Supporting Information

A multifunctional anionic metal-organic framework for high proton-conductivity and photoreduction of CO₂ induced by cation exchange

Hong-Xu Sun,^a Hai-Ning Wang,^a Yao-Mei Fu,^b Xing Meng,^{*a} Yu-Ou He,^a Rui-Gang Yang,^a Zhen Zhou^a and Zhong-Min Su^{b,c}

^aSchool of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China. E-mail: *mengxing837@foxmail.com*.

^bShandong Engineering Research Center of Green and High-value Marine Fine Chemical; Weifang University of Science and Technology, Shouguang, 262700, China

^cSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China

E-mail: mengxing837@foxmail.com

Fig. S1 Optical micrograph of In-MOF24 (a), NH₄+@In-MOF24 (b) and Rubpy@In-MOF24-15 (c).

Fig. S2 TG curve of NH_4^+ @In-MOF24 (a), Rubpy@In-MOF24-5 (b), Rubpy@In-MOF24-10 (c), Rubpy@In-MOF24-15 (d), Rubpy@In-MOF24-20 (e) and Rubpy@In-MOF24-25 (f).

Fig. S3 Impedance spectra of In-MOF24 at 95%RH with different temperatures.

Table S1 Proton conductivities of In-MOF24 at 95%RH under different temperatures.

Fig. S4 Impedance spectra of NH_4^+ @In-MOF24 (a) and Li⁺@In-MOF24 (b) at 30°C with different RHs, and NH_4^+ @In-MOF24 (c) and Li⁺@In-MOF24 (d) at 95%RH with different temperatures.

Table S2 Proton conductivities of NH4+@In-MOF24 and Li+@In-MOF24 at 30°C

Humidity (% RH)	NH4 ⁺ @In-MOF24	Li ⁺ @In-MOF24
	$(S \text{ cm}^{-1})$	$(S \text{ cm}^{-1})$
50	4.27×10 ⁻⁷	6.58×10 ⁻⁷
60	8.86×10-7	9.17×10 ⁻⁷
70	4.34×10 ⁻⁶	1.47×10 ⁻⁶
80	3.19×10 ⁻⁵	4.11×10 ⁻⁶
90	1.41×10 ⁻⁴	7.65×10 ⁻⁶
95	6.93×10 ⁻⁴	3.32×10 ⁻⁴

under different relative humidity.

Table S3 Proton conductivities	of NH4 ⁺ @In-MOF24 and	l Li+@In-MOF24 at 95%RH
		0

under different	temperatures.
-----------------	---------------

Temperature	NH4 ⁺ @In-MOF24	Li ⁺ @In-MOF24
(°C)	$(S cm^{-1})$	(S cm ⁻¹)
30	6.93×10-4	3.32×10-4
35	1.05×10-3	4.06×10-4
40	1.35×10 ⁻³	4.69×10 ⁻⁴
45	2.44×10-3	5.30×10-4
50	3.64×10 ⁻³	7.07×10 ⁻⁴
55	5.39×10 ⁻³	8.02×10-4
60	9.81×10-3	8.72×10-4

Table S4 Proton conductive MOFs and their	proton conductivity.

