
Supplementary Information:1

By how much can closed loop frameworks2

accelerate computational materials discovery?3

Lance Kavalsky,1, ∗ Vinay I. Hegde,2, ∗ Eric Muckley,2 Matthew S.4

Johnson,3 Bryce Meredig,2, † and Venkatasubramanian Viswanathan1, ‡
5

1Carnegie Mellon University, Pittsburgh, PA 152136

2Citrine Informatics, Redwood City, CA 940637

3Massachusetts Institute of Technology, Cambridge, MA 021398

S1

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2023



I. EFFECTIVENESS OF ACQUISITION FUNCTIONS9

Here, we expand the set of acquisition functions and compare their effectiveness for the10

three sequential learning (SL) tasks considered in the main text: (a) finding candidates in11

the target window, (b) surfacing candidates of high quality, i.e., close to the target window,12

and (c) building minimal datasets for training ML models that are close in accuracy to those13

trained on the full dataset.14

We define a new baseline for acquisition functions, a “space-filling” approach, that works as15

FIG. S1. A comparison of random search vs sequential learning (SL)-driven approach to find new

bimetallic catalysts with a target property. (a) Overall, the SL-driven approach identifies all the

33 target candidates in the dataset within 100 iterations, ∼3× faster than random search and

a space-filling-based acquisition function. (b) Candidates surfaced via SL lie much closer to the

target window on average, when compared to those chosen via random search or space-filling. (c)

An SL-driven approach can help identify a much smaller number of examples that can be used to

train ML surrogates to a desired accuracy, at a fraction of the overall dataset size. Here, the overall

dataset has ∼300 candidates, and an ML model trained on only ∼25% of the candidates chosen via

a SL-driven maximum uncertainty (MU)-based approach achieves the target accuracy. Notably, the

other purely-exploratory acquisition functions considered here, random and space-filling, perform

as well as MU for building datasets. In each case, the shaded region in the plots represent variation

in the reported quantities estimated over 20 independent trials.

∗ These authors contributed equally to this work
† bryce@citrine.io
‡ venkvis@cmu.edu

S2

mailto:bryce@citrine.io
mailto:venkvis@cmu.edu


follows: (1) Start with a randomly-chosen initial training set (e.g., ∼10, used previously),16

(2) Build ML models, (3) From the design space of candidates, choose one that is farthest17

from all the training examples (measured using Euclidian distance of each candidate, in the18

145-dimensional Magpie feature vector-space, to the closest example in the current training19

set) to augment the training set in each SL iteration, (4) Re-train ML models, (5) Perform20

steps (1)–(5) for a predetermined number of iterations or until the termination condition21

is met. This space-filling acquisition strategy performs similarly to the random (uniform)22

acquisition strategy in finding candidates, candidate quality, as well as for building datasets23

for ML surrogates (see FIG. S1).24

Expectedly, MU, random, and space-filling perform worse than MLI for finding target25

candidates and surfacing quality candidates (FIG. S1a,b), as both are SL tasks that benefit26

from balancing exploration with exploitation. On the other hand, the space-filling and ran-27

dom acquisition strategies perform as well as the MU-based one for building training datasets28

(and all three exploratory acquisition strategies perform better than MLI), demonstrating29

that the three approaches are nearly-equally effective for pure exploration (FIG. S1c). This30

is consistent with previous reports comparing model accuracy as a function of SL iteration31

using similar acquisition functions [1].32

In terms of picking an acquisition strategy specifically for constructing training datasets,33

there is additional nuance to consider related to cost. While the space-filling and random34

acquisition functions do not require ML model building in each SL iteration (and are thus35

faster and more economical compared to MU), the effectiveness of the three approaches is36

seen to vary based on the data distribution in the particular design space of interest [1].37

This can be the subject of future investigation.38

II. HUMAN LAGTIME MODEL39

When defining our human lag model, we invoke the following assumptions:40

1. 3 windows of time:41

(a) Researcher at work (9am-5pm): checks on job every couple of hours; average lag42

of 1 hour.43

S3



(b) Researcher (partially) away from work (5pm-11pm): checks on job at the end of44

the window; average lag of 3 hours.45

(c) Researcher (completely) away from work (11pm-9am): checks on job at the end46

of window; average lag of 5 hours47

2. Uniform distribution of when jobs will finish through a week:48

(a) Probability of job finishing during the week = 5/7: researcher checks on job49

according to 1, above.50

(b) Probability of job finishing during the weekend = 2/7: researcher checks on job51

once during the weekend; average lag of 24 hours.52

III. SURROGATE ACCURACY53

The size of the unexplored design space shrinks as the simulated sequential learning (SL)54

progresses, i.e., the number of candidates in the full dataset that the model has not “seen” yet55

keeps continuously decreasing. So surrogate model accuracy estimates derived using model56

predictions over the entire unexplored design space (the test set) in each SL iteration can be57

affected by the continuously diminishing test set size. In order to mitigate this effect of test58

set size on the surrogate model accuracy estimates, we employ a bootstrapping approach to59

keep the test set size fixed in each SL iteration. At each SL iteration, 20 “bootstrap test60

samples” are generated from the full unexplored design space. Each of the 20 bootstrap test61

