking was parallelized over 48 CPU cores on an AWS p3.8xlarge 

EC2 instance using ‘DockStream’.16

Core Constrained Glide Molecular Docking

This docking protocol corresponds to Experiment 1b: Fragment Linking in the main manuscript. All 

ligands prepared by LigPrep were docked in the generated receptor grid using Glide with Standard 

Precision. Constrained docking was applied via ‘DockStream’ 16 and the core definition was defined using 

the following SMARTS corresponding to the constituent fragment: 

[H]n1cnc([H])c1-c2c([H])c([H])c(Br)c([H])c2[H]

The maximum allowed RMSD deviation from the reference ligand pose was 0.3 Å and in case a generated 

molecule cannot conform to this constraint, no fallback was allowed.17–20



Hardware Experiment Compute Times

All Link-INVENT experiments used a NVIDIA Tesla V100 Volta GPU with 32GB memory. Where molecular 

docking was used, the computation was parallelized over 8 and 48 CPU cores for LigPrep15 and Glide 

docking17–20, respectively, on an AWS p3.8xlarge EC2 instance using ‘DockStream’.16 The time 

discrepancies between replicate runs for the Fragment Linking and Scaffold Hopping experiments is 

attributed to the shared production environment used. The experiments were sent to a queue and CPU 

resources for docking sometimes experienced delay.

Experiment Replicate 1 Replicate 2 Replicate 3

Illustrative 1 min 56 sec 1 min 48 sec 1 min 53 sec

Fragment Linking 32 hours 26 min 47 sec 26 hours 52 min 13 sec 23 hours 58 min 52 sec

Scaffold Hopping 22 hours 29 min 40 sec 10 hours 51 min 11 sec 18 hours 32 min 8 sec

PROTACs* Average Run Time

Sub-Experiment 1:

Controlling Length

16 min 16 sec

Sub-Experiment 2:

Controlling Linearity

14 min 9 sec

Sub-Experiment 3:

Controlling Flexibility

21 min 26 sec

Table S1: Experiment compute times. *For the PROTACs experiments, the average run time is reported. For Sub-Experiment 1, this is 

averaged over 15 replicates. For Sub-Experiments 2 and 3, this is averaged over 9 replicates.



Illustrative Example

The illustrative example demonstrates how Link-INVENT gradually learns to generate favourable linkers 

(and the corresponding full) molecules via RL. The scoring function in this experiment consists of the 

following components:

1. Linker Number of Hydrogen Bond Donors: The objective was to generate linkers that contained 

as few hydrogen bond donors in the linker as possible

2. Linker Number of Rings: The objective was to generate linkers with no rings

The Link-INVENT configuration JSON used is provided as an additional file. All specific parameters used 

are in the JSON.

Scoring Function Transformation

Transformation functions are applied to yield a score in the interval [0, 1] (for a given component) for 

agent feedback. The “linker_number_of_rings” component was formulated such that a score of 1 

(perfect) was given if the linker contained no rings and 0 otherwise. Therefore, the scoring function 

transformation for this component is not continuous and is not shown. In contrast, the 

“linker_number_of_hydrogen_bond_donors” scoring function transformation was formulated to yield 

a (near) perfect score if no hydrogen bond donors are present in the linker. The transformation is shown 

below:



Fig. S1: Illustrative Example linker number of hydrogen bond donors scoring function transformation. The transformation ensures a score 

in the interval [0,1] is returned for agent feedback. The specific transformation parameters were chosen to encourage generation of linkers 

with no hydrogen bond donors.



Experiment 1a: Fragment Linking

This section shows all the training plots associated with Experiment 1a: Fragment Linking.10,11 All Scoring 

Function components were assigned a transformed score in the interval [0,1], where 1 denotes perfect 

satisfaction. ‘Average Score’ is the aggregated score of each component in the Scoring Function. ‘SMILES 

Found’ refers to the number of valid SMILES generated. ‘Valid SMILES’ refers to the percentage of valid 

SMILES (RDKit successfully parses) generated at each epoch. The scoring function consists of the 

following components: 

1. DockStream: Molecular Docking

2. Linker Length Ratio ≥ 70

3. Linker Molecular Weight ≤ 200 Da

The Link-INVENT configuration JSON used is provided as an additional file. All specific parameters used 

are in the JSON.