Materials	Proton conductivity	Condition	Refs
	(S cm ⁻¹)		
CDs@MOF-802	$1.13 \times 10^{-1} \ \mathrm{S} \cdot \mathrm{cm}^{-1}$	25°C, 98% RH	1
Im@MOF-808	$3.45 \times 10^{-2} \mathrm{S} \cdot \mathrm{cm}^{-1}$	60 °C, 99% RH	2
Gd ₂ (H ₃ nmp) ₂]·xH ₂ O	$3.97 \times 10^{-2} \mathrm{S} \cdot \mathrm{cm}^{-1}$	94°C, 98% RH	3
NH4 ⁺ @In-MOF24	9.81 ×10 ⁻³ S⋅cm ⁻¹	60°C, 95% RH	This
			work
${Na[Cd(MIDC)]}_n$	$1.04 \times 10^{-3} \mathrm{S} \cdot \mathrm{cm}^{-1}$	100°C, 98% RH	4
[Cu ₂ (DHBDI) ₃ (SO ₄) ₂]n	$1.14 \times 10^{-3} \mathrm{S} \cdot \mathrm{cm}^{-1}$	90°C, 98% RH	5
Cd-MOF	$1.15 \times 10^{-3} \mathrm{S} \cdot \mathrm{cm}^{-1}$	90°C, 98% RH	6
MOF-801	$1.88 \times 10^{-3} \ \mathrm{S} \cdot \mathrm{cm}^{-1}$	25°C, 98% RH	7
Eu(iii)-MOF	$3.5 \times 10^{-3} \mathrm{S} \cdot \mathrm{cm}^{-1}$	80°C, 98% RH	8
$(H[Ln(H_2O)_4]_2[MnV_{13}O_{38}] \cdot 9NMP \cdot 17$	4.68/3.46×10 ⁻³	61°C, 97% RH	9
H ₂ O (Ln=Ce and La)	$S \cdot cm^{-1}$		
UiO-66-N ₃	$8.8 imes 10^{-3} \mathrm{S} \cdot \mathrm{cm}^{-1}$	80°C, 98% RH	10
MOF-bpy	$1.03 \times 10^{-4} \mathrm{S} \cdot \mathrm{cm}^{-1}$	60°C, 93% RH	11
MOF-Eu	$1.89 \times 10^{-4} \mathrm{S} \cdot \mathrm{cm}^{-1}$	60°C, 98% RH	12
$[CH_3NH_3]2[H_3O]Ag_5Sn_4Se_{12} \cdot C_2H_5OH$	$2.62 \times 10^{-4} \mathrm{S} \cdot \mathrm{cm}^{-1}$	60 °C, 99% RH	13
ZZU-2	$4.63 \times 10^{-4} \mathrm{S} \cdot \mathrm{cm}^{-1}$	98 °C, 100% RH	14
Zn-SDC-MOF	$8 \times 10^{-4} \mathrm{S} \cdot \mathrm{cm}^{-1}$	25°C, 95% RH	15

16

MFM-510

Fig. S5 The PXRD patterns of the Li⁺@In-MOF24 before test and after test (a) and the FT-IR spectra of Li⁺@In-MOF24 before test and after test (b).

Fig. S6 The proton conduction pathway of In-MOF24 (a) and NH₄+@In-MOF24 (b).

Fig. S7 FT-IR spectra of Rubpy@In-MOF24-5, Rubpy@In-MOF24-10, Rubpy@In-MOF24-15, Rubpy@In-MOF24-20 and Rubpy@In-MOF24-25.

Fig. S8 CO₂ adsorption-desorption isotherms of In-MOF24 (a) and Rubpy@In-MOF24-5, Rubpy@In-MOF24-10, Rubpy@In-MOF24-15, Rubpy@In-MOF24-20 and Rubpy@In-MOF24-25 at 273K (b).

Table S5 The Brunauer-Emmett-Teller (BET) specific surface areas of In-MOF24,Rubpy@In-MOF24-5,Rubpy@In-MOF24-10,Rubpy@In-MOF24-15,Rubpy@In-MOF24-20 and Rubpy@In-MOF24-25.

Material	CO ₂ sorption (ml/g)	
In-MOF24	28.41	
Rubpy@In-MOF24-5	21.12	
Rubpy@In-MOF24-10	22.16	
Rubpy@In-MOF24-15	36.49	
Rubpy@In-MOF24-20	23.73	
Rubpy@In-MOF24-25	21.65	

Fig. S9 Optical picture of In-MOF24 (a), Rubpy@In-MOF24-5 (b), Rubpy@In-MOF24-10 (c), Rubpy@In-MOF24-15 (d), Rubpy@In-MOF24-20 (e) and Rubpy@In-MOF24-25 (f).

