Supporting Information

Reaction of a Bis(pentafulvene)titanium Complex with an *N*-heterocyclic Olefin: C–H-Activation Leads to Resonance Between a Titanium Vinyl and Titanium Alkylidene Complex

Malte Fischer,^{*ab**} Matthew M. D. Roy,^{*c*} Sascha Hüller,^{*b*} Marc Schmidtmann,^{*b*} and Rüdiger Beckhaus^{*b**}

- ^a Dr. M. Fischer
 Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR
- ^b Dr. M. Fischer, S. Hüller, Dr. M. Schmidtmann, Prof. Dr. R. Beckhaus Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
- ^c Dr. M. M. D. Roy Department of Chemistry, Catalysis Research Center and Institute for Silicon Chemistry, Technische Universität München, Germany

Table of Contents

General Considerations	S2
Synthesis and Characterization	S3
NMR-Spectra	S5
Crystallographic Data	S9
Computational Details	S11
References	S15

General Considerations

All reactions were carried out under an inert atmosphere of argon or nitrogen with rigorous exclusion of oxygen and moisture using standard glovebox and Schlenk techniques unless stated otherwise. The glass equipment was stored in an oven at 120 °C prior to use. Solvents and liquid starting materials were dried according to standard procedures. Solvent were distilled over Na/K alloy and benzophenone or CaH₂ under nitrogen atmosphere. Solid materials were stored and weighted in a glovebox and dried under high vacuum prior to use. The bispentafulvene titanium complexes **1a,b** were synthesized according to literature procedures.^[1a,b] 1,3,4,5-Tetramethyl-2-methyleneimidazoline (**2**) was synthesized according to literature procedures.

NMR spectra were recorded on Bruker Avance 300, Bruker Avance 500, and Bruker Avance III 500 spectrometers. ¹H NMR spectra were referenced to the residual solvent resonance as internal standard (benzene-d₆ (C₆D₆): δ^1 H(C₆D₅H) = 7.16 ppm) and ¹³C{¹H} spectra were referenced by using the central line of the solvent signal (benzene-d₆ (C₆D₆): δ^{13} C{¹H}(C₆D₆) = 128.06 ppm). The given chemical shifts of ¹⁵N result out of ¹⁵N,¹H HMQC NMR experiments with nitromethane as external standard (δ = 378.9 vs. NH₃).

Infrared spectra were performed on a Bruker Tensor 27 spectrometer with a MKII Reflection Golden Gate Single Diamond ATR system.

Elemental analyses were carried out on a EuroEA 3000 Elemental Analyzer.

Melting points were determined using a "Mel-Temp" apparatus by Laboratory Devices, Cambridge, U.K..

Synthesis and characterization of compounds

Synthesis of 3:

Complex **1a** (0.500 g, 1.125 mmol) and 1,3,4,5-Tetramethyl-2-methyleneimidazoline (0.155 g, 1.125 mmol) were dissolved in 15 mL of *n*-hexane. The color of the reaction mixture changes from dark blue to magenta. The reaction mixture was stirred for 16 h at room temperature. All volatile components were removed under vacuum to yield complex **3** as a magenta solid. No further purification steps are required.

Crystals suitable for single-crystal X-ray diffraction were obtained from a saturated n-hexane/toluene solution of **3** at -26 °C.

Yield: 0.618 g (1.061 mmol, 94%).

Melting point: >250 °C.