Reference Linker ([*]C(CCNC(CC[*])=O)=O)

Most Similar Linker in Training Set (O=C(CC[*])NCCC(N[*])=O)

Tanimoto Similarity to Reference Linker = 0.694



Fragment Linking: Docking Score Transformation

The following transformation function was applied to the docking score to yield a score in the interval 

[0, 1].

Fig. S2: Experiment 1a: Fragment Linking docking score transformation. The transformation ensures a score in the interval [0,1] is returned 

for agent feedback. The specific transformation parameters were chosen to encourage generation of molecules that possess a more 

favourable docking score than the reference ligand, shown in the figure. 



Fragment Linking: Physico-chemical Properties Score Transformations

The following transformations functions were applied to the physico-chemical properties values to yield 

a score in the interval [0, 1].

Fig. S3: Experiment 1a: Fragment Linking physico-chemical properties scoring function transformations. The transformation ensures a score 

in the interval [0,1] is returned for agent feedback. 



Fragment Linking: Training Plots

Fig. S4: Experiment 1a: Fragment Linking Training Plots. The experiment was run in triplicate. The curve shows the average score and the 

upper and lower bounds of the shaded region represent the maximum and minimum score, respectively. a. Raw docking score. b. 

Transformed score of all components in the scoring function. All components are optimized over the course of training. The transformed 

docking score achieves a moderate score due to the nature of the transformation applied. The maximum reward is only given if the 

generated molecule possesses a considerably better docking score than the reference ligand. c. SMILES Found. d. Percentage of valid 

SMILES. 



Fragment Linking: Example Binding Poses

Fig. S5: Experiment 1a: Fragment Linking Example Binding Poses. PDB ID: 5CU4. The reference ligand and example generated ligand 

structures are shown in the figure. The interactions formed by the reference ligand and the generated ligands are shown as yellow and 

turquoise dotted lines, respectively. All generated ligands retain the interaction with Lys68, as enforced by the docking constraint. There 

is also extensive overlap between all the generated ligands and the reference ligand.



Experiment 1b: Comparison Fragment Linking

This section shows all the training plots associated with Experiment 1b: Fragment Linking.21 All Scoring 

Function components were assigned a transformed score in the interval [0,1], where 1 denotes perfect 

satisfaction. ‘Average Score’ is the aggregated score of each component in the Scoring Function. ‘SMILES 

Found’ refers to the number of valid SMILES generated. ‘Valid SMILES’ refers to the percentage of valid 

SMILES (RDKit successfully parses) generated at each epoch. The scoring function consists of the 

following components: 

1. DockStream: Molecular Docking

2. 3 <= Linker Effective Length <= 5

3. Linker Length Ratio ≥ 70

4. Linker Molecular Weight ≤ 150 Da

The Link-INVENT configuration JSON used is provided as an additional file. All specific parameters used 

are in the JSON.

Reference Linker ([*]OC(C(N[*])=O)C)

The training set contained this linker.



Comparison Fragment Linking: Docking Score Transformation

The following transformation function was applied to the docking score to yield a score in the interval 

[0, 1].
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Fig. S6: Experiment 1b: Fragment Linking docking score transformation. The transformation ensures a score in the interval [0,1] is returned 

for agent feedback. The specific transformation parameters were chosen to encourage generation of molecules that possess a more 

favourable docking score than the reference ligand, shown in the figure. 



Comparison Fragment Linking: Physico-chemical Properties Score Transformations

The following transformations functions were applied to the physico-chemical properties values to yield 

a score in the interval [0, 1].
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Fig. S7: Experiment 1b: Fragment Linking physico-chemical properties scoring function transformations. The transformation ensures a score 

in the interval [0,1] is returned for agent feedback. 



Comparison Fragment Linking: Training Plots
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Comparison Fragment Linking Unique Bemis-Murcko Scaffolds

Fig. S8: Experiment 1b: Fragment Linking Training Plots. The experiment was run in triplicate. The curve shows the average score and the 

upper and lower bounds of the shaded region represent the maximum and minimum score, respectively. a. Raw docking score. b. 

