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tmQMg dataset statistics

Figure S1 shows the distribution of three different properties over the tmQMg dataset; i.e.

the overall charge of the metal complexes, their size in number of atoms, and their chemical

composition. These distributions show that the transition metal group with the largest

weight is 10 (Ni-Pd-Pt), followed by 6, 8, 9, and 12, which have more similar weights; the

most scarce metals in the dataset are those from group 3. The majority of complexes,

82%, are neutral, whereas only 15% and 3% are cationic or anionic, respectively. These

numbers reflect the experimental biases introduced by the CSD database, which was used

as the source of TMCs. Regarding the molecular charge, it is straightforward to balance the

distribution of this property by means of generative models leveraging the tmQMg dataset.

Further, it should be noted that the charge is one of the graph-level features passed as input

to the predictive models. Other properties are more evenly distributed, including the size

in number of atoms (55% are in the 36-to-65 range) and the periodic series to which the

transition metal belongs (37% are 3d, and smaller but similar portions are 4d or 5d). The

analysis of the chemical composition reflects the organic nature of the ligands, with 88% of

the elements being either C or H. Metals aside, the most abundant heteroatom is N, followed,

in this order, by O, Cl, and P. The selection of 60k TMCs in the tmQMg dataset excludes

∼0.44M compounds of the CSD that also contain metals – a significant proportion of them

are polynuclear species and nanoporous materials far from the type of compounds targeted

in this dataset.
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Figure S1: Top: Histograms showing the distribution of molecular charges (left) and size in atoms
(right); Bottom: Histograms showing the composition distribution by non-metal elements (left) and
metal elements (right). The y axis of the non-metal composition inset is in the 106 scale.

The pair plot shown in Figure S2 suggests that most quantum properties have a distri-

bution close to normal, though some appear significantly skewed (e.g. lowest vibrational

frequency) or with multiple peaks (e.g. metal charge). Further, many quantum properties

are poorly correlated, with pairwise scatter plot distributions taking the appearance of irreg-

ular blobs. Nonetheless, there are distributions reflecting interesting trends; e.g., in Figure

S3 there is a poor correlation between the HOMO-LUMO gap (ϵ) and the polarizability (α),

though it is apparent that the region in which both ϵ and α are large is sparsely populated.

A similar scenario is seen in the scatter plot of entropy versus lowest vibrational frequency.

Figures S2 and S3 also show examples of strong correlations, including that of the total
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number of electrons with the polarizability, heat capacity, and entropy.

Figure S2: Pair plot of selected quantum properties, with scatter (off-diagonal) and histogram
(diagonal) plots. Left-to-right (and top-to-bottom): Number of electrons, dipole moment, isotropic
polarizability, lowest vibrational frequency, heat capacity at constant volume, HOMO-LUMO gap,
natural charge of the metal center, and dispersion energy. The color code is orange for q = +1,
green for q = 0, and blue for q = –1, where q is the overall charge of each TMC.
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Figure S3: Pairwise scatter plots of selected quantum properties. The color transition from dark
purple to light yellow reflects the increase in the density of data points.
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tmQMg dataset outliers

In order to exclude the potentially faulty TMCs of the dataset, we employed outlier detection

methods. We explored both parametric (elliptic envelope) and non-parametric (isolation

forests) methods, which were applied on a per-metal basis; i.e. we stratified the dataset by

metal center and applied outlier detection to each individual stratum. Both tested methods

seemed to provide similar results when considering only a subset of all quantum properties

individually. However, the formal requirement of a Gaussian distribution for the parametric

methods was not satisfied by all strata. Therefore, we ruled out the elliptic envelope in favor

of the isolation forests. Using the implementation of scikit-learn,1 we applied a contamination

value of 0.04 to exclude 2,390 outliers (i.e. ∼4% of tmQMg).

We compared the performance of the MPNN GNN predicting the polarizability upon

training the model with the tmQMg dataset including and excluding outliers. We saw an

increase in model accuracy when excluding the outliers (∆MAE ≈ 1 Bohr3 after 150 epochs),

as illustrated by the learning curves shown in Figure S4.

Figure S4: MAE learning curves on the test set using the dataset with and without outliers in
the prediction of the polarizability.
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tmQMg computational details

DFT calculations for the tmQMg dataset were carried out with the Gaussian16 program,

using revision C.01. Geometry optimizations were done without any geometry or symme-

try constraint using the pure PBE functional with the D3BJ dispersion correction and the

double-ζ def2SVP basis set. Frequencies were computed at the same level of theory, together

with the thermochemistry at T = 298.15 K and p = 1 atm. Only the TMCs yielding con-

verged geometries without imaginary frequencies were included in the dataset. Single-point

energies and properties were computed for the optimized geometries with the hybrid PBE0

functional, using the D3BJ dispersion correction and the triple-ζ def2TZVP basis set. The

natural bond orbital analysis was also carried out at this level using the NBO7 program. All

calculations were performed for the singlet state.