IR (ATR): $\tilde{\nu} = 2898$, 2846, 1644, 1601, 1538, 1489, 1448, 1410, 1388, 1352, 1339, 1259, 1209, 1096, 1059, 1032, 948, 933, 896, 862, 791, 774, 756, 708, 675, 627 cm⁻¹. ¹H NMR (500 MHz, C₆D₆, 305 K): $\delta = 1.45$ (s, 6H, 2×C_qCH₃), 1.48-2.60 (m, 28H, CH_{Ad}/CH_{2,Ad}), 2.81 (s, 6H, 2×NCH₃), 3.02 (s, 1H, CH_{exo}), 4.30-4.31 (m, 1H, C₅H₄), 5.01-5.02 (m, 1H, C₅H₄), 5.29-5.30 (m, 1H, C₅H₄), 5.38-5.39 (m, 1H, C₅H₄), 5.59-5.60 (m, 1H, C₅H₄), 6.27-6.30 (m, 2H, 2×C₅H₄), 6.46-6.47 (m, 1H, C₅H₄), 7.17 (s, ¹J_{C,H} = 118.5 Hz, 1H, TiCH) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): $\delta = 8.8 (2 \times C_q \underline{C}H_3)$, 28.5 (CH_{Ad}), 28.6 (CH_{Ad}), 29.5 (CH_{Ad}), 30.0 (CH_{Ad}), 32.3 (2×NCH₃), 32.6 (CH_{2,Ad}), 32.7 (CH_{2,Ad}), 32.8 (CH_{Ad}), 33.1 (CH_{Ad}), 36.2 (CH_{Ad}), 37.5 (CH_{2,Ad}), 38.6 (CH_{2,Ad}), 39.0 (CH_{Ad}), 39.1 (CH_{2,Ad}), 39.47 (CH_{2,Ad}), 39.49 (CH_{2,Ad}), 40.0 (CH_{2,Ad}), 44.2 (CH_{2,Ad}), 45.0 (CH_{2,Ad}), 45.6 (CH_{exo}), 100.7 (C₅H₄), 103.6 (C₅H₄), 105.1 (C₅H₄), 106.0 (C₅H₄), 108.3 (C₅H₄), 109.4 (C₅H₄), 110.4 (C₅H₄), 111.1 (C_{q,exo}), 112.1 (C₅H₄), 117.6 (2×C_qCH₃), 123.7 (C_{q,ipso}), 124.7 (C_{q,ipso}), 160.4 (C_q=CH), 166.7 (TiCH) ppm.

¹³**C Gated Decoupling NMR** (126 MHz, C₆D₆, 305 K): δ = 166.7 (d, ¹*J*_{C,H} = 117.4 Hz, TiCH) ppm.

¹⁵**N NMR** (51 MHz, C_6D_6 , 305 K): δ = 123.4 ppm.

EA: Anal. calcd. for C₃₈H₅₀N₂Ti: C, 78.33; H, 8.65; N, 4.81; Found: C, 78.67; H, 8.73; N, 4.87.

Figure S1. Magenta colored solution of **3** in *n*-hexane after 15 minutes of vigorous stirring of the reaction mixture.

Complex **1b** (0.100 g, 0.177 mmol) and 1,3,4,5-Tetramethyl-2-methyleneimidazoline (0.024 g, 0.177 mmol) were dissolved in 8 mL of *n*-hexane. The color of the reaction mixture changed from a deep green to yellow-green. The reaction mixture was stirred for 16 h at room temperature. All volatile components were removed under vacuum and the residue was analyzed by ¹H-NMR spectroscopy, which verified the release of di-*p*-tolylpentafulvene. Same results were obtained by reacting **1b** with **2** in different solvents (toluene, tetrahydrofuran) and/or starting the reaction at -80 °C. Figure S7 shows the ¹H NMR spectrum of the di-*p*-tolylpentafulvene and a representative ¹H NMR spectrum of the di-*p*-tolylpentafulvene and a representative ¹H NMR spectrum of the abovementioned reaction.

Figure S2: ¹H NMR spectrum of 2 (500 MHz, C₆D₆, rt).

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Figure S4: $^{13}C^{1H}$ NMR spectrum of 3 (126 MHz, C₆D₆, rt).

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 **Figure S7**: ¹H NMR spectrum of the reaction of **1b** with the NHO **2** (bottom) (500 MHz, C₆D₆, rt), and ¹H NMR spectrum of di-*p*-tolylpentafulvene (top) (300 MHz, C₆D₆, rt).

Crystallographic Data

Suitable crystals were selected and measured on a 'Bruker APEX-II CCD' diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal was kept at 100.15 K during data collection. Using Olex2,^[3] the structure was solved with the SheIXS^[4] structure solution program using Direct Methods and refined with the SheIXL^[5] refinement package using Least Squares minimisation.

