Supporting info

Reactivity of a fluorine-containing dirhodium tetracarboxylate compound with proteins

Domenico Loreto,^a Anna Esposito,^b Nicola Demitri,^c Annalisa Guaragna^b and Antonello Merlino^a*

^{a.} Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia, 21, 80126, Naples, Italy. Email:antonello.merlino@unina.it

^{b.} Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le V. Tecchio, 80, 80125 Naples, Italy

^{c.} Elettra–Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste, Italy

Synthesis and characterization of [cis-Rh₂(OAc)₂(tfa)₂]

[cis-Rh₂(OAc)₂(tfa)₂] was prepared as described in Scheme S1 as previously reported.¹

$$Rh_{2}(OAc)_{4} \xrightarrow{CF_{3}COOH} Rh_{2}(OAc)_{2}(tfa)_{2}$$

rt, 2h
64%

Scheme S1. Synthesis of [cis-Rh₂(OAc)₂(tfa)₂]

 $Rh_2(OAc)_4$ (15.2 mg, 0.034 mmol) was dissolved in an excess of trifluoroacetic acid, (2 mL). The resulting teal-blue solution was stirred at room temperature for 2h. Afterwards, the mixture was concentrated under reduced pressure. Chromatography of the crude residue over silica gel (toluene/CH₃CN = 8:2) afforded the pure [*cis*-Rh₂(OAc)₂(tfa)₂] (11.6 mg, 64% yield) as purple powder along with a small amount of [Rh₂(OAc)(tfa)₃] (2.1 mg). Analytical data including NMR spectra were consistent with those reported elsewhere [1].

¹⁹F NMR spectra

¹⁹F NMR spectra were recorded at 25 °C using Bruker AVANCE spectrometer (Billerica, Massachusetts, US) operating at 376 MHz with TOPSPIN using autolocking and auto shimming. Chemical shifts (δ) are reported in parts per million (ppm). Spectra were acquired in 10 mM sodium citrate pH 5.1 and in 5 mM HEPES pH 7.5 (10% D₂O) using 0.5 mM of the metal complex in the absence and in the presence of RNase A and HEWL, respectively (protein to metal molar ratio 1:1). The spectra were referenced with pure trifluoracetic acid (TFA) in the same buffer solutions (10 mM sodium citrate 10% D₂O at pH 5.1 and 5 mM HEPES 10% D₂O at pH 7.5).

¹⁹F {¹H dec} NMR data in 10 mM sodium citrate buffer 10% D₂O at pH 5.1. [*cis*-Rh₂(OAc)₂(tfa)₂] t = 5': δ = -75.5, -74.8, -74.7 ppm. [*cis*-Rh₂(OAc)₂(tfa)₂] t = 4 h: δ = -75.5, 74.7 ppm. [*cis*-Rh₂(OAc)₂(tfa)₂] t = 24 h: δ = -75.5 ppm. [*cis*-Rh₂(OAc)₂(tfa)₂] with RNase A t = 5' δ = -75.5 ppm. Trifluoroacetic Acid (TFA): δ = -75.5 ppm.

¹⁹F {¹H dec} NMR data in 5 mM HEPES buffer 10% D₂O at pH 7.5. [*cis*-Rh₂(OAc)₂(tfa)₂] t = 5': δ = -74.8 ppm. [*cis*-Rh₂(OAc)₂(tfa)₂] t = 4 h: δ = -74.8, -75.1, -75.4 ppm. [*cis*-Rh₂(OAc)₂(tfa)₂] t = 24 h: δ = 75.1, -75.4 ppm. [*cis*-Rh₂(OAc)₂(tfa)₂] with HEWL: t = 5' δ = -74.8, -75.4 ppm. [*cis*-Rh₂(OAc)₂(tfa)₂] with HEWL: t = 2 h δ = -75.4 ppm. Trifluoroacetic Acid (TFA): δ = -75.4 ppm.

¹ Y. Lou, T.P. Remarchuk, E.J. Corey. Catalysis of Enantioselective [2+1]-Cycloaddition Reactions of Ethyl Diazoacetate and Terminal Acetylenes Using Mixed Ligand Complexes of the Series Rh2(RCO2)n (L*4-n). Stereochemical Heuristics for Ligand Exchange and Design for Catalyst Synthesis. *J. Am. Chem. Soc.* 2005, 127, 14223–14230.

