
2023 Supplementary Information

Supplementary Materials for A Neural

Network Potential with Rigorous Treatment

of Long-Range Dispersion

Nguyen Thien Phuc Tu2, Nazanin Rezajooei1, Erin R.
Johnson3 and Christopher Rowley1,2*

1*Department of Chemistry, Carleton University, 1125 Colonel
By Dr, Ottawa, K1S 5B6, Ontario, Canada.

2*Interdisciplinary Program in Scientific Computing, Memorial
University of Newfoundland, 230 Elizabeth Ave, St. John’s, A1C

5S7, Newfoundland and Labrador, Canada.
3Department of Chemistry, Dalhousie University, 6274 Coburg

Rd, Halifax, B3H 4R2, Nova Scotia, Canada.

*Corresponding author(s). E-mail(s):
Christopher.Rowley@carleton.ca;

Contributing authors: phuctu@cmail.carleton.ca;
nrezajooei@mun.ca; erin.johnson@dal.ca;

1 Computational Methods

In the ANIPBE-MLXDM method, the total potential energy of the system
(V) with atomic coordinates R1,R2, . . .RN is the sum of the ANIPBE0 neu-
ral network potential term (VNNP) and the MLXDM London dispersion term
(Vdisp). The NNP is intended to describe short-range interatomic interactions
(e.g., Pauli repulsion, chemical bonds...), while the MLXDM term is intended
to describe London dispersion interactions.

The total dispersion energy of a chemical system can be approximated as
a sum of the dispersion interactions between individual atomic pairs,

Vdisp =
∑
i

∑
j=i+1

Vdisp,ij (Rij) (1)
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The dispersion energy of the interaction between neutral atoms i and j
(Vdisp,ij) can be approximated as a sum of 6th, 8th, and 10th order terms [1]:

Vdisp,ij(Rij) = −C6,ij

R6
ij

− C8,ij

R8
ij

− C10,ij

R10
ij

(2)

where C6,ij , C8,ij , and C10,ij are the 6th, 8th, and 10th order dispersion coef-
ficients for the atomic pair i and j. Rij is the distance between atomic pair i
and j.

When used with conventional DFT functionals for the calculation of
the other components of the energy (or, in this case, an NNP approximat-
ing DFT), these dispersion terms must be damped at short-range to avoid
“double-counting” short-range dispersion interactions that are captured by
the exchange-correlation functional and to avoid a singularity as Rij → 0. In
the XDM model, this is achieved through an order-dependent damping func-
tion, fn(Rij), that depends on the sum of van der Waals radii, RvdW,ij of the
interacting atoms. The damping function is defined as

fn(Rij) =
Rnij

Rnij +RnvdW,ij

(3)

With these damping functions included, Eqn. 2 becomes

Vdisp,ij(Rij) = −C6,ij

R6
ij

f6(Rij)−
C8,ij

R8
ij

f8(Rij)−
C10,ij

R10
ij

f10(Rij). (4)

With the XDM model, the coefficients are related to atomic polarizabilities
and atomic electric moments. The C6 dispersion coefficient for the interaction
between atoms i and j is

C6,ij = αiαj
〈M2

1 〉i〈M2
1 〉j

αi〈M2
1 〉j + αj〈M2

1 〉i
(5)

where 〈M2
1 〉i is the expectation value of the square of the exchange-hole dipole

moment for atom i, and αi is the the atom-in-molecule polarizability,

αi =
Vi

Vfree,i
αfree,i (6)

which is obtained using the proportionality between polarizability and atomic
volume. Here Vfree,i, and αfree,i are the in vacuo atomic volumes and
polarizabilities. Similar relations provide the C8 and C10 dispersion coefficients:

C8,ij =
3

2
αiαj

〈M2
1 〉i〈M2

2 〉j + 〈M2
2 〉i〈M2

1 〉j
αj〈M2

1 〉i + αi〈M2
1 〉j

(7)
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C10,ij = αiαj
2〈M2

1 〉i〈M2
3 〉j + 2〈M2

3 〉i〈M2
1 〉j + 21

5 〈M
2
2 〉i〈M2

2 〉j
αj〈M2

1 〉i + αi〈M2
1 〉j

(8)

where 〈M2
2 〉i and 〈M2

3 〉i are expectation values involving the square of the
exchange-hole quadrupole and octupole moments, respectively. The XDM
dispersion coefficients differ from free-atom values depending on the local
chemical environment because of their dependency on the electron density and
its derivatives via the exchange hole [2, 3].