GNN models details

MPNN architecture

The tmQMg data was split into training, validation and testing sets with a 80:10:10 ratio.

All categorical attributes, except the atomic number, were converted into one-hot encoded

features (e.g., for the type of NBO defining the edges: (1, 0) = BD, (0, 1) = 3C). The values

(x) of the node, edge, and whole-graph attributes, as well as those of the targets, were all

standard-scaled before training with the z factor

z =
x− µ

σ

where µ and σ are the mean and the standard deviation, respectively. Standard-scaling

facilitated the optimization of the model parameters (i.e. weights and biases minimizing the

loss function). For most extensive properties, we applied a linear fitting procedure prior to

training the model (vide infra).
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The MPNN⊕G GNN is a message passing neural network based on an architecture

introduced by Gilmer et al.2 In the first layer, it maps the node attribute vectors to a chosen

embedding of size d (usually much larger than the input dimension) by passing the vectors

through a two-layer multilayer perceptron (MLP). In parallel, the edge attribute vectors are

passed through a similar neural network expanding and reshaping it to a d × d matrix. In

the next layer, the embedded attribute vectors enter the message passing scheme defined by

m(hv,hw, evw) = A(evw)hw (1)

where m is the message from node v to node w, hv and hw are the embedding vectors of

nodes v and w, evw is the edge connecting node v to node w, and A denotes the neural

network that maps the edge vector evw to a d×d matrix. The messages are then aggregated

for each node v by considering the neighboring nodes w, using the mean function. In the next

layer, the aggregated message is passed to a gated recurrent unit, which, for k iterations (i.e.

the model depth), updates the node embeddings. The resulting graph is fed to the set2set

layer,3 which implements an attention mechanism overm iterations and pools the final graph

embeddings into a single fixed-dimension vector. In the last layer, this vector is appended

to the whole-graph attribute vector, in a modification of the architecture originally reported

by Gilmer et al.,2 and is passed to a two-layer MLP yielding the target prediction. In the

article, the models with and without whole-graph attribution are referred to as MPNN⊕G

and MPNN, respectively; both use parameter-sharing throughout the message passing layers.

Table S1 shows the hyperparameters used to setup the MPNN⊕G and MPNN models.

Note that the number of node, edge, and graph attributes is dictated by the nature of the

corresponding representation. For training, the Adam optimiser4 with an initial learning

rate of 0.001 was used. In addition, an “on-plateau” learning rate decay was used with a

patience of 5, reduction factor of 0.7, and a minimum learning rate of 0.00001. All models

were trained using early-stopping and a batch size of 32.
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Table S1: Hyperparameters used for the different graph representations.

Parameter baseline u-NatQG d-NatQG
Number of node attributes 4 21 21
Number of edge attributes 2 18 26
Number of graph attributes 4 4 4
Embedding dimension d 128 128 128
Message passing depth k 4 4 6

set2set steps m 4 4 4

MPNN hyperparameter optimisation

Exploratory hyperparameter optimisation was performed for the u-NatQG and d-NatQG

representations separately. The main focus was on the embedding dimension d, the message

passing depth k, and the number of set2set steps m (Table S1). The effect of different batch

sizes was also investigated but the resulting differences were insignificant and, therefore, the

batch size of 32 was chosen for the sake of computational efficiency.

In general, for the embedding size we found that a larger value for d generally corresponds

to better performance which is due to the resulting increased expressivity of the model. We

tested this starting from 32 going up to 128, with the latter giving the best results. This

however does not scale infinitely because there are diminishing returns as the model starts

suffering from the curse of dimensionality. In fact, going from embedding size 32 to 64 gives

a larger performance increase than going from 64 to 128.

For optimising the number of message passing steps k, we kept the number of set2set

iterations constant at m = 4. The corresponding results suggest that after a certain point

there is very little variance in performance with respect to the number of message passing

steps, as shown in Figure S5 for the d-NatQG model predicting the polarizability. Among

the tested settings, k = 6 performed best for d-NatQG. Convergence was faster for u-NatQG,

for which k = 4 yielded the highest accuracy.
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Figure S5: MAE learning curves for the validation set using the d-NatQG representation and
different number of message passing steps. Target = polarizability; embedding dimension d = 128;
set2set iterations m = 4.

Figure S6: MAE learning curves for the validation set using the d-NatQG representation and
different number of set2set iterations. Target = polarizability; embedding dimension d = 128;
number of message passing steps k = 6.
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Next, we investigated the number of set2set iterations keeping the number of message

passing steps constant at k = 6. In this case, there was a significant difference in performance:

both m = 3 and m = 5 lead to an increase of the MAE by ca. 0.2 Bohr3 relative to m = 4,

as shown in Figure S6 for d-NatQG. This m value was also optimal for u-NatQG.