Transformed score of all components in the scoring function. All components are optimized over the course of training. The transformed 

docking score achieves a moderate score due to the nature of the transformation applied. The maximum reward is only given if the 

generated molecule possesses a considerably better docking score than the reference ligand. c. SMILES Found. d. Percentage of valid 

SMILES. e. Docking scores distribution of all molecules. The black dotted line at -6.75 is the docking score of the reference ligand and some 

generated molecules possess a more favourable docking score. The majority of generated molecules possess a comparable docking score. 

f. The number of unique Bemis-Murcko scaffolds generated. There is minimal overlap across the triplicate runs, demonstrating that Link-

INVENT explores generally different chemical space. The absolute number of Bemis-Murcko scaffold shows that Link-INVENT can generate 

a diverse number of linker ideas.



Comparison Fragment Linking: Example Binding Poses
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Fig. S9: Experiment 1b: Fragment Linking Example Binding Poses. PDB ID: 5OU3. The reference ligand and example generated ligand 

structures are shown in the figure. At least one constituent fragment of the generated molecules overlaps extensively with the reference 

fragment, as enforced by the constrained docking protocol.



Binding Poses of Selected DeLinker and SyntaLinker Generated Molecules

In the DeLinker and SyntaLinker works, twenty and three example molecules were released.22,23 The 

same constrained docking protocol used in our work was applied to these molecules and those with the 

best binding pose agreement to the reference fragments are shown.
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Fig. S10: Experiment 1b: Fragment Linking Example Binding Poses of DeLinker and SyntaLinker Generated Molecules.22,23 PDB ID: 5OU3. 

The reference ligand and example generated ligand structures are shown in the figure. The molecules with the best binding pose agreement 

to the reference fragments are shown. The constituent fragments are circled. SyntaLinker introduced bias by providing their model with 

information about the methyl substituent and ether linkage which are present in the reference ligand and only known after Trapero et al. 

performed fragment linking.21 Neither the DeLinker nor SyntaLinker generated molecule possesses a docking score better than the 

reference ligand. 



Docking Scores Distribution of Link-INVENT, DeLinker, and SyntaLinker Generated 

Molecules

The table in this section shows the number of generated molecules by Link-INVENT, DeLinker, and 

SyntaLinker below different docking score thresholds.22,23 The total number of molecules generated is 

also shown. In the case of DeLinker and SyntaLinker, only 20 and 3 molecules, respectively, were 

provided in their work. We further note that SyntaLinker recovers the reference ligand but in their 

experimental design, they introduced bias by providing their model with information only known after 

successful fragment linking by Trapero et al.21 Specifically, in one of the fragments, Trapero et al. 

introduce a methyl substituent on the imidazole ring due to synthetic accessibility and the linker with 

the greatest potency was an ether linkage. In the SyntaLinker work, this methyl substituent and the 

ether linkage information was provided to their model.23 We also acknowledge that it is possible that 

some DeLinker and SyntaLinker proposed molecules possess favourable docking scores and the analysis 

that follows is only based on what the authors have provided. Finally, while Link-INVENT is tasked with 

generating 8960 SMILES over 70 epochs, all linked molecules which do not satisfy the core constrained 

docking were discarded.

Experiment <= Reference Ligand 
(-6.75 kcal/mol)

<= 6 kcal/mol <= 5.5 kcal/mol <= 5 kcal/mol

Link-INVENT 
Replicate 1

79/4827 688/4827 2024/4827 3577/4827

Link-INVENT 
Replicate 2

176/5247 1091/5247 2728/5247 4279/5247

Link-INVENT 
Replicate 3

220/5452 1491/5452 3396/5452 4732/5452

DeLinker 0/20 5/20 11/20 14/20
SyntaLinker 1/3* 2/3 3/3 3/3

Table S2: Experiment 1b: Fragment Linking comparison of docking scores of generated molecules by Link-INVENT, DeLinker, and 

SyntaLinker. *SyntaLinker recovers the reference ligand.22,23 



Experiment 2: Scaffold Hopping

This section shows all the training plots associated with Experiment 2: Scaffold Hopping.12,13 All Scoring 

Function components were assigned a transformed score in the interval [0,1], where 1 denotes perfect 

satisfaction. ‘Average Score’ is the aggregated score of each component in the Scoring Function. ‘SMILES 

Found’ refers to the number of valid SMILES generated. ‘Valid SMILES’ refers to the percentage of valid 

SMILES (RDKit successfully parses) generated at each epoch. The scoring function consists of the 

following components: 

1. DockStream: Molecular Docking. The transformation function applied to the raw docking 

scores is shown below.

