
Supporting Information for

Neural networks for a quick access to a digital twin of scanning

physical properties measurements

Kensei Terashima,1, ∗ Pedro Baptista de Castro,1, 2 Miren Garbiñe

Esparza Echevarria,1, 2 Ryo Matsumoto,1 Takafumi D Yamamoto,1

Akiko T Saito,1 Hiroyuki Takeya,1 and Yoshihiko Takano1, 2

1National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan

2University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan

1

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2023

TRAPEZOIDAL INTEGRATION AND BILINEAR INTERPORATION

Trapezoidal integration is a numerical method to often used to obtain the an approxi-

mation of the area of interest below the curve of a function f(x) and between the a given

set of desired points a and b, assuming:
∫ b
a f(x)dx ∼ (b−a)

2
(f(a) + f(b)), that corresponds

to a summation of linearly-interpolated values of f(x) between starting point a and end

point b. Sometimes, for some datasets this linear interpolation method can fail. Figure SM1

shows a typical example of such a failure in linear interpolation. Suppose there are data for

y(x1, x2) taken in x2 = a and b, where peak position of y migrates by changing x2 value, as

in Figure SM1(a). If one performs bilinear interpolation as in Figure SM1(b), it does not

succeed to reproduce what is desired (as in Figure SM1(a)) but it produces an artificial dip

in the obtained interpolated y(xi1, x
i
2) .In Section 3.1 of the manuscript, x1, x2, y correspond

to temperature, magnetic field, and
(
∂M
∂T

)
, respectively, namely y(x1, x2) = ∂M(T,H)

∂T
. This

causes extrinsic oscillation in |∆SM | derived by integrating
(
∂M
∂T

)
along H direction.

x2 = a x2 = b x2 = a’ x2 = b’

(a) (b)

x1 value x1 value

x1 value x1 value

FIG. SM1. Schematic graph showing how (bi)linear interpolation fails to grab characteristic change.

Top graphs show spectral lineshapes and bottom graphs are corresponding intensity plots. (a) What

is expected (b) What (bi)linear interpolation gives.

2

We also note here that the situation is also valid for isothermal cuts for M(T,H). In

case of isothermal cuts, |∆SM | can be deduced by ∆SM(Ti, H) = Σi
Mi+1−Mi

Ti+1−Ti
∆Hi (in case of

using forward differential), which corresponds to the gray shaded area as depicted in Figure

SM2(a). As can be seen in Figure SM2(a) in case of coarse step of H, linear interpolation

along H-direction (corresponds to dotted line in the Figure) creates an extrinsic oscillation

of area between two subsequent measured temperatures. Figure SM2(b) shows the simulated

M(T,H) by neural networks model built by Figure SM2(a) train data, where such extrinsic

oscillation of area between measured temperatures is suppressed.

Ti
Ti+1

0 1 2 3 4 5

(a) (b)

0 1 2 3 4 5

FIG. SM2. Schematic graph showing how linear interpolation along H affects estimated

|∆SM (Ti, H)| value, in case of isothermal measurement. (a) Coarse magnetic field step (train

data) case. Difference in color stands for different measurement temperatures. Gray area corre-

sponds to estimated |∆SM (Ti, H)|. (b) Fine magnetic field step case, simulated by neural networks

model.

COMPARISON OF APPROXIMATION METHODS AND RESULTANT ESTI-

MATED PHYSICAL PROPERTY

Here we compare the results obtained from the same train data for (bi)linear, cubic spline,

radial basis function (RBF) and neural networks proposed in this work. Linear and cubic

spline interpolation have been performed using scipy package (v1.7.3, https://scipy.org).

For RBF, we used a package provided at https://github.com/treverhines/RBF, where func-

3

tional forms, length scale(eps), and smoothing factor(sigma) are hyperparameters. We used

Bayesian optimization package Optuna (https://github.com/optuna/optuna) to obtain the

best possible combination of hyperparameters with 5-fold cross validation of train data. The

searched range for each hyperparameter was: [thin-plate or gaussian] for functional form,

[1e-5, 1e-1] for length scale, and [1e-2, 1e+1] for smoothing factor. As a result of optimiza-

tion, obtained hyperparameter sets are, functional form: gaussian, length scale = 2.95, and

smoothing factor = 0.021.

linear cubic RBF Neural network Expt. data

Estimated
|ΔSM| (T) at
µ0H: 0.01-5 T

train data

µ0H (T) =

5
4
3
2
1

0.5
0.1

0.01

train data

FIG. SM3. Comparison of approximated results among (bi)linear, cubic spline, RBF, and neural

networks in the main text. 1st row: predictions for train data points by each model. 2nd row:

predictions for finer step of µ0H including unseen points by models. 3rd and 4th rows: M − µ0H

cuts of data in 2nd row at fixed T (K). 5th row: estimated |∆SM | by data shown in 2nd row.