Figure S1. (A) CD spectra of RNase A (red line) and of RNase A incubated for 24 h in the presence of $[cis-Rh_2(OAc)_2(TFA)_2]$ (blue line) in 10 mM sodium citrate buffer pH 5.1. (B) CD spectra of HEWL (red line) and of HEWL incubated for 24 h in the presence of $[cis-Rh_2(OAc)_2(TFA)_2]$ (blue line) in 5 mM HEPES buffer pH 7.5.

Figure S2. Details of the Rh binding site close to His119 of molecule A in crystal **3** (panel A), **4** (panel B) and **2** (panel C). 2Fo-Fc electron density maps are contoured at 1.0 σ in panels A and B and at 0.7 σ in panel C. In panel C, the two conformations of His119 are shown.

Figure S3. Details of the Rh binding site close to His119 of molecule B in crystal **3** (panel A), **4** (panel B) and **2** (panel C). 2Fo-Fc electron density maps are contoured at 1.0 σ in panels A and B and at 0.7 σ in panel C. In panels A and B the two conformations of the dirhodium-containing fragment bound to the His side chain are shown.

Figure S4. Details of the Rh binding site close to His105 of molecule A in crystal **1** (panel A), **3** (panel B) and **2** (panel C). 2Fo-Fc electron density maps are contoured at 1.0 σ in panels B and C, at 0.7 σ in panel A.

CrystalComments on the 10 highest difference Fourier (Fo-Fc) electron-density peaks (> 5 σ)PDB Validation Repo assessment (clashscoCrystal 1The peak at 12.21 σ is too close to a water molecule (distance 0.70Å). The peak at 9.61 σ is too close to a water molecule. The peak at 9.15 σ is between two water molecules that are at 3.44Å from each other. The peak at 8.33 σ is too close to three water molecules. The peak at 7.94 σ is between two water molecules that are at 2.61Å from each other	
Fourier (Fo-Fc) electron-density peaks (> 5 σ)assessment (clashscore)Crystal 1The peak at 12.21 σ is too close to a water molecule (distance 0.70Å). The peak at 9.61 σ is too close to a water molecule. The peak at 9.15 σ is between two water molecules that are at 3.44Å from each other. The peak at 8.33 σ is too close to three water molecules. The peak at 7.94 σ is between two water molecules that are at 2.61Å from each other.	ort
Crystal 1The peak at 12.21σ is too close to a water molecule (distance 0.70Å). The peak at 9.61σ is too close to a water molecule. The peak at 9.15σ is between two water molecules that are at 3.44Å from each other. The peak at 8.33σ is too close to three water molecules. The peak at 7.94σ is between two water molecules that are at 2.61Å from each other.Clashscore 17.	cores)
Crystal 1The peak at 12.21σ is too close to a water molecule (distance 0.70Å). The peak at 9.61σ is too close to a water molecule. The peak at 9.15σ is between two water molecules that are at 3.44Å from each other. The peak at 8.33σ is too close to three water molecules. The peak at 7.94σ is between two water molecules that are at 2.61Å from each other.Clashscore 17.	
The peak at 7.44 σ is found close to the carbonyl group of Ser22 (molecule A). This is a very flexible and disordered region of the protein. The peak at 7.42 σ is between the carbonyl group of Thr99 and OG1 atom of Thr100 side chain, which are at 3.44Å of distance each other (molecule A). The peak at 7.27 σ is too close to a water molecule. The peak at 7.19 σ is between a water molecule and OG atom of Ser59 side chain (molecule A), that are at 3.22Å distance from each other. The peak at 7.18 σ is too close to a water molecule.	
Crystal 2The peaks at 8.62σ and -5.29σ are too closeClashscore 5.to the metal sempley	