	3
CCDC	2126498
empirical formula	C ₃₈ H ₅₀ N ₂ Ti
fw	582.70
colour	Violet
Habit	block
cryst dimens, mm	0.40 x 0.25 x 0.10
cryst syst	orthorhombic
space group	Pccn
a, Å	14.7397(7)
b, Å	18.1959(9)
c, Å	22.9425(11)
α , deg	90
eta, deg	90
γ, deg	90
V, Å ³	6153.2(5)
Z	8
D cacled, g cm ⁻³	1.258
μ, mm ⁻¹	0.308
Т, К	100(2)
heta range, deg	1.775 – 33.141
no. of rfins collected	278457
no. of indep rflns	11725
(R(int))	(0.0539)
no. of rflns with I>2 <i>o</i> (I)	9450
abs cor	semi-empirical
max, min transmission	1.0000 and 0.9614
final R indices	R1 = 0.0497
[l>2 <i>o</i> (l)]	wR2 = 0.1301
Pindiana (all data)	R1 = 0.0642
R maices (all data)	wR2 = 0.1417
GOF on F ²	1.028
largest diff peak / hole	2.007 / -0.795
(e.Å⁻³)	

Table S1: Crystal Structure Data for Compound 3.

Figure S8: Molecular structure of 3.

Computational Details

Energy (E) = -2437.03189758 a.u. Enthalpy (H) = -2436.184091 a.u. Free Energy (G) = -2436.284575 a.u.

Cartesian coordinates of the optimized geometry

Ti	-0.32960200	-0.71720600	0.27713500
С	-1.89027900	-0.83992800	1.75128900
С	-1.37513600	0.48150600	1.97202500
н	-1.85436300	1.39914300	1.67702200
С	-0.08488200	0.38614000	2.51088600
н	0.54994300	1.21205800	2.78387500
С	0.22391900	-0.97804400	2.68228200
н	1.14753600	-1.37048800	3.08091400
С	-0.88195500	-1.72997400	2.26283600
н	-0.91999000	-2.80609400	2.21046100
С	-2.57482500	-1.16386900	0.52096800
С	-3.15894700	-2.56673200	0.37529400
н	-2.46610700	-3.31512900	0.76410000
С	-3.47405800	-2.87572600	-1.09383400
н	-2.55920400	-2.85898600	-1.68839000
н	-3.90193500	-3.88001600	-1.17417900
С	-4.46630100	-1.84357600	-1.63901700
н	-4.67783400	-2.05838100	-2.68968000
С	-3.85305200	-0.44495200	-1.51163400
н	-2.92669300	-0.38497900	-2.09181900
н	-4.54767200	0.30085700	-1.91353100
С	-3.55575500	-0.13685000	-0.03893900
н	-3.13055400	0.86483300	0.03851200
С	-4.46970900	-2.64079100	1.18410400
н	-4.89546400	-3.64683900	1.10958100
н	-4.25862200	-2.44680100	2.23915600
С	-5.76611200	-1.90909700	-0.82793400
н	-6.21607500	-2.90174400	-0.92607600
Н	-6.48748800	-1.18431400	-1.21783500

С	-4.86824500	-0.20535900	0.76402200
н	-4.66735000	0.03445600	1.81185200
н	-5.57810500	0.53703500	0.38389300
С	-5.46995900	-1.61013300	0.64688200
н	-6.39606400	-1.66350700	1.22498300
С	1.82815400	-1.52962700	-0.42198600
С	1.13820000	-1.13348200	-1.59500800
н	1.39732400	-0.29584800	-2.21891300
С	0.01696700	-1.96409000	-1.76906900
н	-0.70491700	-1.89355400	-2.56731200
С	0.00997900	-2.90471600	-0.71386100
н	-0.71795700	-3.68527500	-0.56163200
С	1.13014600	-2.64702000	0.09758500
Н	1.38581100	-3.18275900	0.99885500
С	3.04267300	-0.87297700	0.19296500
н	2.71986300	-0.36887600	1.11386500
С	4.13038200	-1.88565100	0.60656800
н	3.67815800	-2.66561300	1.22466800
С	5.20401300	-1.15051900	1.41712300
н	4.75873400	-0.71412400	2.31672500
Н	5.97229800	-1.85724100	1.74438200
С	5.83943400	-0.05095800	0.55781900
н	6.59863200	0.47736900	1.13983500
С	4.75545100	0.93784600	0.10815800
Н	4.29953800	1.41514500	0.98232100
н	5.20300800	1.73076900	-0.49865600
С	3.68269200	0.20218100	-0.70507600
н	2.90962500	0.90996400	-1.01923300
С	4.76641900	-2.51825400	-0.63630200
н	5.51480600	-3.25550300	-0.33092600
Н	4.00432300	-3.04560800	-1.21700800
С	6.48683500	-0.69227400	-0.67552900
н	7.26884900	-1.39123500	-0.36370000
н	6.96387100	0.07686800	-1.29045200
С	4.34160200	-0.43300000	-1.93794400

