Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Lewis Acid-Base Adducts of Al($N(C_6F_5)_2$)₃ and Ga($N(C_6F_5)_2$)₃ – Structural Features and Dissociation Enthalpies.

Julius F. Kögel, Denis A. Sorokin, Martin Scott, Klaus Harms, Daniel Himmel, Ingo Krossing and Jörg Sundermeyer

Table of Contents

Crystallographic Details	S2
Crystallographic Tables	S3
¹⁹ F NMR Spectra	85
Quantumchemical Calculations	S7

Crystallographic Details

IPDS II or IPDS 2T (Stoe) diffractometers were used for data collection by the x-ray department at the Philipps-Universität Marburg (Dr. K. Harms, M. Marsch, and R. Riedel). Data collection, reduction and cell refinement were performed with Stoe IPDS Software. Structures were solved with direct methods using SHELXS-97,¹ SIR92² or SIR2004³ and refined against F² with SHELXL-97,⁴ all within the user interface of WinGX. Furthermore, the programs Mercury 3.1⁵ and Platon⁶ were used during refinement. Absorption correction was performed with semi-empirical methods within WinGX (multi-scan or Gaussian⁷).

Hydrogen atoms were calculated in their idealized positions and refined with fixed isotropic thermal parameters. All molecular structures were illustrated with Diamond 3⁸ using thermal ellipsoids at the 30% probability level.

Crystal data and experimental conditions of molecular structures presented in the main manuscript are listed in Table S1 and S2. The corresponding CIF files providing full information concerning the molecular structures and experimental conditions are deposited at the Cambridge Crystallographic Data Center (CCDC numbers 2012101-2012106).

	$Al(N(C_6F_5)_2)_3$	$Al(N(C_6F_5)_2)_3$	Ga(N(C ₆ F ₅) ₂) ₃	
	·NCMe	·CNtBu	·NCMe	
amminiaal fammula	C ₇₆ H ₆ Al ₂ F ₆₀ N ₈ ,	C II AIE N	$2(C_{38}H_3F_{30}GaN_4),$	
empirical formula	C ₇ H ₈	$C_{41}H_9AIF_{30}N_4$	C ₇ H ₈	
mol. weight [g mol ⁻¹]	2316.98	1154.50	2402.46	
crystal habit	colorless nugget	colorless prism	colorless block	
crystal size [mm ³]	0.60 · 0.30 · 0.25	0.33 · 0.21 · 0.15	0.2 · 0.15 · 0.09	
crystal system	triclinic	triclinic	triclinic	
space group	<i>P</i> -1	P-1	<i>P</i> -1	
a [Å]	11.5512(14)	11.0496(7)	11.5100(18)	
b [Å]	13.7744(15)	11.2003(7)	13.793(2)	
c [Å]	14.3749(17)	19.9634(13)	14.2825(19)	
α [°]	84.728(13)	76.132(5)	84.719(11)	
β[°]	71.409(14)	83.514(5)	71.532(11)	
γ [°]	71.218(13)	61.578(5)	71.500(11)	
volume [Å ³]	2052.3(4)	2109.5(2)	2039.4(5)	
Ζ	1	2	1	
density [g cm ⁻³]	1.875	1.818	1.968	
T [K]	193(2)	193(2)	100(2)	
absorption coeff. [mm ⁻¹]	0.227	0.221	0.854	
Θ range [°]	2.0 to 26.0	2.1 to 26.2	1.5 to 26.0	
	-14 <= h <= 14,	-13 <= h <= 13,	-14 <= h <= 14,	
index ranges	-16 <= k <= 16,	-13 <= k <= 13,	-16 <= k <= 17,	
	-17 <= 1 <= 17	-24 <= 1 <= 24	-17 <= 1 <= 17	
reflns collected	20413	31007	19267	
independent reflns	7521 [R(int) =	8435	8051	
independent remis	0.0385]	[R(int) = 0.0255]	[R(int) = 0.0943]	
absorption correction	gaussian	multi-scan	multi-scan	
max. and min.	0.9635 and 0.9167	0.9659 and	1 1269 and 0 754	
transmission		0.9336	1.1209 und 0.751	
transmissiondata/restraints	7521 / 46 / 675	8435 / 3 / 683	8051 / 1 / 675	
/parameters	10211 107 075	01007070000		
goodness-of-fit on F ²	1.013	1.038	0.733	
final R indices [I>2s(I)]	R1 = 0.0398	R1 = 0.0380	R1 = 0.0504	
R indices (all data)	wR2 = 0.1104	wR2 = 0.1044	wR2 = 0.1239	
larg. diff. peak/hole	0.390 / -0.493	0.424 / -0.462	0.774 / -1 117	
[e Å-3]				
treatment of H atoms	constr.	constr.	constr.	
CCDC number	2012101	2012102	2012103	

Table S1. Crystal data and experimental conditions.