Fig. S11 SEM image of In-MOF24 (a) and In-MOF48 (c), crystal size distribution map of In-MOF24 (b) and In-MOF48 (d).

8

9 10 11 12 13 Crystal size (μm)

14

Fig. S12 The efficiencies of Rubpy@In-MOF24-5 (A), Rubpy@In-MOF24-10 (B), Rubpy@In-MOF24-15 (C), Rubpy@In-MOF24-20 (D) and Rubpy@In-MOF24-25 (E) on the evolution of CO₂ irradiated with visible light for 2h under 10% CO₂

conditions.

Fig. S14 The PXRD patterns of the **Rubpy@In-MOF24-15** before test and after test (a) and the FT-IR spectra of **Rubpy@In-MOF24-15** before test and after test (b). **Table S6** The photocatalytic performances of MOFs with H₂O as sacrificial reagents.

50 4000

3000 2000 Wavenumber/cm⁻¹

1000

20 30 40 2 Theta (degree)

10

Materials	Products	Formation rate	Reactio	Refs	
			n agent		
Rubpy@In-MOF24-	CO	18.51 µmol g ⁻¹ h ⁻¹	H ₂ O	This	
15				work	
MOF-Ni	СО	$371.6 \ \mu mol \ g^{-1} \ h^{-1}$	H_2O	18	
Mn-MOF	СО	21 $\mu mol \ g^{-1} \ h^{-1}$	H_2O	19	
UiO-66	СО	1.0 μmol g ⁻¹ h ⁻¹	H_2O	20	
TiO ₂ /ZIF-8-G2	СО	21.74 µmol g ⁻¹ h ⁻¹	H_2O	21	
NNU-31-Zn	НСООН	26.3 µmol g ⁻¹ h ⁻¹	H_2O	22	
CsPbBr ₃ @ZIF-67	CH_4	29.63 µmol g ⁻¹ h ⁻¹	H_2O	23	
Cu ₃ (BTC) ₂ @TiO ₂	CH_4	2.64 µmol g ⁻¹ h ⁻¹	H_2O	24	
TiO ₂ /Co-ZIF-9	СО	17.58 μmol g ⁻¹ h ⁻¹	H_2O	25	

Bi ₂ S ₃ /UiO-66	CO	25.6 µmol g ⁻¹ h ⁻¹	H_2O	26
Au@NENU-10	CO	12.8 µmol g ⁻¹ h ⁻¹	H_2O	27
QS-Co ₃ O ₄ (ZIF-67)	СО	46.3 µmol g ⁻¹ h ⁻¹	H_2O	28
CsPbBr ₃ QDs/UiO-	СО	8.21 μmol g ⁻¹ h ⁻¹	H_2O	29
66(NH ₂)				
TiO ₂ /CPO-27-Mg	CO	4.09 μmol g ⁻¹ h ⁻¹	H ₂ O	30