Finally, the van der Waals radii that appear in the damping function are

RvdW,ij = a1Rcritical,ij + a2 (9)

and depend on the critical radius, Rcritical,ij , at which successive terms in the
dispersion energy expansion become equal. This is determined by averaging
ratios of the dispersion coefficients as

Rcritical,ij =
1

3

[(
C8,ij

C6,ij

)1/2

+

(
C10,ij

C6,ij

)1/4

+

(
C10,ij

C8,ij

)1/2
]
. (10)

The values of the two constants, a1 and a2, are determined by DFT calculations
by minimizing the root-mean-square percent error for a set of 49 molecular
dimers relative to accurate reference data from wavefunction theory.[4]. These
damping parameters are fit for use with a given exchange-correlation functional
and basis set; their values are then kept fixed for all subsequent calculations.
MLXDM uses the same damping coefficients as PBE0/aug-cc-pVTZ: a1 =
0.4186 and a2 = 2.6791 Å. [4]

1.1 Generation of Training Data

The dataset used to build the ANIPBE0 NNP and MLXDM NNs consisted
of a total of 2.12 M configurations of chemical complexes and their cor-
responding DFT-calculated electronic energies and dispersion coefficients.
This dataset is available for download from the FigShare repository [5].
The DFT calculations were performed using Gaussian 16 [6] with the PBE0
exchange-correlation functional [7] and the aug-cc-pVTZ basis set [8]. These
calculations provide the electronic energy and XDM coefficients that are used
to train the ANIPBE0 NNP and MLXDM correction, respectively. The route
card of the Gaussian calculations was:

#PBE1PBE/aug-cc-pvtz int(grid=ultrafine) scf=tight force

The XDM dispersion coefficients were calculated from the wavefunction data
from the PBE0/aug-cc-pVTZ calculations using the postg code [9].

The first set of 1.83 M chemical structures chosen to comprise the dataset
was a subset of the ANI-1x dataset [10]. However, the NNP trained using that
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Table 1 Number of systems, N, included in the training set for the various NNPs. Also
shown are the resulting error statistics for the DES370K benchmark of intermolecular
binding energies, in kcal/mol. MAE: mean absolute error; RMSE: root-mean-square error;
R2: coefficient of determination.

N MAE RMSE R2

ANIPBE0a (ANI-1X data only) 1.83 M 1.20 4.66 0.59
ANIPBE0b (intermolecular data included) 2.10 M 0.86 4.08 0.68
ANIPBE0 (active learning data included) 2.12 M 0.67 1.06 0.97

dataset (ANIPBE0a) performed poorly when applied to the DES370K bench-
mark [11] of intermolecular interaction energies calculated using PBE0/aug-
cc-pVTZ; the MAE was 1.2 kcal/mol for the binding energies the R2 was 0.58
(Table 1). We surmised that the poor performance of ANIPBE0a was due to
the lack of intermolecular complexes in the dataset. Thus, additional data for
intermolecular complexes were generated by performing calculations on pairs
of molecules with a separation corresponding to a random distance in the inter-
val 2 Å to 5 Å and placed at random angles with respect to each other. An
additional 0.27 M structures were added to the dataset through this process.
The inclusion of these data improved the MAE for the DES370K benchmark
to 0.86 kcal/mol and the R2 of the NNP to 0.68 (ANIPBE0b, Table 1).

To increase the accuracy further, an active learning process was applied.
Eight NNPs were trained for each iteration of the training set. Randomly-
oriented intermolecular complexes were generated and the energies of these
complexes were calculated with each NNP. If the standard deviation of this
ensemble of NNPs was greater than 1 kcal/mol per atom, the DFT energy of
the structure was calculated and added to the dataset. This method was based
on the active learning scheme used to generate the ANI-1x dataset.[10] This
process was repeated for 46 iterations, adding an additional 20,000 structures
to the dataset. This process improved the R2 of the NNP to 0.97 and decreased
the MAE to 0.67 kcal/mol for the DES370K benchmark. This model was used
for the NNP component (ANIPBE0) in all calculations going forward.