A Contraction of the second		
	The peak at 7.61 σ is between two water molecules that are at 3.46Å from each other. The peak at 7.60 σ is too close to CD2 atom of His119 side chain (molecule A). The peak at 6.35 σ is 1.22Å apart from a disulfide bond formed by Cys65 and Cys72 (molecule B). The peak at 5.82 σ is between two water molecules that are at 2.63Å from each other. The peak at 5.68 σ is found close to the carbonyl group of Gln28 (molecule B). A negative peak at 5.19 σ is close to the disulphide bond formed by Cys26 and Cys64. This peak could arise from X-ray radiation damage. The peak at 5.13 σ is too close to a peptide bond formed by Asn27 and Gln28 of molecule B. The peak at 5.04 σ is too close to a water molecule.	
Crystal 3	The peaks at 14.63σ , 10.61σ , -9.62σ , 8.36σ , -7.30σ , 7.08σ , 6.86σ , $6,75\sigma$ are too close to the metal complex. The peak at 8.61σ is too close to the OG atom of Ser32 side chain (molecule A). The peak at 7.51σ is not far from a water molecule (distance 1.75 Å).	Clashscore 5.
Crystal 4	The main 10 peaks found in this structure have a sigma ranging from 13.42σ to 6.96σ . The peaks at 13.42σ , 10.77σ , 9.42σ , 8.60σ , 8.02σ , 7.95σ , 6.96σ are too close to the metal complex.	Clashscore 7.

	The peaks at 7.07σ and 7.04σ are found in molecule B and are too close to OG and NE atoms of the side chains of Ser32 and Arg33, respectively.	
HEWL	There are 7 peaks above $\pm 5.00\sigma$. The peak at 7.22 σ is too close to OD1 atom of Asp18 side chain. The peak at 7.00 σ is 1.33Å apart from a disulfide bond formed by Cys6 and Cys127. The peak at 6.80 σ is between two water molecules that are at 2.72Å from each other. A negative peak at 5.98 σ is present in proximity of sulphate moiety of a HEPES molecule. The peak at 5.91 σ is too close to a water molecule. The peak at 5.24 σ is in proximity of the NE atom of Arg21 side chain. The peak at 5.16 σ is at only 1.32 Å from a water molecule.	Clashscore 8.

	Crys	tal 1	Crys	tal 2	Crys	stal 3	Crys	tal 4	[Rh ₂ (OAc) ₄)]/R	Nase A adduct	Metal-free	e RNase A
PDB code	7Q	PW	7Q	Q0	70	QPY	70	(PZ	6X\	/X*	1JV	T**
	Molecule A	Molecule B	Molecule A	Molecule B	Molecule A	Molecule B						
Crystal 1												
Molecule A	0	0.354	0.117	0.397	0.081	0.398	0.063	0.361	0.397	0.086	0.207	0.383
Molecule B		-	0.431	0.062	0.383	0.110	0.322	0.063	0.105	0.379	0.353	0.211
Crystal 2												
Molecule A			-	0.431	0.110	0.438	0.151	0.410	0.449	0.113	0.273	0.446
Molecule B				-	0.391	0.093	0.342	0.069	0.102	0.393	0.374	0.208
Crystal 3												
Molecule A					-	0.406	0.082	0.385	0.412	0.077	0.233	0.390
Molecule B						-	0.306	0.077	0.077	0.397	0.390	0.187
Crystal 4												
Molecule A							-	0.358	0.377	0.070	0.220	0.382
Molecule B								-	0.090	0.377	0.367	0.209
6XVX												
Molecule A									-	0.405	0.365	0.194
Molecule B										-	0.214	0.361
1JVT												
Molecule A											-	0.345
Molecule B												-

Table S2. Rmsd of C α among the structures of the adducts obtained upon reaction of [*cis*-Rh₂(OAc)₂(tfa)₂] with RNase A. Rmsd with the metal-free protein (PDB CODE 1JVT)** and with the adduct of the protein with dirhodium tetraacetate (PDB code 6XVX)* are also reported for comparison. Values are in Å.

* G. Ferraro, A. Pratesi, L. Messori, A. Merlino. Protein Interactions of Dirhodium Tetraacetate: a Structural Study. Dalton Trans. 2020, 49 (8), 2412-2416

** L. Vitagliano, A. Merlino, A. Zagari, L. Mazzarella. Reversible Substrate-Induced Domain Motions in Ribonuclease A. Proteins, 46, 97-104

Table S3. Rh-containing fragments found in the five structures of Rh/protein adducts obtained upon reaction of [*cis*-Rh₂(OAc)₂(TFA)₂] with RNase A or HEWL. The Rh ligands identified in each binding site are described. Values in parentheses refer to the occupancy of metal and ligands.