Н	3.59955800	-0.94739900	-2.55100900
н	4.78717500	0.35307900	-2.55523800
С	5.41972000	-1.42747400	-1.49448500
н	5.88125300	-1.88231600	-2.37424200
С	-0.39406400	1.08568600	-0.71344000
н	-0.76350400	0.86092000	-1.71851900
Ν	0.17443300	3.14479600	0.55293400
Ν	-1.30947500	3.34671100	-1.04931500
С	-0.50192000	2.41966000	-0.42313000
С	-1.10786700	4.61911700	-0.51098700
С	-0.19389300	4.49907200	0.46727900
С	-2.19120700	2.99605300	-2.13001600
н	-2.87251100	3.82002700	-2.32732000
н	-2.76785700	2.10920800	-1.86168800
н	-1.63030300	2.77254500	-3.04242200
С	-1.87973800	5.79922700	-0.97790700
н	-1.72060500	5.98373500	-2.04255400
н	-1.56915100	6.68796300	-0.43323800
н	-2.95291700	5.66573200	-0.82019400
С	0.37633200	5.50482100	1.40057500
н	1.45928900	5.59534000	1.28843800
н	0.17418900	5.23281500	2.43957500
н	-0.06003700	6.48431100	1.21644300
С	1.52393100	2.79358300	0.95310700
н	1.66172700	1.72695200	0.80620200
н	1.69321300	3.03922000	2.00188700
н	2.25740400	3.33135800	0.34192000

NBO 2 (Ti1-C31)

Occupancy: 1.92975 e 26% Ti1 [s (11.26%), p (16.79%), d (71.91%)] 74% C31 [s (44.90%), p (55.03%)]

NBO 81 (C31-C32)

Occupancy: 1.96940 e 46% C31 [**s** (31.46%), **p** (68.35%)] 54% C32 [**s** (45.30%), **p** (54.66%)]

NBO 82 (C31-C32) Occupancy: 1.79427 e 61% C31 [s (0.22%), p (99.69%)]

39% C32 [**s** (0.08%), **p** (99.83%)]

References

- a) M. Manßen, N. Lauterbach, J. Dörfler, M. Schmidtmann, W. Saak, S. Doye and R. Beckhaus, *Angew. Chem. Int. Ed.*, 2015, **127**, 4383-4387; *Angew. Chem.*, 2015, **127**, 4458-4462; b) M. Diekmann, G. Bockstiegel, A. Lützen, M. Friedemann, W. Saak, D. Haase and R. Beckhaus, *Organometallics*, 2006, **25**, 339-348.
- [2] a) N. Kuhn, H. Bohnen, G. Henkel and J. Kreutzberg, *Z. Naturforsch. B*, 1996, 51, 1267-1278; b) N. Kuhn, G. Henkel and J. Kreutzberg, *Z. Naturforsch. B*, 1991, 46, 1706-1712; c) T. Peppel, C. Roth, K. Fumino, D. Paschek, M. Köckerling and R. Ludwig, *Angew. Chem.*, 2011, 123, 6791-6795; *Angew. Chem. Int. Ed.*, 2011, 50, 6661-6665.
- [3] O. V. Dolomanov , L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Appl. Cryst.*, 2009, 42, 339-341.
- [4] G.M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- [5] G.M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8.