	Ga(N(C ₆ F ₅) ₂) ₃ Ga(N(C ₆ F ₅) ₂) ₃		Ga(N(C ₆ F ₅) ₂) ₃	
	·CNtBu	·THF	·PMe ₃	
empirical formula	$C_{41}H_9F_{30}GaN_4 \qquad C_{40}H_8F_{30}GaN_3O, C_7H_8$		$\begin{array}{c} C_{39}H_{9}F_{30}GaN_{3}P,\\ 0.09(C_{42}H_{48}) \end{array}$	
mol. weight [g mol ⁻¹]	1197.24	1278.35	1237.17	
crystal habit	colorless prism	colorless prism	colorless block	
crystal size [mm ³]	0.36 · 0.08 · 0.05	0.29 · 0.20 · 0.11	0.18 · 0.17 · 0.13	
crystal system	triclinic	monoclinic	hexagonal	
space group	<i>P</i> -1	P21/n	<i>R</i> -3 <i>c</i>	
a [Å]	11.0023(4)	17.1941(7)	13.1449(5)	
b [Å]	11.1257(5)	12.3834(3)	13.1449(5)	
c [Å]	19.8025(8)	21.3791(7)	86.201(4)	
α [°]	76.581(3)	90	90	
β[°]	83.893(3)	102.734(3)	90	
γ [°]	61.802(3)	90	120	
volume [Å ³]	2077.97(15)	4440.1(3)	12899(1)	
Z	2	4	12	
density [g cm ⁻³]	1.913	1.912	1.910	
T [K]	100(2)	100(2)	100(2)	
absorption coeff. [mm ⁻¹]	0.837	0.792	0.848	
Θ range [°]	2.1 to 26.8	1.4 to 26.8	1.4 to 26.8	
	-13 <= h <= 13,	-21 <= h <= 21,	-16 <= h <= 16,	
index ranges	-14 <= k <= 14,	-15 <= k <= 15,	-16 <= k <= 16,	
	-22 <= 1 <= 25	-27 <= 1 <= 25	-108 <= 1 <= 96	
reflns collected	25604	27479	45151	
indonandont - fli-	8782 [R(int) = 0.0452]	9388	3062	
independent remis	[6762 [R(mt) - 0.0452]]	[R(int) = 0.0467]	[R(int) = 0.0859]	
absorption correction	multi-scan	multi-scan	multi-scan	
max. and min. transmission	0.9015 and 0.8675	0.9711 and 0.7957	1.0402 and 0.7711	
transmissiondata/restraints /parameters	8782 / 18 / 683	9388 / 0 / 740	3062 / 42 / 241	
goodness-of-fit on F ²	0.860	0.805	0.927	
final R indices [I>2s(I)]	R1 = 0.0323	R1 = 0.0294	R1 = 0.0358	
R indices (all data)	wR2 = 0.0610	wR2 = 0.0592	wR2 = 0.0759	
larg. diff. peak/hole [e Å ⁻³]	0.471 / -0.585	0.421 / -0.284	0.659 and -0.318	
treatment of H atoms	constr.	constr.	constr.	
CCDC number	2012104	2012105	2012106	

Table S2. Crystal data and experimental conditions.

NMR Spectra

Figure S1. ¹⁹F NMR spectrum of Al(N(C₆F₅)₂)₃·NCMe (1·NCMe) (188 MHz, [D₆]benzene, 25 °C). The spectrum reveals the presence of a small amount of HN(C₆F₅)₂, presumably as a consequence of partial hydrolysis (see Figure S3).

Figure S2. ¹⁹F NMR spectrum of Al(N(C₆F₅)₂)₃·CN*t*Bu (1·CN*t*Bu) (188 MHz, [D₆]benzene, 25 °C). The spectrum reveals the presence of a small amount of HN(C₆F₅)₂, presumably as a consequence of partial hydrolysis (see Figure S3).

Figure S3. ¹⁹F NMR spectrum of $H(N(C_6F_5)_2 (188 \text{ MHz}, [D_6]\text{benzene}, 25 \text{ }^\circ\text{C}).$

Quantum chemical Calculations

The theoretical calculations of the dissociation enthalpies of the six Lewis acid base adducts were calculated as described in the related work on the two Lewis acids $Al(N(C_6F_5)_2)_3$ and $Ga(N(C_6F_5)_2)_3$.⁹

The molecular structures obtained by XRD analysis were used as the basis for the theoretical calculations. DFT optimizations were carried out with TURBOMOLE^{10,11} at the (RI-)BP86^{12,13,14}/def-TZVP¹⁵, with RI-J auxiliary bases^{16,17,18} and D3¹⁹ dispersion correction. Vibrational frequencies were calculated analytically with the AOFORCE^{20,21} module and all structures represented true minima without imaginary frequencies on the respective hypersurface. Thermal contributions to *ab initio* reaction energies (see below) were calculated with inclusion of zero point energy, thermal contributions to the enthalpy/entropy (FREEH tool; unscaled²² BP86/def-TZVP/D3 vibrational frequencies).

