# Boosting alkaline water splitting and urea electrolysis kinetic process

#### of Co<sub>3</sub>O<sub>4</sub> nanosheet by electronic structure modulation of F, P co-

## doping

Xiaoqiang Dua\*, Guangyu Maa and Xiaoshuang Zhangb

a. School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China. E-mail: 20160053@nuc.edu.cn

b. School of Science, North University of China, Taiyuan 030051, People's Republic of China.

#### **DFT** calculation

The DFT calculations were performed using the Cambridge Sequential Total Energy Package (CASTEP) with the plane-wave pseudo-potential method. The geometrical structures of the (111) plane of F-Co<sub>3</sub>O<sub>4</sub>, F-P-Co<sub>3</sub>O<sub>4</sub>, F-S-Co<sub>3</sub>O<sub>4</sub> and F-Se-Co<sub>3</sub>O<sub>4</sub> were optimized by the generalized gradient approximation (GGA) methods. The Revised Perdew-Burke-Ernzerh of (RPBE) functional was used to treat the electron exchange correlation interactions. A Monkhorst Pack grid k-points of 6\*6\*1 of F-Co<sub>3</sub>O<sub>4</sub>, F-P-Co<sub>3</sub>O<sub>4</sub>, F-S-Co<sub>3</sub>O<sub>4</sub> and F-Se-Co<sub>3</sub>O<sub>4</sub>, a plane-wave basis set cutoff energy of 480 eV were used for integration of the Brillouin zone. The structures were optimized for energy and force convergence set at 0.05 eV/A and  $2.0 \times 10^{-5}$  eV, respectively. The vacuum space was up to 0.002 A to eliminate periodic interactions. the Gibbs free energy of H adsorption was calculated as follows:

 $\Delta G_{\mathrm{H}^{*}} = \Delta E_{\mathrm{H}^{*}} + \Delta Z P E - T \Delta S$ 

Where  $\Delta ZPE$  is the zero-point energy and T $\Delta S$  stands for the entropy corrections. According to the previous report by Norskov et al., we used the 0.24 eV for the  $\Delta ZPE$  - T $\Delta S$  of hydrogen adsorption in this work.

Res: J. Electrochem. Soc., 2005, 152, J23.



Fig. S1. Electronic images of the synthesized F-Co-precursor /NF and Co-precursor /NF.



Fig. S2. XRD patterns of the precursors and pristine  $Co_3O_4$  after hydrothermal without adding ammonium fluoride.



**Fig. S3.** The high resolution XPS spectra of F-P-Co<sub>3</sub>O<sub>4</sub>/NF, (a) Co 2p, (b) O 1s, (c) P 2p and (d) F 1s.



Fig. S4 Polarization curve of the Ni foam for OER with a scan rate of 5 mV s<sup>-1</sup> in 1 M KOH.



Fig. S5 Polarization curve of the  $RuO_2$  for OER with a scan rate of 5 mV s<sup>-1</sup> in 1 M KOH.



Fig. S6 Polarization curves of NF in 1.0 M KOH at a potential sweep rate of 5 mV s<sup>-1</sup>.



Fig. S7 Polarization curve of the Pt/C for HER with a scan rate of 5 mV s<sup>-1</sup> in 1 M KOH.



**Fig. S8** CV curves of (a) F-Co<sub>3</sub>O<sub>4</sub>/NF, (b) F-S-Co<sub>3</sub>O<sub>4</sub>/NF, (c) F-P-Co<sub>3</sub>O<sub>4</sub>/NF and (d) F-Se-Co<sub>3</sub>O<sub>4</sub>/NF. (e) The C<sub>dl</sub> linear fitting and calculations derived from CV of different sweep speeds. (f) The LSV curves normalized to the ECSA.



Fig. S9 TOF curves of F-Co<sub>3</sub>O<sub>4</sub>/NF and F-P-Co<sub>3</sub>O<sub>4</sub>/NF.



Fig. S10 Polarization curve of the  $RuO_2$  and Pt for water splitting with a scan rate of 5 mV s<sup>-1</sup> in 1 M KOH.



Fig. S11. Surface morphology of cathode (a,b) and anode (c,d) catalysts recovered by chronocurrent method for 15h.



Fig. S12. Density of states for F-Co<sub>3</sub>O<sub>4</sub>, (a) Co, (b) O and (c) F.



Fig. S13. Density of states for F-P-Co<sub>3</sub>O<sub>4</sub>, (a) Co, (b) O, (c) F and (d) P.



Fig. S14. Density of states for F-S-Co<sub>3</sub>O<sub>4</sub>, (a) Co, (b) O, (c) F and (d) S.