1.2 Construction of the Neural Network Potential

ANI-type NNPs, such as ANIPBE0, define the total potential energy of the
system (ET ) as the sum of atomic energies (Ei),

1

ET =

Natom∑
i

Ei (11)

The NNP uses a query by committee approach [12, 13], where the potential
energy is the average of eight energies calculated using different trained neural

1Here, we follow the ANI convention where the total energy calculated by the NNP is denoted
as ET . This term is equivalent to VNNP.
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networks.

〈ET 〉 =
1

Nensemble

Nensemble∑
i

ET,i (12)

1.3 Input Features

The same input features and network architecture are used for both the
ANIPBE0 NNP and the MLXDM dispersion coefficient NNs. The Atomic
Environment Vector (AEV) of an atom contains the input features used by the
NNs to calculate the atomic energy or dispersion coefficients. These AEVs are
composed of modified Behler–Parrinello symmetry functions (G). The AEV
contains both radial (GR, Eqn. 13) and angular symmetry functions (GAmod ,
Eqn. 14) corresponding to the chemical environment of an atom. The param-
eters of these functions are collected in Table 2. A full discussion of the
construction of AEVs is available in Ref. 14. The AEVs used in this work are
identical to those used in Ref. 15.

GRm =
1

4

N∑
i 6=j

exp
(
−η (Rij −RR,s)2

)
fc (Rij) (13)

GAmod
m = 21−ζ

∑
j,k 6=i

(1 + cos (θijk − θs))ζ

× exp

[
−η
(
Rij +Rik

2
−Rθ,s

)2
]
fc (Rij) fc (Rik) (14)

fc (Rij) =

 1
2

[
cos
(
πRij

Rc

)
+ 1
]

if Rij ≤ Rc

0 if Rij > Rc
(15)

1.4 Standardization of Values

Extraneous values were removed from the training data by calculating the
means and standard deviation of 〈M2

1 〉, 〈M2
2 〉, 〈M2

3 〉, and V of each ele-
ment. Values deviating from the mean by more than 1.5 times the standard
deviation of the distribution (σ) were removed. These remaining values were
standardized by the z-score method:

〈M2
` 〉′ =

¯〈M2
` 〉 − 〈M2

` 〉
σ〈M2

` 〉
. (16)

The cleaned and standardized distributions of these properties for each element
are presented in Figure 4. The averages and standard deviations of for each
coefficient and element are collected in Table 3.
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Table 2 Parameters for the AEVs used as input features for the ANIPBE0 and MLXDM
NNs.

Parameter Value Parameter Value Parameter Value

ζ 32 θs 0.19634954 RR,s 0.9
Rcr 5.2 0.58904862 1.16875
Rca 3.5 0.98174770 1.43750
ηR 1.6 1.3744468 1.70625
ηθ 8 1.7671459 1.97500
Rθ 0.9 2.1598449 2.24375

1.55 2.5525440 2.51250
2.2 2.9452431 2.78125
2.85 3.05000

3.31875
3.58750
3.85625
4.12500
4.39375
4.66250

. 4.93125

Table 3 Average values and standard deviations, σ, for z-score standardization of
selected quantities (in atomic units) for each element. These values were calculated for the
ANIPBE0 dataset.

Coefficient Element Average σ

〈M2
1 〉

H 1.539830 0.107733
C 4.299883 0.341336
N 4.643987 0.525829
O 4.846803 0.405748

〈M2
2 〉

H 12.464916 1.067613
C 54.584561 4.251465
N 45.167788 5.537361
O 37.321560 3.784493

〈M2
3 〉

H 206.44866 23.97470
C 981.82437 100.44080
N 594.34827 74.91799
O 380.99753 43.10249

V

H 5.990650 0.3407511
C 31.521044 1.0016140
N 26.222855 1.0468942
O 21.819846 0.8000782

The ANIPBE0-MLXDM NNP was implemented and trained using
TorchANI.[15] This package provides an interface between chemical data
and the PyTorch [16] machine learning library. The gradients of both the
ANIPBE0 NNP and the MLXDM dispersion correction are generated by
PyTorch’s auto-differentiation. As a consequence, the dispersion coefficients
change dynamically over the course of a molecular dynamics (MD) simu-
lation. Further, the sum of kinetic and potential energies is conserved in
microcanonical MD simulations without iterative self-convergence steps.
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1.5 NN Architecture

The ANIPBE0 and MLXDM NNs both had the same network architecture as
the ANI-1x NN [13], and each NN had 3 hidden layers. The number of nodes
in each layer is tabulated in Table 4. Continuously Differentiable Exponential
Linear Units (CELU) [17] activation functions were used in all nodes. The acti-
vation function weights were initialized with random values from a Gaussian
distribution, while the biases were initialized to zero.