2. Molecular Weight < 450 Da

3. Number of Hydrogen Bond Donors < 2

4. 3 ≤ logP ≤ 4

5. Topological Polar Surface Area < 90 Å2

6. 1 ≤ Linker Number of Aromatic Rings ≤ 2

The Link-INVENT configuration JSON used is provided as an additional file. All specific parameters used 

are in the JSON.



Reference Linker ([*]NC1=NN(C([*])=C1)C2CCCC2)

Most Similar Linker in Training Set ([*]N1CCC(CC1)NC2=CC(C)=NC(N[*])=N2)

Tanimoto Similarity to Reference Linker = 0.288



Scaffold Hopping: Docking Score Transformation

The following transformation function was applied to the docking score to yield a score in the interval 

[0, 1].

Fig. S11: Experiment 2: Scaffold Docking Score Transformation. The transformation ensures a score in the interval [0,1] is returned for 

agent feedback. The specific transformation parameters were chosen to encourage generation of molecules that possess a more favourable 

docking score than the reference ligand, shown in the figure.



Scaffold Hopping: Physico-chemical Properties Score Transformations

The following transformations functions were applied to the physico-chemical properties values to yield 

a score in the interval [0, 1].

Fig. S12: Experiment 2: Scaffold Hopping physico-chemical properties scoring function transformations. The transformation ensures a score 

in the interval [0,1] is returned for agent feedback. 



Scaffold Hopping: Training Plots

Fig. S13: Experiment 2: Scaffold Hopping Training Plots. The experiment was run in triplicate. The curve shows the average score and the 

upper and lower bounds of the shaded region represent the maximum and minimum score, respectively. a. Raw docking score. b. 

Transformed score of all components in the scoring function. All components are optimized over the course of training. The transformed 

docking score achieves a moderate score due to the nature of the transformation applied. The maximum reward is only given if the 

generated molecule possesses a considerably better docking score than the reference ligand. c. SMILES Found. d. Percentage of valid 

SMILES.



Scaffold Hopping: Example Binding Poses

Fig. S14: Experiment 2: Scaffold Hopping Example Binding Poses. PDB ID: 5CEO. The reference ligand and example generated ligand 

structures are shown in the figure. The interactions formed by the reference ligand and the generated ligands are shown as yellow and 

turquoise dotted lines, respectively. All generated ligands retain the two hydrogen-bonding interactions with Cys193, as enforced by the 

docking constraint. There is also extensive overlap between all the generated ligands and the reference ligand. Finally, all generated ligands 

satisfy the desired CNS physico-chemical properties. 



Experiment 3: PROTACs

This section contains all the training plots for the PROTACs Sub-Experiments.24 ‘SMILES Found’ refers to 

the number of valid SMILES generated. ‘Valid SMILES’ refers to the percentage of valid SMILES (RDKit 

successfully parses) generated at each epoch. The Link-INVENT configuration JSONs used for all Sub-

Experiments in this section are provided as an additional file. All specific parameters used are in the 

JSON. Sub-Experiments 1 and 2 enforced a set of physico-chemical properties within specific intervals 

derived from experimentally observed PROTACs:25,26

1. tPSA ≤ 250 Å2

2. 3.5 ≤ logP ≤ 6.0

3. Hydrogen Bond Acceptors ≤ 16

4. 3 ≤ Hydrogen Bond Donors ≤ 6

5. Rotatable Bonds < 25



PROTACs: Physico-chemical Properties Score Transformations

The following transformations functions were applied to the physico-chemical properties values to yield 

a score in the interval [0, 1].

Fig. S15: Experiment 3: PROTACs physico-chemical properties scoring function transformations for Sub-Experiments 1 and 2. The 

transformation ensures a score in the interval [0,1] is returned for agent feedback. 



Sub-Experiment 1: Controlling Linker Length

This Sub-Experiment controls for linker lengths while keeping physico-chemical properties fixed within 

a specified interval. Linkers were generated within the following length intervals: [4,6], [7,9], [10,12], 

[13,15], and ‘Baseline’ which does not enforce length. The corresponding training plots are labelled 

according to their length intervals. In addition to enforcing physico-chemical properties shown above, 

the Scoring Function contains the following additional components:

1) Linker Effective Length = [4,6], [7,9], [10,12], or [13,15]: this component enforces linkers to 

possess an effective length within the specified intervals

2) Linker Length Ratio = 100 this component prevents linker branching

The “Linker Length Ratio” was enforced to be 100, giving as perfect score (1) if achieved and 0 otherwise. 