4

T = 20 K

T = 38 K

M (T, µ0H)
for

0.2 T step

M - µ0H

M - µ0H

Neural network Expt. data

M (T, µ0H)
for train
data points

Estimated
|ΔSM| (T) at
µ0H: 0.01-5 T

train data

µ0H (T) =

5
4
3
2
1

0.5
0.1

0.01

train data

NN (sklearn)KRR (sklearn) RF (sklearn)

FIG. SM4. Comparison of approximated results between several regressors avalable in Scikit-

learn (kernel ridge with RBF kernel, random forest, and neural networks) and neural networks

(Tensorflow) in the main text, and experimental verifications for the dataset in Section 3.1 of the

main text. The neural networks model in Scikit-learn was constructed using the hyperparameters as

the same as possible to those for the ones in the main manuscript Section 3.1. 1st row: predictions

for the conditions in the training data points by each model. 2nd row: predictions for finer step of

µ0H including unseen points by models. 3rd and 4th rows: M − µ0H cuts of data in 2nd row at

fixed T (K). 5th row: estimated |∆SM | by data shown in 2nd row.

In the figure, 1st row shows the predicted values (colored markers) for features in the train

data points, compared with the target values of train data (gray markers). All approximation

methods trace very well the train data. However, as shown in the 2nd row of the figure,

5

model1
of layers: 6
of nodes: 196

model2
of layers: 19
of nodes: 92

(a) (b)

120

100

80

60

40

20

0
120

100

80

60

40

20

0
605040302010

µ0H (T) =

5

µ0H (T) =

4
3
2
1

0.5
0.2

0.01

0.01

0.2
0.2 step

5

Temperature (K)

(c)

Temperature (K)

Pred. model 1
Pred. model 2
Expt.@ proposed step

40

30

20

10

0
4540353025

120

100

80

60

40

20

0
605040302010

120

100

80

60

40

20

0

µ0H (T) =

5

µ0H (T) =

4
3
2
1

0.5
0.2

0.01

0.01

0.2
0.2 step

5

Temperature (K)

FIG. SM5. (a) and (b) Top panel: Predicted magnetizations for the conditions of training dataset

by (a) the model in the main text (Section 3.1) and (b) the model with deeper layers. Bottom

panel: The same for finer external field step (0.2 T). (c) |∆SM | by models and experimental data

taken on the same step.

predictions for feature points unseen by the models differ each other. Especially, cubic

spline and RBF create additional beating behavior, that are clearly visible as well in the 3rd

and 4th rows of M − µ0H cuts at fixed T . As a result, none of linear, cubic spline, RBF

approximation do not predict precisely the target physical property |∆SM | at 5th row in

case of such sparse train dataset, while neural networks proposed in this work predict values

well corresponds to those in the experiment taken in the fine step of µ0H.

Here we also compare with several regressors available in Scikit-learn, namely kernel

ridge with RBF kernel, random forest, and neural networks. Here the models are trained

with default hyperparameters, except for the neural networks where the hyperparameters

as the same as possible (number of nodes, number of layers, learning rate and batch size)

to those in the main text (Section 3.1, where neural networks are built using Tensorflow)

were used. Among them, kernel ridge could not learn well the relationship between features

and targets, while random forest could not capture the smooth second-axis dependence of

target value. The neural network in Scikit-learn has captured an overall trend despite there

being a lack of steep structure and additional artificial fluctuations. These behavior might

6

improve by performing optimization of hyperparameters for each, but it is out of scope of

current manuscript.

We also compare with a model with deeper number of layers. In our code, the search

area for number of layers during the hyperparameter optimization is 2-10 by default. The

number is confined so that even non-state-of-the-art PC can quickly construct a model, but

the search area can be changed optionally. In Fig. SM5, we show a comparison of the

predicted result between (a) the model in the manuscript and (b) the model with deeper

layers. Fig. SM5(c) is a resultant target property |∆SM |. At least for the data in Section

3.1, the model found in the default search area seems to be good enough to be used as a

simulator.

WORKING OPERATING SYSTEM OF THE CODE AND INSTALLATION GUIDE

A tutorial for how to get ready and perform the neural networks learning and sim-

ulation shown in this paper is available at https://doi.org/10.5281/zenodo.7523510 and

https://www.github.com/kensei-te/mat interp.