Table 4 The number of nodes in each level of the ANIPBE0 and MLXDM deep neural
networks.

Element Network Architecture

H 384:160:128:96:1
C 384:144:112:96:1
N 384:128:112:96:1
O 384:128:112:96:1

For the ANIPBE0 NNP, one NN was defined for each of the elements H,
C, N, and O. There were 8 NNs in the ensemble, so a total of 32 NNs were
trained. For the MLXDM NNs, one NN was defined for each combination of
the elements H, C, N, and O with the coefficients 〈M2

1 〉, 〈M2
2 〉, 〈M2

3 〉, and V
giving a total of 16 NNs. As the metrics for the accuracy of the MLXDM NNs
were generally very good, a query by committee approach was not necessary.
A flowchart of the ANIPBE0-MLXDM code is presented in Figure 1.

1.6 Pseudo-code for Computing Dispersion Energy

The pseudo-code below demonstrates the computation of dispersion energy
from the atomic types and positions of the system. Detailed mathemati-
cal expression for each type are listed above. The gradient is automatically
computed using autograd of PyTorch.

1.7 NN Training

The dataset was divided randomly into training and validation sets in a 4:1
ratio. The training of the NNP follows the work of Gao et al.,[15] where the
loss function is a sum of the square deviation of the NNP-predicted energy
and norm of the forces for every molecule (or intermolecular complex) in the
validation set.

δNNP =

Nmolecules∑
i

(Ei,NNP − Ei,DFT)2√
Natoms

+

0.1×
Nmolecules∑

i

(~Fi,NNP − ~Fi,DFT) · (~Fi,NNP − ~Fi,DFT)√
Nmolecules

(17)
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q1 q2 qN...cartesian coordinates

...

...
1 2

1 2 N
symmetry functions

ANI neural networks
(ANIPBE0)

MLXDM neural networks

Natomic energies
atomic dispersion terms

Fig. 1 Flowchart of the calculation of the total potential energy of a chemical system
(Vtotal) for a set of atomic coordinates (q1, q2, ..., qN ). These coordinates are used to

calculate an atomic environment vector (AEV) for each atom ( ~G). These AEVs are input
into NNs to calculate the atomic energy (ANIPBE0, left). The same AEVs are input into a
set of three NNs to calculate the standardized 〈M2

1 〉, 〈M2
2 〉, 〈M2

3 〉, and V (MLXDM NNs,
right). Both the ANIPBE0 and MLXDM NNs are element-specific (i.e., separately-trained
NNs are used for atoms of the element H, C, N, and O).

The loss function for training the NN for the nth order dispersion coefficient
of a given element is a sum of the NN predicted coefficient (〈M2

n,j〉NN) of
the DFT-calculated XDM coefficient for each atom of that element in the
validation set.

δdisp,n =

Natoms∑
i

(〈M2
n,i〉NN − 〈M2

n,i〉XDM)2

Natoms
(18)

The NNs of both the ANIPBE0 and the MLXDM correction were trained
using the Adam optimizer with weight control [18, 19]. The initial learning
rate coefficient was 0.001. The best model was typically found within roughly
150 epochs. An example of the change in the loss function during one of the
optimizations is presented in Figure 2.
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Algorithm 1 Dispersion energy computation

〈M2
1 〉, 〈M2

2 〉, 〈M2
3 〉,

aev ← AEVComputer(atomtype, positions)
R← pair wise distance(positions)
〈M2

1 〉 ← M1 neural network(aev)
〈M2

2 〉 ← M2 neural network(aev)
〈M2

3 〉 ← M3 neural network(aev)
〈V 〉 ← V neural network(aev)
α← αfree

V
Vfree

C6 ← XDM formula(α, 〈M2
1 〉)