Rh/RNase A adduct binding site	Metal and Ligands in structure 1	Metal and Ligands in structure 2	Metal and Ligands in structure 3	Metal and Ligands in structure 4
PDB code	7QPW	7QQ0	7QPY	7QPZ
His119 of molecule A	Rh (0.55)	Rh (0.40)	Rh (0.80)	Rh (0.75)
(His in double	Rh (0.55)	Rh (0.40)	Rh (0.80)	Rh (0.75)
conformation in	OAc (0.55)	OAc (0.40)	OAc (0.80)	OAc (0.75)
structures 1 and 2)	TFA (0.55)	H ₂ O (0.40)	TFA (0.80)	TFA (0.75)
structures 1 and 2)	H ₂ O (0.55)	H ₂ O (0.40)	H ₂ O (0.80)	H₂O (0.75)
	H₂O (0.55)	H ₂ O (0.40)	H ₂ O (0.80)	H ₂ O (0.75)
	H_2O_{ax} (0.55)	H ₂ O (0.40)	H ₂ O _{ax} (0.80)	H_2O_{ax} (0.75)
		H ₂ O (0.40)		
		H ₂ O (0.40)		
His119 of molecule B	Rh (0.20/0.20) (d.c.)	Rh (0.40)	Rh (0.30/0.30) (d.c.)	Rh (0.30/0.30) (d.c.)
(His in double	Rh (0.20/0.20) (d.c.)	Rh (0.40)	Rh (0.30/0.30) (d.c.)	Rh (0.30/0.30) (d.c.)
conformation in	OAc (0.20/0.20) (d.c.)	OAc (0.40)	OAc (0.30/0.30) (d.c.)	OAc (0.30/0.30) (d.c.)
structure 2)	OAc (0.20/0.20) (d.c.)	H ₂ O (0.40)	OAc (0.30/0.30) (d.c.)	OAc (0.30/0.30) (d.c.)
structure 2)	H ₂ O (0.20/0.20) (d.c.)	H ₂ O (0.40)	H ₂ O (0.30/0.30) (d.c.)	H ₂ O (0.30/0.30) (d.c.)
	H ₂ O (0.20/0.20) (d.c.)	H ₂ O (0.40)	H ₂ O (0.30/0.30) (d.c.)	H ₂ O (0.30/0.30) (d.c.)
	H ₂ O (0.20/0.20) (d.c.)	H ₂ O (0.40)	H ₂ O (0.30/0.30) (d.c.)	H ₂ O (0.30/0.30) (d.c.)
	H ₂ O (0.20/0.20) (d.c.)	H ₂ O (0.40)	H ₂ O (0.30/0.30) (d.c.)	H ₂ O (0.30/0.30) (d.c.)
	H_2O_{ax} (0.40)	H ₂ O (0.40)	H ₂ O _{ax} (0.60)	H ₂ O _{ax} (0.60)
		H ₂ O _{ax} (0.40)		
His105 of molecule A	Rh (0.40)	Rh (0.40)	Rh (0.70)	Rh (0.55)
	Rh (0.40)	Rh (0.40)	Rh (0.70)	Rh (0.55)
	OAc (0.40)	H ₂ O (0.40)	OAc (0.70)	OAc (0.55)
	H ₂ O (0.40)		H ₂ O (0.70)	OAc (0.55)
	H ₂ O (0.40)		H ₂ O (0.70)	H ₂ O (0.55)
	H ₂ O (0.40)		H ₂ O (0.70)	H ₂ O (0.55)
	H ₂ O (0.40)		H ₂ O (0.70)	H ₂ O (0.55)
	H ₂ O (0.40)		H ₂ O (0.70)	H₂O (0.55)
	H ₂ O (0.40)		H ₂ O (0.70)	
	H ₂ O _{ax} (0.20) (d.c.)		H ₂ O _{ax} (0.70)	
His105 of molecule B	/	/	Rh (0.40)	/
Instag of molecule D	/	1	Rh (0.40)	1
			$H_{2}O(0.40)$	
			H ₂ O (0.40)	

	H ₂ O (0.40)	
	H ₂ O (0.40)	
Rh/HEWL adduct	Metal and Ligands in the structure	
binding site		
PDB code	7QQ1	
His15	Rh (0.50)	
	Rh (0.50)	
	H ₂ O (0.50)	
Asp101	Rh (0.30)	
•	H ₂ O (0.30)	

d.c. = double conformation, ax=axial

Table S4. Geometric parameters of the Rh-containing fragments in the structures of Rh/RNase A adducts here refined.