Fig. S15. Density of states for F-Se-Co<sub>3</sub>O<sub>4</sub>, (a) Co, (b) O, (c) F and (d) Se.

| Electrocatalyst                                               | Electrolyte | Potential (mV)<br>at 10 mA/cm <sup>2</sup> | Tafel<br>(mV/dec) | Ref.      |
|---------------------------------------------------------------|-------------|--------------------------------------------|-------------------|-----------|
| F-P-Co <sub>3</sub> O <sub>4</sub> /NF                        | 1 M KOH     | 192                                        | 32.1              | This work |
| FeS/Ni <sub>3</sub> S <sub>2</sub> @NF                        | 1 M KOH     | 192                                        | 70                | 1         |
| NiFe LDH@NiCoP/NF                                             | 1 M KOH     | 220                                        | 48.6              | 2         |
| Co/CoP@HOMC                                                   | 1 M KOH     | 260                                        | 151               | 3         |
| 1D-Cu@Co-CoO/Rh                                               | 1 M KOH     | 260                                        | 99.7              | 4         |
| Fe <sub>2</sub> O <sub>3</sub> /FeP                           | 1 M KOH     | 264                                        | 47                | 5         |
| p-NFNR@Ni-Co-P                                                | 1 M KOH     | 272                                        | 62                | 6         |
| Fe-CoNiP                                                      | 1 M KOH     | 280                                        | 99.1              | 7         |
| CoFe@NC/NCHNSs-700                                            | 1 M KOH     | 285                                        | 39                | 8         |
| Co <sub>1</sub> -Fe <sub>1</sub> -B-P                         | 1 M KOH     | 294                                        | 49.5              | 9         |
| NiCo <sub>2</sub> O <sub>4</sub> @NiCo(OH) <sub>2</sub> /PNCF | 1 M KOH     | 349                                        | 99.2              | 10        |

**Table S1.** OER performances of F-P-Co<sub>3</sub>O<sub>4</sub>/NF and other reported electrocatalysts in alkaline media.

**Table S2.** HER performances of F-P-Co $_3O_4$ /NF and other reported electrocatalysts in alkaline media.

| Floatnooatalvat                        | Electrolyte | Potential (mV)           | Tafel    | Ref.      |  |
|----------------------------------------|-------------|--------------------------|----------|-----------|--|
| Electrocatalyst                        |             | at 10 mA/cm <sup>2</sup> | (mV/dec) |           |  |
| F-P-Co <sub>3</sub> O <sub>4</sub> /NF | 1 M KOH     | 110                      | 79.9     | This work |  |
| Fe-CoNiP                               | 1 M KOH     | 110                      | 90.6     | 7         |  |
| NiFe LDH@NiCoP/NF                      | 1 M KOH     | 120                      | 88.2     | 2         |  |
| CoFe@NC/NCHNSs-700                     | 1 M KOH     | 120                      | 144      | 8         |  |
| Co/CoP@HOMC                            | 1 M KOH     | 120                      | 78       | 3         |  |
| NiCo2O4@NiCo(OH)2/PNCF                 | 1 M KOH     | 121                      | 83.2     | 10        |  |
| p-NFNR@Ni-Co-P                         | 1 M KOH     | 125                      | 85       | 6         |  |
| FeS/Ni <sub>3</sub> S <sub>2</sub> @NF | 1 M KOH     | 130                      | 124      | 1         |  |
| 1D-Cu@Co-CoO/Rh                        | 1 M KOH     | 137                      | 52.4     | 4         |  |
| CoFeN-NCNTs//CCM                       | 1 M KOH     | 151                      | 130      | 11        |  |
| H–Fe–CoMoS                             | 1 M KOH     | 138                      | 98       | 12        |  |

| Electrocatalyst                                                    | Electrolyte | Potential (V)<br>at 10 mA/cm <sup>2</sup> | Ref.      |
|--------------------------------------------------------------------|-------------|-------------------------------------------|-----------|
| F-P-Co <sub>3</sub> O <sub>4</sub> /NF(+/-)                        | 1 M KOH     | 1.53                                      | This work |
| Co/CoP@HOMC(+/-)                                                   | 1 M KOH     | 1.54                                      | 3         |
| Ni <sub>3</sub> Se <sub>2</sub> @FeOOH(+/-)                        | 1 M KOH     | 1.54                                      | 13        |
| Act-CoOOH/W <sub>18</sub> O <sub>49</sub> /NF(+/-)                 | 1 M KOH     | 1.55                                      | 14        |
| NiFe LDH@NiCoP/NF(+/-)                                             | 1 M KOH     | 1.57                                      | 2         |
| P, Cu-Co <sub>0.85</sub> Se/NF(+/-)                                | 1 M KOH     | 1.57                                      | 15        |
| Co <sub>9</sub> S <sub>8</sub> @NiFe-LDH HAs/NF(+/-)               | 1 M KOH     | 1.58                                      | 16        |
| Ni-Fe-Co@CNSs(+/-)                                                 | 1 M KOH     | 1.59                                      | 17        |
| 1D-Cu@Co-CoO/Rh(+/-)                                               | 1 M KOH     | 1.6                                       | 4         |
| NiCoP/CoFeP@NF-12(+/-)                                             | 1 M KOH     | 1.61                                      | 18        |
| p-NFNR@Ni-Co-P(+/-)                                                | 1 M KOH     | 1.62                                      | 6         |
| Fe-CoNiP(+/-)                                                      | 1 M KOH     | 1.62                                      | 7         |
| Fe, Rh-Ni <sub>2</sub> P/NF(+/-)                                   | 1 M KOH     | 1.62                                      | 19        |
| CoNiP/NF(+/-)                                                      | 1 M KOH     | 1.62                                      | 20        |
| CoFe@NC/NCHNSs-700(+/-)                                            | 1 M KOH     | 1.66                                      | 8         |
| NiCo <sub>2</sub> O <sub>4</sub> @NiCo(OH) <sub>2</sub> /PNCF(+/-) | 1 M KOH     | 1.66                                      | 10        |