C8 ← XDM formula(α, 〈M2
1 〉, 〈M2

2 〉)
C10 ← XDM formula(α, 〈M2

1 〉, 〈M2
2 〉, 〈M2

3 〉)
RvdW ← van der Waals(C6, C8, C10)
V6 ← −C6

R6 × damp function(R,RvdW, 6)

V8 ← −C8

R8 × damp function(R,RvdW, 8)

V10 ← −C10

R10 × damp function(d,RvdW, 10)
V ← V6 + V8 + V10

Lo
ss

1.0

1.5

2.0

2.5

3.0

3.5

Epochs
0 20 40 60 80 100 120 140

Fig. 2 Example of the training progress of the C6 dispersion coefficient NN. The plot shows
the decline of the loss function of the validation set over the epochs of the optimization.

2 Simulations

2.1 Methods

A switching function was applied to the dispersion interaction term in periodic
systems so that these interactions were scaled to zero continuously over the
interval Rswitch < R < Rdispcut. In the simulations presented in this paper,
this interval was 9.24 Å to 14 Å. The dispersion interaction term with the
switching function included was
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Vdisp,ij(Rij) = −S (Rij)

(
C6,ij

R6
ij

f6(Rij) +
C8,ij

R8
ij

f8(Rij) +
C10,ij

R10
ij

f10(Rij)

)
(19)

S (Rij) =


1 if Rij ≤ Rswitch(
R2
dispcut−R

2
ij

)2(
R2
dispcut+2R2

ij−3R
2
switch

)
(
R2
dispcut

−R2
switch

)3 if Rswitch ≤ Rij ≤ Rdispcut

0 if Rij > Rdispcut

(20)

2.2 Technical Details

Computations for the use cases of ANIPBE0-MLXDM were performed
using the Atomic Simulation Environment (ASE) [20] on a 12-core Intel(R)
Core(TM) i7-8700 CPU with a Titan Xp GPU.

2.2.1 Molecular Dynamics Simulation of Liquid Toluene

A 19.3 Å × 19.3 Å × 19.3 Å simulation cell containing 36 toluene molecules was
constructed. A 1 ns molecular dynamics simulation was performed using the
CGenFF force field[21] to relax the structure. Beginning from this equilibrated
structure, a 1 ns molecular dynamics simulation with a time step of 1 fs was
performed using ANIPBE0-MLXDM. The neutron scattering structure factors
were calculated using LiquidLib [22] using a set of five independent NVT
trajectories.

2.2.2 Gas Adsorption in a Covalent Organic Framework

A 1 × 1 × 2 supercell was constructed from the crystallographic structure of
COF-320 [23] (CCDB: 1002037) to form a 27.93 Å × 31.31 Å × 15.78 Å cell.
The geometry of the host, in the absence of any gas, was optimized with a
convergence criterion that the maximum norm of the atomic forces was 0.001
eV/Å. Grand Canonical Monte Carlo simulations were performed with a gas
pressure of 80 bar and a temperature of 298.16 K. To place the adsorbed
methane molecules, 100,000 insertion and deletion attempts were performed for
ANIPBE0 and ANIPBE0-MLXDM, with 100 translation/rotation attempts
in between each insertion/deletion attempt. The acceptance criteria for each
action were [24]

P trans/rot
acc = exp

(
− ∆V
kBT

)
(21)

P insert
acc =

pV

(N + 1)kBT
exp

(
− ∆V
kBT

)
(22)

P delete
acc =

NkBT

pV
exp

(
− ∆V
kBT

)
(23)
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where p is the pressure on the system, T is the temperature, and ∆V is the
change in the potential energy.

2.2.3 Timing Comparisons

To estimate the scaling of the computational cost of these simulations, we per-
formed molecular dynamics simulations for clusters of 1–7 pentane molecules.
Because the disk and memory operations to load the NNP and chemical coor-
dinates are a significant share of the computational cost, the time required for a
single energy evaluation was estimated by performing 1000 molecular dynam-
ics steps using ANIPBE0 or ANIPBE0-MLXDM and then dividing by 1000.
For the largest system examined, a cluster of 7 pentane molecules, ANIPBE0-
MLXDM is 4.5 M times faster than the PBE0/aug-cc-pVTZ DFT calculation
using TURBOMOLE. These benchmarks were performed using CPUs only and
the largest system contained only 136 atoms. Using GPU computing and larger
systems would result in an even larger advantage for ANIPBE0-MLXDM.