Therefore, no score transformation is shown as the outcome is binary. In contrast, a transformation was 

applied to the “Linker Effective Length” to enforce generated linkers to be within specified length 

intervals. The transformation is shown below:



Sub-Experiment 1: Scoring Function Components Transformations

Fig. S16: Experiment 3: PROTACs Sub-Experiment 1 Linker Effective Length Scoring Function transformation. The transformation ensures a 

score in the interval [0,1] is returned for agent feedback. In the figure, linkers are enforced to possess a length in the interval [4-6]. For the 

experiments involving other length intervals, the transformation is identical, except shifted to the lengths of interest.



Sub-Experiment 1: Controlling Linker Length Training Plots

Fig. S17: Experiment 3: PROTACs Sub-Experiment 1: Controlling Linker Length Baseline Training Plots. The experiment was run in triplicate. 

The curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum score, 

respectively. a. Transformed score of all physico-chemical properties components in the scoring function. All components are optimized 

over the course of training. b. Transformed score of all linker specific properties. Note that the “Linker Effective Length” component is 

always satisfied as the Baseline experiment does not enforce any specific length. c. SMILES Found. d. Percentage of valid SMILES. 



Fig. S18: Experiment 3: PROTACs Sub-Experiment 1: Controlling Linker Length 4-6 Training Plots. The experiment was run in triplicate. The 

curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum score, 

respectively. a. Transformed score of all physico-chemical properties components in the scoring function. All components are optimized 

over the course of training. b. Transformed score of all linker specific properties. All components are optimized over training as the agent 

learns to generate linkers within the specified 4-6 interval. c. SMILES Found. d. Percentage of valid SMILES. 



Fig. S19: Experiment 3: PROTACs Sub-Experiment 1: Controlling Linker Length 7-9 Training Plots. The experiment was run in triplicate. The 

curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum score, 

respectively. a. Transformed score of all physico-chemical properties components in the scoring function. All components are optimized 

over the course of training. b. Transformed score of all linker specific properties. All components are optimized over training as the agent 

learns to generate linkers within the specified 7-9 interval. c. SMILES Found. d. Percentage of valid SMILES.



Fig. S20: Experiment 3: PROTACs Sub-Experiment 1: Controlling Linker Length 10-12 Training Plots. The experiment was run in triplicate. 

The curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum score, 

respectively. a. Transformed score of all physico-chemical properties components in the scoring function. All components are optimized 

over the course of training. b. Transformed score of all linker specific properties. All components are optimized over training as the agent 

learns to generate linkers within the specified 10-12 interval. c. SMILES Found. d. Percentage of valid SMILES. 



Fig. S21: Experiment 3: PROTACs Sub-Experiment 1: Controlling Linker Length 13-15 Training Plots. The experiment was run in triplicate. 

The curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum score, 

respectively. a. Transformed score of all physico-chemical properties components in the scoring function. All components are optimized 

over the course of training. b. Transformed score of all linker specific properties. All components are optimized over training as the agent 

learns to generate linkers within the specified 13-15 interval. c. SMILES Found. d. Percentage of valid SMILES. 



Sub-Experiment 2: Controlling Linker Linearity

This Sub-Experiment controls for linker linearity while keeping physico-chemical properties fixed within 

a specified interval and linker length fixed in the interval [7,9]. The ‘Linear’ experiment enforces linear 

linkers, the ‘Cyclic’ experiment enforces linkers with at least one ring, and the ‘Baseline’ experiment 

enforces neither. In addition to enforcing physico-chemical properties shown in the beginning of this 

section, the Scoring Function contains the following additional components:

1) Linker Effective Length = [7,9]: this component enforces linkers to possess an effective length 

within the specified interval of [7,9]

2) Linker Length Ratio = 100 this component prevents linker branching

3) Linker Number of Rings = 0 this component enforces linkers to possess no rings, i.e., the 

linker is linear. In the experiment where we want to generate linkers with rings, we simply 

omit this component in the Scoring Function

The “Linker Length Ratio” was enforced to be 100, giving as perfect score (1) if achieved and 0 otherwise. 