RI-MP2 structure optimizations were carried out with TURBOMOLE¹⁰ and def2-QZVPP¹⁵ basis sets and corresponding RI-C auxiliary bases¹² for all atoms. Frozen core: 1s for 2nd row elements, 1s2s2p for Al, none for H, 1s2s2p3s3p for Ga.

MP2 and CCSD(T) single point calculations with correlation-consistent basis sets were done with Gaussian 03.²³ Basis set extrapolation was done with the following formula:

 $\Delta E_{\text{CCSD}(T)/A'VQZ} \approx \Delta E_{\text{compound}} = \Delta E_{\text{CCSD}(T)/A'VDZ} + \Delta E_{\text{MP2}/A'VQZ} - \Delta E_{\text{MP2}/A'VDZ}$

with A'VXZ = cc-pVXZ for H²⁴, aug-cc-pV(X+d)Z for Al²⁵, aug-cc-pwCVXZ-PP for Ga²⁶, aug-cc-pVXZ for 2^{nd} row elements ²⁷ (X = D, Q).

Frozen core: 1s for 2nd row elements, 1s2s2p for Al, none for H and Ga.

Thermal contributions to reaction energies were calculated with BP86-D3/def-TZVP at 1 bar, 298.15 K:

$$\Delta U^{\circ} = \Delta E_{\rm QM.} + \Delta E_{\rm vrt}$$

 $(\Delta E_{\text{QM}} = \Delta E_{\text{SCF}} \text{ for DFT}, \Delta E_{\text{compound}} \text{ for ab-initio calculations}; \Delta E_{\text{vrt}} = \text{sum of translational, rotational, and vibrational energy incl. zero point vibrational energy})$

 $\Delta H^{\circ} = \Delta U^{\circ} + \Delta n RT \qquad (\Delta n = \text{particle number change in reaction equation})$

 $\Delta G^{\circ} = \Delta H^{\circ} - 298.15 \text{ K} \cdot \Delta S^{\circ}$

Compound	CCSD(T)/A'VDZ	MP2/A'VDZ	MP2/A'VQZ	E _{comp}	Н°	G°
	[H]	[H]	[H]	[kJ mol ⁻¹]	[kJ mol ⁻¹]	[kJ mol ⁻¹]
MeCN	-132,4196669	-132,3806952	-132,5341215	-348070,66	-347943,15	-348015,74
tBuNC	-250,0063768	-249,9105911	-250,2133618	-657186,67	-656833,58	-656933,10
Me ₃ P	-460,2722395	-460,1873474	-460,4083507	-1209025,01	-1208717,28	-1208812,17
THF	-231,8566862	-231,7771111	-232,0633718	-609491,31	-609178,63	-609267,53
AlF ₃	-541,2162733	-541,1989255	-541,5560525	-1421900,96	-1421867,26	-1421950,52
GaF ₃	-557,7289951	-557,7178246	-558,3544499	-1465988,94	-1465957,94	-1466045,63
AlF ₃ ·NCMe	-673,6851857	-673,628417	-674,140663	-1770105,357	-1769938,157	-1770056,296
AlF ₃ ·CN <i>t</i> Bu	-791,2765248	-791,1648647	-791,8255492	-2079231,143	-2078837,403	-2078980,268
GaF ₃ ·NCMe	-690,1922281	-690,1420866	-690,9335129	-1814177,585	-1814013,415	-1814137,901
GaF ₃ ·CNtBu	-807,7872829	-807,6826995	-808,6230837	-2123314,49	-2122923,68	-2123072,695
GaF ₃ ·THF	-789,6433804	-789,5518229	-790,4737929	-2075629,327	-2075277,927	-2075413,675
GaF ₃ ·PMe ₃	-1018,062206	-1017,968022	-1018,826449	-2675176,121	-2674829,751	-2674976,044

Table S3. Details on ab initio calculations (with thermal corrections at BP86-D3/def-TZVP level).

 Table S4. Details on BP86-D3/def-TZVP calculations.