samples are generated by randomly sampling, with replacement, 100 candidates from the62

unexplored design space. For each of the 20 bootstrap test samples (with 100 candidates63

each) we calculate the mean absolute error (MAE). Finally, we run 20 independent trials64

of the entire simulated SL pipeline. The accuracy of the surrogate model at a given SL65

iteration is then defined by the mean and standard deviation of the MAEs of the bootstrap66

test samples (generated at that SL iteration) aggregated over the 20 independent trials. We67

use this final mean MAE of the surrogate model as the accuracy metric of interest with a68

target value of 0.1 eV.69

S4



IV. SUMMARY OF ACCELERATION FACTORS70

FIG. S2. Acceleration factors visualized as bar plots using the data from Table III of the main

manuscript. The component-wise analysis highlighted here can be used to make informed decisions

when designing closed-loop frameworks of varying topologies.

S5



V. DATA AND SCRIPTS FOR REPRODUCIBILITY71

All data and Python scripts required to perform the analysis presented in this work are72

made available via the GitHub repository at https://github.com/aced-differentiate/73

closed-loop-acceleration-benchmarks. The repository is organized as follows:74

1. data/75

• benchmark_calculations_record.xlsx: Excel spreadsheet containing a record76

of DFT calculations, associated raw timestamps, and a tabulation of the acceler-77

ation estimates.78

• bimetallic_catalysts_dataset/79

– ma_2015_bimetallics_raw.json.gz: Dataset of bimetallic alloys for CO280

reduction, in the Physical Information File (PIF) format, obtained from81

Dataset 153450 on Citrination.82

Original data source: “Machine-Learning-Augmented Chemisorption Model83

for CO2 Electroreduction Catalyst Screening”, Ma et al., J. Phys. Chem.84

Lett. 6 3528-3533 (2015). DOI: 10.1021/acs.jpclett.5b0166085

– transform.py: Python script for converting from the PIF format into tab-86

ular data.87

– bimetallics_data.csv: Bimetallics catalysts dataset mentioned above in a88

tabular format.89

• runtime_geometries/90

“Chemically-informed” and naive structures and settings in the form of ase.traj91

files, corresponding to the discussion surrounding FIG. 3 in the main text. The92

files can be read using ASE package (using ase.io.read).93

2. scripts/94

• human_lagtime.py: Script for estimating human lagtime in job management,95

calculated using a Monte Carlo sampling method.96

• sequential_learning.py: Script for running multiple independent trials of se-97

quential learning (SL) and recording a history of training examples, model pre-98

dictions and prediction uncertainties.99

S6

https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks
https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks
https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks
https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks/data
https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks/data/bimetallic_catalysts_dataset
https://citrineinformatics.github.io/pif-documentation
https://citrination.com/datasets/153450
http://dx.doi.org/10.1021/acs.jpclett.5b01660
https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks/data/runtime_geometries
https://wiki.fysik.dtu.dk/ase/ase/io/io.html#ase.io.read
https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks/scripts


If run as-is, the script performs 20 independent trials of 100 SL iterations to op-100

timize the binding_energy_of_adsorbed property in the bimetallic catalysts101

dataset mentioned above, using four acquisition functions (results from each102

recorded separately): random, maximum likelihood of improvement (MLI), max-103

imum uncertainty (MU), and space-filling.104

• plot_acceleration_from_sequential_learning.py: Script to aggregate re-105

sults from the sequential_learning.py script, calculate and plot statistics re-106

lated to acceleration from SL over a baseline.107

If run as-is, the script reproduces the 3-paneled FIG. 5 in the main text.108

• plot_acceleration_from_sequential_learning__ALL_ACQ.py: Similar to the109

previous script; plots and compares statistics from all acquisition functions con-110

sidered (MLI, MU, random, space-filling) for all SL tasks.111

If run as-is, the script reproduces the 3-paneled FIG. S1 in the Supplementary112

Information.113

• plot_levels_of_automation.py: Script for plotting the cumulative time of ex-114

ecuting the DFT pipeline at varying levels of automation.115

If run as-is, the script reproduces the bottom panel from FIG. 2 in the main text.116

A. Running the scripts117

The required packages for executing the scripts are specified in requirements.txt, and118

can be installed in a new environment (e.g. using conda) as follows:119

$ conda create -n accel_benchmarking python=3.10120

$ conda activate accel_benchmarking121

$ pip install -r requirements.txt122

The scripts are all in python, and can be run from the command line. For example:123

$ cd scripts124

$ python sequential_learning.py125

S7

https://docs.conda.io/projects/conda/en/latest/index.html


[1] C. K. Borg, E. S. Muckley, C. Nyby, J. E. Saal, L. Ward, A. Mehta, and B. Meredig, Quantifying126

the performance of machine learning models in materials discovery, Digital Discovery 2, 327127

(2023).128

S8


	Supplementary Information: By how much can closed loop frameworks accelerate computational materials discovery?
	Effectiveness of acquisition functions
	Human Lagtime Model
	Surrogate Accuracy
	Summary of acceleration factors
	Data and Scripts for Reproducibility
	Running the scripts

	References