The MPNN hyperparameters used for the baseline were those derived for the u-NatQG

representation, which has the same graph topology (vide infra).

MXMNet and CRG models

In all CRG models, we used a cutoff of 10 Å to define the radial graphs. This value was also

used to set the global layer of the MXMNet model. The models were trained by combining

the exponential moving average method with a learning rate (lr) scheduler starting from

lr = 0.0001, and a batch size of 32. The model hyperparameters were the following:

• MXMNet.5 Number of hidden channels = 128, layers = 3.

• SchNet.6 Number of hidden channels = 256, filters = 256, interactions = 6, Gaussian

functions = 100; maximum number of neighbors = 32.

• EdgeUpdate.7 Number of hidden channels = 256, interactions = 6, Gaussian functions

= 100.

• DimeNet++.8 Number of hidden channels = 128, interactions = 4, spherical harmonics

= 7, radial basis functions = 6; basis embedding size = 8.

• ALIGNN.9 Number of atom input features = 92, edge input features = 80, triplet

input features = 40, embedding features = 64, hidden features = 256.
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Baseline representation

The baseline graph representation was based on the following three building blocks:

• Topology – The same used for the u-NatQG graphs.

• Node attributes – The (Z, T, S, χ) vector.

• Edge attributes – The (BO, d) vector.

Most of the data needed to inform the attribute vectors was immediately available; i.e.

the atomic number (Z), the node degree (T), the electronegativity (χ), and the bond distance

(d). However, the definition of the covalent radii (S) and the bond order (BO) were more

complicated. For the covalent radii, we used the values derived by Alvarez10 based on a

systematic approach for all elements up to Z = 96 that exploits the crystallographic data

of the CSD. For elements with multiple values, the average radius was used. For the bond

order, it was not possible to use chemoinformatics software like RDKit, which, for many

TMCs, cannot produce a graph containing bond orders from an xyz geometry or a SMILES

string that, in some cases, cannot be generated either. The bond orders were thus derived

from the Wiberg bond indices (WBI) available from the NBO data. Based on the results

shown in Table S2, we defined the following intervals to map the WBI values into integer

bond orders:

• WBI ≤ 1.4 −→ BO = 1

• 1.4 < WBI ≤ 2.0 −→ BO = 2

• WBI > 2.0 −→ BO = 3
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Table S2: Wiberg bond orders of selected bonds in four different organic molecules calculated
at the DFT (PBE/def2SVP) level. For butane, 2-butene and, 2-butyne, the reported bond order
corresponds to the central bond. For benzene it is the average of the six C–C bonds.

Molecule Wiberg bond order
Butane 1.01
2-Butene 1.91
2-Butyne 2.74
Benzene 1.43

Linear fitting for energy targets

In order to increase performance when predicting energy targets, we used a linear fitting

procedure to extract the atomic contributions to the total energy. We assumed that the

total energy can be separated into atomic contributions and their interactions; i.e.:

E = Eatom + Einter (2)

where we defined the atomic contributions as

Eatom =
∑
A∈M

NAEA (3)

where A denotes a specific element and NA and EA denote the number of atoms for this

element in the TMC molecule M and its atomic contribution to the overall energy, respec-

tively.

We can re-write this expression in vector form as follows:

Eatom = NAEA (4)

where Eatom ∈ Rn is a vector containing the atomic contribution part of the energy for n

TMCs, EA ∈ Rm is a vector containing the atomic energies per element, and NA ∈ Rn×m is

the element count matrix that contains the occurrences of each of the m elements for each
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of the n TMCs.

The EA values can be determined through linear regression on a training set containing

n′ TMCs:

ÊA = N train+Etrain (5)

where ÊA ∈ Rm is a vector containing the predicted atomic energies of the m elements

present in the dataset, Etrain ∈ Rn′
is a vector containing the target energies of the n′ TMCs

used for training, and N train+ ∈ Rm×n′
is the pseudo inverse of the element count matrix.

Using the predicted element-wise atomic energies, ÊA, we can calculate the atomic con-

tributions for the whole dataset, Eatom, using equation (4). We then obtain the interaction

contribution with

Einter = E − Eatom (6)

In this framework, all GNN models were optimized for predicting only the interaction

energy contributions. These values were thereafter added to the linearly-fitted atomic contri-

butions to obtain the true target energy. This procedure was used to predict the electronic,

dispersion, zero-point, enthalpy, and Gibbs energies. In principle, this procedure should be

useful for all extensive properties though, for some of them, e.g. polarizability, we did not

see a significant improvement.