Therefore, no score transformation is shown as the outcome is binary. In contrast, a transformation was 

applied to the “Linker Effective Length” to enforce generated linkers to be within specified length 

intervals. A score transformation was also applied to “Linker Number of Rings” in the experiment where 

we enforce the generation of linkers without rings. The transformation allows the Agent to gradually 

learn, and we observe it gives smoother training than a binary transformation like the one applied for 

the “Linker Length Ratio”. The transformations are shown below:



Sub-Experiment 2: Scoring Function Components Transformations

Fig. S22: Experiment 3: PROTACs Sub-Experiment 2 additional Scoring Function transformations. The transformation ensures a score in the 

interval [0,1] is returned for agent feedback. The linkers are enforced to possess a length in the interval [7-9]. In the experiment where we 

enforce linkers to contain no rings, a gradient transformation is applied for smoother Agent training (a linker with 1 ring is not automatically 

given a score of 0. Instead, it achieves a low score). 



Sub-Experiment 2: Controlling Linker Linearity Training Plots



Fig. S23: Experiment 3: PROTACs Sub-Experiment 2: Controlling Linker Linearity Baseline Training Plots. The experiment was run in 

triplicate. The curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum 

score, respectively. a. Transformed score of all physico-chemical properties components in the scoring function. All components are 

optimized over the course of training. b. Transformed score of all linker specific properties. All components are optimized over training as 

the agent learns to generate linkers within the specified 7-9 interval. c. Raw linker number of rings. In the Baseline experiment, the agent 

generated linkers with and without rings as neither is enforced. d. SMILES Found. e. Percentage of valid SMILES. 





Fig. S24: Experiment 3: PROTACs Sub-Experiment 2: Controlling Linker Linearity Linear Training Plots. The experiment was run in triplicate. 

The curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum score, 

respectively. a. Transformed score of all physico-chemical properties components in the scoring function. All components are optimized 

over the course of training. b. Transformed score of all linker specific properties. All components are optimized over training as the agent 

learns to generate linkers within the specified 7-9 interval. c. Raw linker number of rings. In the Linear experiment, the agent learns to 

generate linkers without rings. d. SMILES Found. e. Percentage of valid SMILES. 





Fig. S25: Experiment 3: PROTACs Sub-Experiment 2: Controlling Linker Linearity CyclicTraining Plots. The experiment was run in triplicate. 

The curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum score, 

respectively. a. Transformed score of all physico-chemical properties components in the scoring function. All components are optimized 

over the course of training. b. Transformed score of all linker specific properties. All components are optimized over training as the agent 

learns to generate linkers within the specified 7-9 interval. c. Raw linker number of rings. In the Cyclic experiment, the agent learns to 

generate linkers with at least one ring. d. SMILES Found. e. Percentage of valid SMILES. 



Sub-Experiment 3: Controlling Linker Flexibility

This Sub-Experiment controls for linker flexibility. Linkers were generated within the following ‘linker 

ratio of rotatable bonds’ intervals: “Low”: [0,30], “Moderate”: [40,60], and “High”: [70,100]. No physico-

chemical properties were enforced in this Sub-Experiment. Instead, the Scoring Function contains only 

one component:

1) Linker Ratio of Rotatable Bonds = [0,30], [40,60], [70,100]: the defined intervals correspond 

to “Low”, “Moderate”, and “High” flexibility

The Scoring Function transformation is shown below:



Sub-Experiment 3: Scoring Function Component Transformation

Fig. S26: Experiment 3: PROTACs Sub-Experiment 3 Linker Ratio of Rotatable Bonds Scoring Function transformation. The transformation 

ensures a score in the interval [0,1] is returned for agent feedback. In the figure, linkers are enforced to possess a Linker Length Ratio in 

the interval [0,30]. For the experiments involving other intervals, the transformation is identical, except shifted to the values of interest.



Sub-Experiment 3: Controlling Linker Flexibility Training Plots

Fig. S27: Experiment 3: PROTACs Sub-Experiment 3: Controlling Linker Flexibility Training Plots. The experiment was run in triplicate. The 

curve shows the average score and the upper and lower bounds of the shaded region represent the maximum and minimum score, 

respectively. a. Raw ‘linker ratio of rotatable bonds’ values for the “Low”, “Moderate” and “High” experiments which enforces a value 

within the intervals, [0,30], [40-60], and [70-100], respectively. In each experiment, the agent learns to generate linkers with ‘linker ratio 

of rotatable bonds’ values within the specified intervals. b. SMILES Found. c. Percentage of valid SMILES. 
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