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1 DFT calculated energies
The workflow used by Meyer et al.1 to calculate the binding ener-
gies was the following: The SMILES of the molecules were trans-
lated into Cartesian coordinates via OpenBable2. The steepest
decent geometry optimization was used for 250 steps with an
MMFF95 force field. 200 iteration Weighted Rotor conformation
search was performed followed by 250 steps of conjugate gra-
dient geometry optimization. These forced field-optimized con-
formers were further optimized. For Ni, Pd, Cu, Ag the base
set B3LYP/3-21G3 was used while the Pt and Au catalyst used
B3LYP/def2-SVP4 for the further geometry optimization. Using
B3LYP-D3/def2-TZVP4 the single point energy was calculated.
The DFT calculation was performed in Gaussian095.

2 Random Forest benchmark
A random forest regressor model, implemented from scikit-learn
with 200 trees, was trained on Morgan fingerprints of the cata-
lysts with a length of 2048 to predict the binding energy.

Fig. 1 Random Forest benchmark trained on Morgan Fingerprints length
2024.

3 Validity of a generated molecule
A generated molecule was considered as valid if the following list
of requirements was fulfilled:

1. The sequence starts with a [Start]-token and ends
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with a [End]-token followed by [Padding]-tokens (example:
[Start][C][C][.][C][.][Pd][End][Padding][Padding][Padding])

2. The molecular structure for the catalyst is containing exactly
one transition metal and the two ligands separated by the
[.]-token

3. Each of the ligands must be chemically valid (no open rings,
no hypervalent C), therefore RdKit6 must be able to parse
the ligand sequence without raising an error.

4 Model architecture and training
All models were implemented using PyTorch7 and trained using
Pytorch Ligthing8. The molecule data is converted into tokens
based on the tokenizer by Schwaller et al.9. The tokenized repre-
sentation is embedded via an embedding layer which is inputted
into the first of three layers of recurrent neural network cells
(RNN) with a hidden state size of 256. The output of the last
RNN layer is then propagated into a µ and σ by two feed-forward
layers with an output size of the latent dimension 32. From this
output, distribution is then sampled from the latent space. This
latent space is the input state of the RNN-based decoder. The de-
coder consists of 3 layers of RNN cells with a hidden state size of
256 between them. The last output layer is then used to apply a
cross-entropy loss function.

Table 1 Model architecture used.

Layer Value
Embedding layer (sequence length) 207
Hidden size rnn encoder 256
n layers encoder 3
Dropout encoder 0.1
Feed forward layer after encoder 1024
Latent size 32
Hidden size decoder 256
Dropout decoder 0.1
n layers decoder 3
n property predictor layer 3
Dropout property predictor 0.1
Activation function property predictor ReLu
Output size property predictor 1

The following model training parameters were used for the
SMILES and the SELFIES model. The training was performed
on 1 Nvidia A-100 GPU. The model was trained using the ADAM
optimizer with a learning rate of 0.0001 and batch size of 200.
The KLD loss term was added with linearly increasing weight
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Fig. 2 reconstruction loss SMILES models.

over 100 epochs. The KLD loss, mean absolute error of the pre-
dictor, as well as cross entropy loss of the reconstruction loss of
the decoder, were added with equal weight. After each epoch,
the performance was evaluated on the validation set. After each
evaluation, the model was saved if its total validation was lowest
recorded during the training.

Table 2 Training parameters.

Parameter Value
Optimizer Adam
Learning rate 0.0001
Batch size 200
Kl β annealing gradient linear
Kl β annealing end 0.1
Kl β annealing epochs 100

5 Influence latent space dimension

To find the optimal latent space dimension a screening of a variety
of different size latent spaces was performed. The overall lowest
validation loss (reconstruction loss + property predictor loss +
KLD loss) was taken as a measurement to determine the best-
performing latent space size. As seen in Figure 3 the latent space
with dimension 32 has the overall lowest loss.

Fig. 3 The validation loss of a variety of latent spaces sizes for the
nonaugmented SMILES model.

6 Entropy analysis

Fig. 4 The entropy values of each dimension (0 augmentation SMILES
model) show that none of the dimensions is superfluous and all dimen-
sions store meaningful information. The red and green lines correspond
to one standard deviation above and below the mean value of entropy.

7 Molecule Generation

The molecule generation was performed with the stochastic
gradient descent (SGD) implementation of Pytorch7. First all
molecules in the dataset were encoded into their latent represen-
tation. Then the minimum and maximum value of each dimen-
sion over all the encoded molecules were calculated. These min
and max values server as boundaries to generated a random point
as initial starting point for the optimization. This point was eval-
uated regarding their predicted energy with the trained property
prediction model and the mean absolute difference of the pre-
dicted energy and the target value was returned to the optimizer
to minimize. At each step, although only for monitoring propose,
the points were decoded by the trained model into SMILES or
SELFIES. The optimizer then optimizes for 10 iterations the la-
tent representation. The last generated molecule was then ana-
lyzed for their validity (see above). The learning rate for the SGD
algorithm was chosen to be 0.2.

8 Optimization of a separately trained predictor

To demonstrate the advantages of simultaneously training and
the resulting structuring of the latent space, a VAE was trained on
the 0 augmented SMILES data without a predictor. In a second
step, the training data was encoded into the latent representa-
tion with the trained (frozen weights) VAE. These vectors were
used as an input for a separate feed-forward neural network to
learn to predict the binding energy. This neural network had the
same hyperparameters as the property predictor (see Table 1). A
MAE loss of 4.8 kcal mol−1 was achieved. The same gradient
optimizer was used to see how effective this separate predictor
neural network performs. As seen in Figure 5, the loss during the
molecule generation stays high compared to the simultaneously
trained model.
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Fig. 5 Loss of the gradient based optimizer for a not simultaneously
trained predictor

9 Metal Fraction generated molecules

Fig. 6 Metal distribution of the generated molecules with the SELFIES
model (left), it can be seen that the model favors Pd metal followed
by earth-abundant metals Cu and Ni, the same order of metals is also
observed in the SMILES model (right)

10 Functional group analysis SMILES model

Fig. 7 (left) The distribution of the functional groups in the SMILES
model, were phosphines are the dominant functional group (right) the
functional group composition of each metal individually.
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