Table 5 CPU time in seconds for one time step of ANIPBE0 and ANIPBE0-MLXDM
molecular dynamics simulation on small pentane clusters, compared to the computational
cost of one energy/gradient calculation using TURBOMOLE 7.0 with the PBE0
exchange-correlation functional and the aug-cc-pVTZ basis set.

ANIPBE0 ANIPBE0-MLXDM PBE0/aug-cc-pVTZ
1 0.016 0.029 1782
2 0.021 0.037 8976
3 0.025 0.048 56547
4 0.029 0.056 110072
5 0.034 0.066 139996
6 0.039 0.082 270448
7 0.044 0.089 405344

The scaling of the computing time of the ANIPBE0 and ANIPBE0-
MLXDM NNPs are presented in Figure 3 and Table 5. For smaller systems,
ANIPBE0 is roughly four times faster than ANIPBE0-MLXDM, although the
dispersion correction becomes progressively more costly in larger systems.

Although the formal scaling of ANIPBE-MLXDM is O(N2) due to the cal-
culation of the pairwise dispersion terms, this is a relatively minor component
of the computational cost up to thousands of atoms. The linear-scaling calcu-
lation of the symmetry functions and evaluating the gradients of the four NNs
and their gradients, are the most time-demanding steps. In very large systems,
the cost of evaluating the dispersion energy could be mitigated by cutoffs and
neighbor lists. The use of double-headed NNs to compute the XDM terms from
a single NN or fixed coefficients for some of the less significant XDM terms
could further mitigate the cost of the MLXDM calculations.
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ANIPBE0-MLXDM
ANIPBE0

S
ec
on
ds
	P
er
	S
te
p

0

1

2

3

4

5

6

Number	of	Pentanes
0 20 40 60 80 100

Fig. 3 CPU time in seconds needed for one time step of MD for clusters of pentane
molecules.
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3 Supplementary Tables and Figures

Table 6 Relative standard deviation of the terms in the MLXDM model relative to the
XDM reference data for the DES370K dataset

〈M2
1 〉 〈M2

2 〉 〈M2
3 〉 V

H 5.97% 11.4% 17.1% 6.47%
C 10.5% 10.3% 12.6% 3.66%
N 17.7% 18.2% 15.0% 5.46%
O 9.73% 11.3% 12.7% 4.39%

Table 7 The relative deviation in dispersion component of the interaction energies for the
MLXDM and XDM-CC models (computed as (XMLXDM −XXDM-CC)/XMLXDM where X
is coefficients or energies), tested with 9730 randomly-selected complexes from DES370K
dataset. The error in the predicted dispersion energy is smaller than the error on the
individual coefficients because the error in each atomic XDM-CC term tends to cancel
when the pairwise sum is performed over a number of atomic pairs.

C6 C8 C10

Individual coefficients 4.44% 5.66% 8.63%
Energy components 3.05% 4.12% 5.83%

Total energy 3.24%

2

0

2

M
2 1

 (a
.u

.)

2

0

2

M
2 2

 (a
.u

.)

2

0

2

M
2 3

 (a
.u

.)

H C N O
element

2

0

2

V e
ff
 (a

.u
.)

Fig. 4 Z-score Standardized distributions of the 〈M2
1 〉, 〈M2

2 〉, 〈M2
3 〉 and V terms for the

training data.
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Fig. 5 Prediction of the standardized XDM atomic 〈M2
1 〉 (PBE0/aug-cc-pVTZ) coefficients

using MLXDM for elements H, C, N, and O. The outliers in the O plot are due to CO’s
abnormal triple bond.
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3.1 Error Plots
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Fig. 9 The deviations of the MLXDM 〈M2
1 〉 coefficients relative to the XDM values for the

elements C, N, O, and H for the validation data set.
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2 〉 coefficients relative to the XDM values for

the elements C, N, O, and H for the validation data set.
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Fig. 11 The deviations of the MLXDM 〈M2
3 〉 coefficients relative to the XDM values for

the elements C, N, O, and H for the validation data set.
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Fig. 12 The deviations of the MLXDM V coefficients relative to the XDM values for the
elements C, N, O, and H for the validation data set.
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4 Baseline Comparisons