Compound	SCF	E _{vrt}	S°	H°	G°
	[H]	[kJ mol ⁻¹]	[kJ mol ⁻¹ K ⁻¹]	[kJ mol ⁻¹]	[kJ mol ⁻¹]
MeCN	-132,8083861	125,03	0,24347	-348560,9076	-348633,4982
tBuNC	-250,7668404	350,61	0,33381	-658035,2495	-658134,775
Me ₃ P	-461,1936042	305,25	0,31826	-1210556,078	-1210650,967
THF	-232,5480851	310,2	0,29817	-610242,3173	-610331,2167
AlF ₃	-542,338235	31,22	0,27925	-1423875,336	-1423958,594
GaF ₃	-2224,913325	28,52	0,29413	-5841478,936	-5841566,631
$Al(N(C_6F_5)_2)_3$	-4775,69126	965,88	1,49104	-12537609,04	-12538053,6
$Ga(N(C_6F_5)_2)_3$	-6458,327682	966,81	1,48051	-16955370,04	-16955811,45
AlF ₃ ·NCMe	-675,1962116	164,72	0,39624	-1772560,453	-1772678,592
AlF ₃ ·CN <i>t</i> Bu	-793,1617568	391,26	0,47917	-2082052,452	-2082195,317
GaF ₃ ·NCMe	-2357,763023	161,69	0,41753	-6190142,646	-6190267,133
GaF ₃ ·CN <i>t</i> Bu	-2475,732674	388,33	0,4998	-6499645,327	-6499794,342
GaF ₃ ·THF	-2457,514998	348,92	0,4553	-6451854,228	-6451989,976
GaF ₃ ·PMe ₃	-2686,171113	343,89	0,49067	-7052195,887	-7052342,18
$Al(N(C_6F_5)_2)_3 \cdot NCMe$	-4908,546243	1100,36	1,55516	-12886285,32	-12886748,99
$Al(N(C_6F_5)_2)_3 \cdot CNtBu$	-5026,517168	1327,39	1,63319	-13195790,95	-13196277,89
$Ga(N(C_6F_5)_2)_3$ ·NCMe	-6591,160035	1098,3	1,57196	-17303989,89	-17304458,57
$Ga(N(C_6F_5)_2)_3 \cdot CNtBu$	-6709,13513	1325,3	1,65196	-17613506,5	-17613999,04
$Ga(N(C_6F_5)_2)_3$ ·THF	-6690,909923	1287,76	1,58031	-17565693,76	-17566164,93
$Ga(N(C_6F_5)_2)_3 \cdot PMe_3$	-6919,577661	1283,06	1,56811	-18166065,61	-18166533,14

- [1] G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
- [2] A. Altomare, G. L. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Cryst. 1993, 26, 343.
- [3] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori
- and R. Spagna, J. Appl. Crystallogr. 2005, 38, 381.
- [4] G. Sheldrick, Acta Cryst. A 2008, 64, 112.
- [5] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R.
- Taylor, J. van de Streek and P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
- [6] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, 2011, Utrecht University, NL.
- [7] R. H. Blessing, Acta Cryst. A 1995, **51**, 33.
- [8] K. Brandenburg, H. Putz, *Diamond Crystal and Molecular Structure Visualization v3.2i*, Crystal Impact GbR, Bonn, Germany, 2012.

[9] J. F. Kögel, D. A. Sorokin, A. Khvorost, M. Scott, K. Harms, D. Himmel, I. Krossing and J. Sundermeyer, *Chem. Sci.* 2018, **9**, 245.

- [10] R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Chem. Phys. Lett. 1989, 162, 165.
- [11] O. Treutler and R. Ahlrichs, J. Chem. Phys. 1995, 102, 346.
- [12] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- [13] J. P. Perdew, *Phys. Rev. B* 1986, **33**, 8822.
- [14] J. P. Perdew, *Phys. Rev. B* 1986, **34**, 7406.
- [15] A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
- [16] K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283.
- [17] K. Eichkorn, O. Treutler, H. Öhm, M. Häser and Ahlrichs, Chem. Phys. Lett. 1995, 242, 652.
- [18] K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
- [19] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys 2010, 132, 154104.
- [20] P. Deglmann, F. Furche and R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511.
- [21] P. Deglmann and F. Furche, J. Chem. Phys. 2002, 117, 9535.

[22] By chance scaling factors for BP86/def-TZVP frequencies are very close to unity. Therefore we did not scale the contributions to entropy/enthalpy.

[23] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

- [24] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
- [25] T. H. Dunning, K. A. Peterson and A. K. Wilson, J. Chem. Phys. 2001, 114, 9244.

[26] N. J. DeYonker, K. A. Peterson and A. K. Wilson, *J. Phys. Chem. A* 2007, **111**, 11383.
[27] R. Kendall, T. H. Dunning and R. J. Harrison, *J. Chem. Phys.* 1992, **96**, 6796.