Notes and references

- J. Zhang, R. Zhang, Y. Y. Liu, Y. R. Kong, H. B. Luo, Y. Zou, L. Zhai and X. M. Ren, Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal-Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction, ACS Appl. Mater. Interfaces., 2021, 13, 60084-60091.
- H. B. Luo, Q. Ren, P. Wang, J. Zhang, L. F. Wang and X. M. Ren, High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton-Conducting MOF-808, ACS Appl. Mater. Interfaces., 2019, 11, 9164-9171.
- 3. R. F. Mendes, P. Barbosa, E. M. Domingues, P. Silva, F. Figueiredo and F. A. A. Paz Chem, Enhanced proton conductivity in a layered coordination polymer, *Chem. Sci.*, 2020, **11**, 6305-6311.
- R. L. Liu, Y. R. Liu, S. H. Yu, C. L. Yang, Z. F. Li and G. Li, A Highly Proton-Conductive 3D Ionic Cadmium-Organic Framework for Ammonia and Amines Impedance Sensing, ACS Appl. Mat. Interfaces., 2019, 11, 1713-1722.
- F. Q. Mi, F. X. Ma, S. X. Zou, D. S. Zhan and T. Zhang, A proton-conductive metal-organic framework based on imidazole and sulphate ligands, *Dalton Trans.*, 2022, 51, 1313-1317.
- F. D. Wang, W. H. Su, C. X. Zhang and Q. L. Wang, High Proton Conductivity of a Cadmium Metal-Organic Framework Constructed from Pyrazolecarboxylate and Its Hybrid Membrane, *Inorg. Chem.*, 2021, 60, 16337-16345.
- J. Zhang, H. J. Bai, Q. Ren, H. B. Luo, X. M. Ren, Z. F. Tian and S. F. Lu, Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton Exchange Membrane, *ACS Appl. Mater. Interfaces.*, 2018, 10, 28656-28663.
- 8. L. Feng, T. Y. Zeng, H. B. Hou, H. Zhou and J. Tian, Theoretical hydrogen bonding calculations and proton conduction for Eu(iii)-based metal-organic framework, *RSC Adv.*, 2021, **11**, 11495-11499.
- J. X. Wang, Y. D. Wang, M. J. Wei, H. Q. Tan, Y. H. Wang, H. Y. Zang and Y. G. Li, Inorganic open framework based on lanthanide ions and polyoxometalates with high proton conductivity, *Inorg. Chem. Front.*, 2018, 5, 1213-1217.
- 10. X. N. Zou, D. S. Zhang, Y. L. Xie, T. X. Luan, W. C. Li, L. Li and P. Z. Li, High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a

Zirconium-Based Metal-Organic Framework via "Click" Reaction, *Inorg. Chem.*, 2021, **60**, 10089-10094.

- H. F. Wang, T. Y. Wen, Z. C. Shao, Y. J. Zhao, Y. Cui, K. Gao, W. J. Xu and H. W. Hou, High Proton Conductivity in Nafion/Ni-MOF Composite Membranes Promoted by Ligand Exchange under Ambient Conditions, *Inorg. Chem.*, 2021, 60, 14, 10492–10501.
- F. M. Wang, B. X. Hu, W. P. Lustig, L. Zhou, J. Xiang, L. Z. Chen and J. Li, Three Robust Blue-Emitting Anionic Metal–Organic Frameworks with High Stability and Good Proton Conductivities, *Inorg. Chem.*, 2021, 60, 17926–17932.
- H. B. Luo, Q. Ren, Y. Liu, Proton Conduction of an Acid-Resistant Open-Framework Chalcogenidometalate Hybrid in Anhydrous versus Humid Environments, *Inorg. Chem.*, 2020, 59, 7283-7289.
- R. L. Liu, W. T. Qu, B. H. Dou, Proton-Conductive 3D LnIII Metal-Organic Frameworks for Formic Acid Impedance Sensing, *Chem Asian J.*, 2020, 15, 182-190.
- Y. Son, P. C. Rao, J. Kim, G. Park and M. Yoon, Study of Stability and Proton Conductivity of Zn-based Metal-Organic Framework, *B Kor Chem Soc.*, 2021, 42, 810-817.
- P. Rought, C. Marsh, O. logo, S. Pili, V. G. Sakai, M. Li, M. S. Brown, S. P. Argent, I. V. Yrezabal, G. Whitehead, M. R. Warren, S. Yang and M. Schröder, Modulating proton diffusion and conductivity in metal-organic frameworks by incorporation of accessible free carboxylic acid groups, *Chem. Sci.*, 2019, 10, 1492-1499.
- S. M. Lia, F. Wu, R. B. Lin, J. Wang, C. X. Li, Z. Q. Li, J. Jiang and Y. J. Xiong, Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization, *Chem Eng J.*, 2022, 429, 132217.
- X. K. Wang, j. liu, L. Zhang, L. Z. Dong, S. L. Li, Y. H. Kan, D. S. Li, and Y. Q. Lan, Monometallic Catalytic Models Hosted in Stable Metal Organic Frameworks for Tunable CO₂ Photoreduction, *ACS Catal.*, 2019, 9, 1726-1732.
- J. H. Qin, P. Xu, Y. D. Huang, L. Y. Xiao, W. W. Lu, X. G. Yang, L. F. Ma and S. Q. Zang, High loading of Mn(II)-metalated porphyrin in a MOF for photocatalytic CO₂ reduction in gas-solid conditions, *Chem. Commun.*, 2021, 57, 8468-8471.
- 20. Y. J. Ma, Q. Tang, W. Y. Sun, Z. Y. Yao, W. H. Zhu, T. Li, J. Y. Wang, Assembling ultrafine TiO₂ nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO₂ to CH₄ at a low concentration, *Appl. Catal. B-Environ.*, 2020, **270**, 118856-118891.
- Y. H. Zou, H. N. Wang, X. Meng, H. X. Sun and Z. Y. Zhou, Self-assembly of TiO₂/ZIF-8 nanocomposites for varied photocatalytic CO₂ reduction with H₂O vapor induced by different synthetic methods, *Nanoscale Adv.*, 2021, **3**, 1455-1463.
- L. Z. Dong, L. Zhang, J. Liu, Q. Huang, M. Lu, W. X. Ji and Y. Q. Lan, Stable Heterometallic Cluster-Based Organic Framework Catalysts for Artificial Photosynthesis, *Angew. Chem. Int. Ed.*, 2020, **59**, 2659-2663.