				Binding sites in the Rh/RNase A adducts obtained upon reaction of the protein with [<i>Cis</i> - Rh ₂ (OAC) ₂ (tfa) ₂]		
PDB code	Crystal		His119 Molecule A	His119 Molecule B	His105 Molecule A	His105 Molecule B
		Rh—N (Å)	2.25	2.13	2.17	
		Rh—Rh (Å)	2.38	2.41	2.50	
		$Rh - O_{OAc}^{a}$ (Å)	2.09	2.10	2.13	
		$Rh - O_{TFA}^{a}$ (Å)	2.09	/	/	
7QPW	1	Rh—O _{wat} ^a (Å)	2.08	2.10	2.08	/
		O_{OAc} —Rh—N ^a (°)	92.6	89.7	89.5	
		O _{TFA} —Rh— N ^a (°)	87.2	/	/	
		N—Rh—Rh (°)	178.7	170.7	169.2	
		O _{wat} —Rh—N ^a (°)	86.6	90.9	91.7	
		Rh—N (Å)	2.27	2.16	2.18	
		Rh—Rh (Å)	2.39	2.38	2.27	
		Rh—O _{OAc} ^a (Å)	2.11	2.12	/	
		Rh—O _{TFA} ^a (Å)	/	/	/	
7QQ0	2	$Rh-O_{wat}{}^{a}$ (Å)	2.11	2.10	1.98	/
		O_{OAc} —Rh—N ^a (°)	82.1	96.7	/	
		O_{TFA} —Rh— N ^a (°)	/	/	/	
		N—Rh—Rh (°)	175.0	172.45	164.1	
		O _{wat} —Rh—N ^a (°)	91.2	89.3	107,2	
		Rh—N (Å)	2.25	2.16	2.11	2.23
		Rh—Rh (Å)	2.35	2.47	2.43	2.48
		Rh—O _{OAc} ^a (Å)	2.10	2.10	2.13	/
		$Rh - O_{TFA}^{a}(Å)$	2.10	/	/	/
7QPY	3	Rh—O _{wat} ^a (Å)	2.10	2.10	2.09	2.10
		O_{OAc} —Rh—N ^a (°)	90.4	89.5	90.9	/
		O _{TFA} —Rh— N ^a (°)	90.2	/	/	/
		N—Rh—Rh (°)	179.0	159.5	170.0	176.6
		O _{wat} —Rh—N ^a (°)	87.8	89.9	91.1	89.7
		Rh—N (Å)	2.27	2.30	2.20	
		Rh—Rh (Å)	2.36	2.39	2.42	
		$Rh - O_{OAc}^{a}$ (Å)	2.10	2.10	2.10	
		$Rh - O_{TFA}^{a}$ (Å)	2.12	/	/	
7QPZ	4	Rh—O _{wat} ^a (Å)	2.11	2.11	2.10	/
		O_{OAc} —Rh—N ^a (°)	90.8	89.9	91.7	
		O_{TFA} —Rh— N ^a (°)	87.5	/	/	
		N—Rh—Rh (°)	179.4	159.0	175.6	
		O_{wat} —Rh—N ^a (°)	89.5	92.6	90.4	

		Rh—N (Å)	2.16	2.27	2.20	2.18
		Rh—Rh (Å)	2.34	2.37	2.42	2.42
		Rh—O _{OAc} ^a (Å)	2.09	2.11	2.06	2.13
		Rh—O _{TFA} a (Å)	/	/	/	/
6XVX*	Structure of the	Rh—O _{wat} a (Å)	2.24	2.28	2.29	2.28
	[Rh ₂ (OAc) ₄)]/RNase A					
	adduct	O_{OAc} —Rh—N ^a (°)	93.7	93.9	94.4	92.5
		O_{TFA} —Rh— N ^a (°)	90.9	91.9	91.1	93.3
		N—Rh—Rh (°)	177.1	175.4	176.3	176.6
		O _{wat} —Rh—Rh ^a (°)	90.1	88.0	88.9	87.3

^a Average values. Standard deviations for the distances are in the range of 0.00-0.04 Å. Standard deviations for the angles are in the range of 1.4-7.8 °. 'wat' in the table refers only to water coordinating Rh atoms at equatorial positions.

*G. Ferraro, A. Pratesi, L. Messori, A. Merlino. Protein Interactions of Dirhodium Tetraacetate: a Structural Study. Dalton Trans. 2020, 49 (8), 2412-2416