There are two ways provided to use the code. One is via Jupyter Notebook, which

runs both on users own PCs and Google Colab. Another way is additional installation of

Streamlit and mySQL for GUI-based use. For the latter, it has been tested only on Linux

and MacOS (Intel) systems. In more details, the following OSes were tested by the authors:

Ubuntu LTS 20.04 and 18.04, CentOS 7, and MacOS 11 and 12 (both Intel).

EXAMPLE OF DURATION TO PERFORM NEURAL NETWORKS LEARNING

Table SM1 shows the total duration it took for each computer to finish 30 trials of

learning. The used computers are the following: (i) Intel i9-9880H 2.3 GHz, (ii) Xeon Silver

4116 2.1 GHz, and (iii) Intel i7 10700K 3.8 GHz. The number of parallel workers are set to

be 5 for (i) and (iii), while it was 15 for (ii). Since the result would be influenced by random

seeds, we tried 5 times for each, and the averaged values are shown in the table. Standard

deviation of 5 times of 30 trials are also presented as numbers in parenthesis. The number

of train data points are 808, 2737, 767, 29977 for Section 3.1, 3.2, 3.3, 3.4, respectively.

7

Data
Intel i9-9880H 2.3 GHz

8 cores, MacOS11(Intel)

Xeon Silver 4116 2.1 GHz

12x2 cores, CentOS7.6

Intel i7 10700K 3.8 GHz

8 cores, Ubuntu20.04

Section3.1 3m 30s (40s) 3m 53s (29s) 2m 36s (45s)

Section3.2 4m 30s (46s) 3m 17s (26s) 2m 31s (12s)

Section3.3 2m 53s (25s) 3m 8s (30s) 2m 5s (35s)

Section3.4 13m 36s (2m 38s) 6m 47s (47s) 11m 14s (1m 46s)

TABLE SM1. Comparison of ellapsed time required for PCs to finish learning through 30 trials of

Baysian optimization for each dataset shown in the main text. The results are averaged values of

5 times of trials. Numbers in parenthesis stand for standard deviation.

STABILITY OF LEARNED AND SIMULATED RESULTS

Here we show how much the learning curves and the resultant simulated value would

differ among each 30 trials. Two examples are shown, one for the data presented in Section

3.1 in the main text (Figure SM6 top), and another for the data presented in Section 3.3

(Figure SM6 bottom), where the latter is more influenced by noise. Here each trial is allowed

to keep running until it reachs a maximum epoch number of 500, unless it is stopped by

either pruning or earlystopping. After 30 trials of Bayesian optimization (initial 10 trials are

random), both the R2 score for training and simulated values show a convergence to some

extent.

SPECTRAL LINESHAPES OF ARPES IMAGE PLOT (SECTION3.4)

Figure SM7 shows spectral lineshape of ARPES image plot in Section 3.4 of main text,

where gray lines are train data and colored lines are simulated ones by neural networks model.

The spectra consist a number of peak structures and model can capture the structures as

well as sensitivity of the machine such as relatively high intensity region around the edge.

8

0.01

5

3
2
1

0.5

0.1

4

µ0H (T) =

Epoch

Epoch

Epoch

Learning curves Trained model Simulation by model

Temperature (K) Temperature (K)

Temperature (K)

Temperature (K)

Temperature (K)

Temperature (K)

Case #1

Case #2

Case #3

0.01

0.2

5

0.2 T step

ErCo2 (Section 3.1)

PdH (Section 3.3)

Case #1

Case #2

Case #3

Epoch

Epoch

Epoch

Learning curves Trained model Simulation by model

Temperature (K)

Temperature (K)

Temperature (K)

Temperature (K)

Temperature (K)

Temperature (K)

µ0H (Oe) =14000
12000
10000
8000
6000
4000
3000
2000
1750
1500
1250
1000
750
500
250
0

train data

FIG. SM6. Results of learning and simulations in individual cases of 30 trials for ErCo2 (top)

and PdH (bottom) data. For each material, case#1 corresponds to the data in the main text.

Left: Learning curves. Colors represent different trials. Center: Simulation by learned models that

acquired the best R2 score in each case. Gray lines show train data. Right: Simulation by models.
9

15

10

5

0

-5

-10

-15

FIG. SM7. Spectral lineshapes of ARPES image plot, shown as Figure 5(a) and (b) in Section 3.4

of main text. Gray lines correspond to train data, while colored lines correspond to simulated ones

by learned model.

∗ TERASHIMA.Kensei@nims.go.jp

10