- S. Wan, M. Ou, Q. Zhong, X. Wang, Perovskite-type CsPbBr₃ quantum dots/UiO-66(NH₂) nanojunction as efficient visible-light-driven photocatalyst for CO₂ reduction, *Chem. Eng. J.*, 2019, **358**, 1287-1295.
- C. Zheng, X. Y. Qiu, J. Y. Han, Y. F. Wu, S. Q. Liu, Zero-Dimensional-g-CNQD-Coordinated Two-Dimensional Porphyrin MOF Hybrids for Boosting Photocatalytic CO₂ Reduction, ACS Appl. Mater. Interfaces., 2019, 11, 42243-42249.
- S. Yan, S. Ouyang, H. Xu, M. Zhao, X. Zhang, J. Ye, Co-ZIF-9/TiO₂ nanostructure for superior CO₂ photoreduction activity, *J. Mater. Chem. A.*, 2016, 4, 15126-15133.
- 26. X. Chen, Q. Li, J. Li, J. Chen, H. Jia, Modulating charge separation via in situ hydrothermal assembly of low content Bi₂S₃ into UiO-66 for efficient photothermocatalytic CO₂ reduction, *Appl. Catal. B.*, 2020, **270**, 118915.
- S. M. Liu, Z. Zhang, X. Li, H. Jia, M. Ren, S. Liu, Ti-Substituted Keggin-Type Polyoxotungstate as Proton and Electron Reservoir Encaged into Metal-Organic Framework for Carbon Dioxide Photoreduction, *Adv. Mater. Interfaces.*, 2018, 5, 1801062.
- L. Wang, J. Wan, Y. Zhao, N. Yang, D. Wang, Hollow Multi-Shelled Structures of Co₃O₄ Dodecahedron with Unique Crystal Orientation for Enhanced Photocatalytic CO₂ Reduction, *J. Am. Chem. Soc.*, 2019, **141**, 2238-2241.
- 29. S. Wan, M. Ou, Q. Zhong, X. Wang, Perovskite-type CsPbBr₃ quantum dots/UiO-66(NH₂) nanojunction as efficient visible-light-driven photocatalyst for CO₂ reduction, *Chem. Eng. J.*, 2019, **358**, 1287-1295.
- M. Wang, D. Wang, Z. Li, Self-assembly of CPO-27-Mg/TiO₂ nanocomposite with enhanced performance for photocatalytic CO₂ reduction, *Appl. Catal. B.*, 2016, **183**, 47-52.