**Table S3.** Overall water splitting performances of F-P-Co<sub>3</sub>O<sub>4</sub>/NF and other reported electrocatalysts in alkaline media.

### Reference

- 1. H. Li, S. Yang, W. Wei, M. Zhang, Z. Jiang, Z. Yan and J. Xie, *J. Colloid Interface Sci.*, 2022, **608**, 536-548.
- H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847.
- W. Li, J. Liu, P. Guo, H. Li, B. Fei, Y. Guo, H. Pan, D. Sun, F. Fang and R. Wu, *Adv. Energy Mater.*, 2021, **11**, 2102134.
- 4. P. K. L. Tran, D. T. Tran, D. Malhotra, S. Prabhakaran, D. H. Kim, N. H. Kim and J. H. Lee, *Small*, 2021, DOI: 10.1002/smll.202103826.
- I. Ahmad, J. Ahmed, S. Batool, M. N. Zafar, A. Hanif, Zahidullah, M. F. Nazar, A. Ul-Hamid, U. Jabeen, A. Dahshan, M. Idrees and S. A. Shehzadi, J. Alloy. Compd., 2022, 894, 162409.

- Y. Feng, R. Wang, P. Dong, X. Wang, W. Feng, J. Chen, L. Cao, L. Feng, C. He and J. Huang, ACS Appl. Mater. Interfaces, 2021, 13, 48949-48961.
- 7. M. Ramadoss, Y. Chen, X. Chen, Z. Su, M. Karpuraranjith, D. Yang, M. A. Pandit and K. Muralidharan, *J. Phys. Chem. C*, 2021, **125**, 20972-20979.
- 8. S. Wang, H. Wang, C. Huang, P. Ye, X. Luo, J. Ning, Y. Zhong and Y. Hu, *Appl. Catal.*, *B*, 2021, **298**, 120512.
- X. Liu, G. He, H. Liu, Y. Zhu, J. Xiao and L. Han, J. Alloy. Compd., 2022, 893, 162208.
- G. Chen, D. Chen, J. Huang, C. Zhang, W. Chen, T. Li, B. Huang, T. Shao, J. Li and K. K. Ostrikov, ACS Appl. Mater. Interfaces, 2021, 13, 45566-45577.
- G. Zhou, G. Liu, X. Liu, Q. Yu, H. Mao, Z. Xiao and L. Wang, *Adv. Funct. Mater.*, 2021, DOI: 10.1002/adfm.202107608.
- 12. Y. Guo, X. Zhou, J. Tang, S. Tanaka, Y. V. Kaneti, J. Na, B. Jiang, Y. Yamauchi, Y. Bando and Y. Sugahara, *Nano Energy*, 2020, **75**, 104913.
- 13. J. Gao, H. Ma, L. Zhang, X. Luo and L. Yu, J. Alloy. Compd., 2022, 893, 162244.
- G. Hai, J. Huang, L. Cao, K. Kajiyoshi, L. Wang and L. Feng, *Appl. Surf. Sci.*, 2021, 564, 150414.
- 15. Y. Wang, S. Li, D. Zhang, F. Tan, L. Li and G. Hu, J. Alloy. Compd., 2021, 889, 161696.
- Y. Lu, C. Liu, Y. Xing, Q. Xu, A. M. S. Hossain, D. Jiang, D. Li and J. Zhu, J. Colloid Interface Sci., 2021, 604, 680-690.
- 17. W. Yaseen, N. Ullah, M. Xie, B. A. Yusuf, Y. Xu, C. Tong and J. Xie, *Surfaces and Interfaces*, 2021, **26**, 101361.
- 18. T. He, Y. He, H. Li, X. Yin, J. Ma, H. Shi, L. Zhou and L. Chen, *Int. J. Hydrogen Energy*, 2021, **46**, 37872-37883.
- M. Chen, J. Duan, J. Feng, L. Mei, Y. Jiao, L. Zhang and A. Wang, *J. Colloid Interface Sci.*, 2022, 605, 888-896.
- H. Liu, R. Huang, W. Chen, Y. Zhang, M. Wang, Y. Hu, Y. Zhou and Y. Song, *Appl. Surf. Sci.*, 2021, 569, 150762.