Training dataset results

Table S3 provides the error metrics of the GNN models for the training dataset, including the

prediction of the HOMO-LUMO gap, polarizability, and dipole moment. Table S4 contains

the same information for all other targets, including also the baseline results.
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Table S3: Mean absolute error (MAE) and r2 score of the GNN models for the prediction of the
HOMO-LUMO gap (in mHa) polarizability (in Bohr3) and dipole moment (in D) in the training
dataset. The GNN architectures were based on different graphs including the (u-) and (d-NatQG)
graphs and graphs derived from a cutoff radius (CRG). The base MXMNet model refers to the
original implementation of Xie.5

HOMO-LUMO gap Polarizability Dipole moment
Architecture and Graph MAE r2 MAE r2 MAE r2

MPNN
u-NatQG 4.02 · 10−2 0.999 1.72 · 10−1 0.999 1.04 · 10−2 0.999
d-NatQG 8.53 · 10−2 0.999 7.20 · 10−2 0.999 9.22 · 10−3 0.999

MPNN⊕G
u-NatQG 6.02 · 10−2 0.999 9.25 · 10−2 0.999 2.25 · 10−2 0.999
d-NatQG 8.60 · 10−2 0.999 7.82 · 10−2 0.999 1.67 · 10−2 0.999

MXMNet
base 1.31 · 10−1 0.995 2.71 · 10−3 1.000 1.99 · 10−3 0.999

u-NatQG 1.59 · 10−1 0.991 2.24 · 10−3 1.000 2.22 · 10−3 0.990
d-NatQG 3.42 · 10−1 0.978 3.58 · 10−2 0.999 3.51 · 10−3 0.999

SchNet CRG 1.60 0.989 3.09 · 10−2 1.000 6.80 · 10−4 1.000
EdgeUpdate CRG 2.31 · 10−1 0.998 1.02 · 10−2 0.999 1.02 · 10−1 0.998
DimeNet++ CRG 1.47 · 10−1 0.992 1.83 · 10−3 1.000 1.21 · 10−3 0.999
ALIGNN CRG 2.14 · 10−1 0.999 3.90 · 10−1 0.999 1.03 · 10−1 0.998

Table S4: MAE and r2 score for the training dataset using the MPNN⊕G model based on the
NatQG graphs and a baseline representation including only generic properties (i.e. Z, T, S, χ, BO,
and d). The units are mHa for all energies, cal/mol·K for the heat capacity and entropy, D for the
dipole moment, Bohr3 for the polarizability, and cm−1 for the largest vibrational frequency.

Baseline u-NatQG d-NatQG
Property MAE r2 MAE r2 MAE r2

HOMO-LUMO gap 1.64 · 10−1 1.000 6.02 · 10−2 0.999 8.60 · 10−2 1.000
Polarizability 3.89 · 10−1 1.000 9.25 · 10−2 0.999 7.82 · 10−2 1.000
Dipole moment 7.01 · 10−1 0.928 2.25 · 10−2 0.999 1.67 · 10−2 1.000
HOMO energy 3.66 0.988 3.51 · 10−2 1.000 3.93 · 10−2 1.000
LUMO energy 6.57 · 10−1 1.000 4.91 · 10−2 1.000 4.97 · 10−2 1.000

Electronic energya 5.45 1.000 7.52 · 10−2 1.000 2.01 · 10−1 1.000
Dispersion energya 1.39 · 10−1 1.000 1.79 · 10−2 1.000 1.64 · 10−2 1.000
Zero-point energya 2.07 · 10−2 1.000 4.61 · 10−3 1.000 2.92 · 10−3 1.000
Enthalpy energya 4.30 1.000 1.06 · 10−1 1.000 9.39 · 10−2 1.000
Heat capacityb 9.52 · 10−2 1.000 5.40 · 10−2 1.000 2.51 · 10−2 1.000
Entropy energy 2.21 · 10−1 1.000 4.65 · 10−2 1.000 5.04 · 10−2 1.000
Gibbs energya 2.63 1.000 1.14 · 10−1 1.000 1.78 · 10−1 1.000

Thermodynamic correctionsc 5.44 · 10−1 1.000 2.60 · 10−1 1.000 1.37 · 10−1 1.000
Largest vibrational freq. 3.80 0.992 2.27 1.000 8.27 1.000

aUsing linearly fitted atomic energy offsets; bAt constant volume (i.e. Cv);
cDifference between the Gibbs

and potential energies.
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Python libraries

We used Python version 3.9.6. The following list provides the versions of the relevant libraries

used for the numerical experiments:

• numpy 1.20.311

• cudatoolkit 10.2.8912

• pytorch 1.9.0=py3.9 cuda10.2 cudnn7.6.5 013

• pyg 2.0.1=py39 torch 1.9.0 cu10214
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