4.1 Current State-of-the-Art NNPs

The ANI-2x NNP is one of the most accurate ANI-type NNPs [25], although it
is primarily designed to predict the stability of molecular structures. To assess
the performance of this method, we have calculated its performance on predict-
ing the intermolecular interactions between neutral molecules in the DES370K
dataset. By including the MLXDM dispersion correction, the ANIPBE0-
MLXDM NNP is more accurate than ANI-2x for this test set of intermolecular
interactions (ANI-2x: R2 = 0.79 MAE=1.28 kcal/mol, ANIPBE0-MLXDM:
R2 = 0.97, MAE = 0.69 kcal/mol).

Fig. 14 Prediction of the CCSD(T)/CBS interaction energies by the ANI-2x NNP for the
neutral complexes in the DES370K dataset.

The ANI-2x NNP does not include a long range correction for dispersion.
Given its excellent performance for a range of intermolecular interactions and
reaction energies, it would be desirable to simply add a dispersion correction to
this method. However, the mean signed error of ANI-2x for these intermolec-
ular interactions is −0.84 kcal mol−1, indicating that the ANI-2x NNP tends
to predict intermolecular interactions to be more attractive than they actually
are. The interactions accounted for by MLXDM are universally attractive, so
adding a dispersion correction to these energies would make this overestima-
tion larger. The modest performance of ANI-2x for intermolecular interactions
likely stems from their training to ωB97X/6-31G* energies. Prediction of short
range (i.e., < 5 Å) intermolecular interactions using this method likely benefits
from a cancellation of error between the neglect of dispersion interactions and
the basis set incompleteness error resulting from the relatively small 6-31G*
basis set. The ANIPBE0 NNP has an advantage here because it was trained to
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QM data calculated using the larger aug-cc-pVTZ basis set and more extensive
intermolecular training data.

4.2 Grimme D3 Corrections

We have also evaluated whether the Grimme D3 dispersion correction[26]
with the Becke–Johnson (BJ) damping function[27] could be used with the
ANIPBE0 NNP rather than using the MLXDM or XDM-CC dispersion cor-
rections. Grimme D3-BJ model applies a pairwise damped dispersion term
including C6 and C8 terms. On the DES370K test set, the Grimme D3-
BJ correction brings ANIPBE0 interaction energies in closer agreement with
the CCSD(T) energies when this correction is included. The performance
of this method is comparable to MLXDM and XDM-CC, but the metrics
are incrementally better for MLXDM (MAE: 0.67 kcal/mol for MLXDM vs
0.73 kcal/mol for D3-BJ). This generally suggests that a D3 dispersion correc-
tion could be effectively used with a suitable NNP for complexes in this test
set, although the NNP would have accurately account for all the other com-
ponents of the intermolecular interaction. Compounds with a broader range
of

CCSD(T)

Fig. 15 Prediction of the CCSD(T)/aug-cc-pTVZ interaction energies for the neutral
complexes in the DES370K dataset using ANIPBE0 with the Grimme D3-BJ dispersion
correction.

5 Alternative Approach Directly Predicting
C6, C8, and C10

We have also developed an alternative approach where NN’s are used to cal-
culate atomic C6, C8, and C10 dispersion coefficients. The coefficients for the
interaction between a pair of atoms can then be approximated by the geometric
mean of the coefficients of the two atoms [28, 29],

Cn,ij =
√
Cn,iiCn,jj . (24)

C6,ii =
1

2
αi〈M2

1 〉i (25)
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C8,ii =
3

2
αi〈M2

2 〉i, (26)

C10,ii = αiαi
2〈M2

1 〉i〈M2
3 〉i + 2〈M2

3 〉i〈M2
1 〉i + 21

5 〈M
2
2 〉i〈M2

2 〉i
αi〈M2

1 〉i + αi〈M2
1 〉i

(27)

This second approach has the advantage of only requiring the evaluation
of three NNs to determine the coefficients for each atoms (C6, C8, and C10),
while first approach requires evaluation of four NNs (〈M2

1 〉, 〈M2
2 〉, 〈M2

3 〉, and
V ). Geometric combination rules are also more amenable for simulation meth-
ods like lattice summation approaches for calculating the energy of periodic
systems. We find this approach has comparable accuracy to the MLXDM.
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