Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

MOF-derived hierarchical core-shell hollow Co_3S_4 (a)Ni Co_2O_4 nanosheet arrays for asymmetric supercapacitors

Ye Tian,[‡]^a Zhigao Xue,[‡]^a Qingqing Zhao,^a Jie Guo,^{*a} Kai Tao^{*a}and Lei Han^a

^aSchool of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

Email: taokai@nbu.edu.cn; guojie@nbu.edu.cn.

Electrochemical calculation

The specific capacitance (C_s, F/cm²) of the electrode material is calculated by following equation:

$$C_{s} = \frac{I \times \Delta t}{S \times \Delta V} (1)$$

where I (A), Δt (s), ΔV (V) and S (cm²) are the discharging current, discharging time, voltage window for charge-discharge process and area of active materials, respectively.

The specific capacitance (C_s, F/g) of the electrode material is calculated by following equation:

$$C_{s} = \frac{I \times \Delta t}{m \times \Delta V}$$
(2)

where I (A), Δt (s), ΔV (V) and m (g) are the discharging current, discharging time, voltage window for charge-discharge process and mass of active materials, respectively.

The charge storage mechanism and reaction kinetics ware analysed by the formula as follows:

$$i = av^{b}_{(3)}$$

where I (A), v (mV s⁻¹), a value and b value are peak curren, scan rate, constant and constant, respectively. When b = 0.5, the material storage mechanism is considered as battery type. When b=1, the material storage mechanism is considered as capacitive character.

The capacitive (k_1v) and diffusion-controlled $(k_2v^{1/2})$ currents are separated by following equation:

$$i = k_1 v + k_2 v^{1/2}$$
 (4)

In the two-electrode test, the positive and negative charges should be balanced, so the mass of positive and negative substances is as follows:

$$\mathbf{Q}_{-} = \mathbf{m}_{-} \times \mathbf{C}_{-} \times \Delta \mathbf{V}_{-} = \mathbf{m}_{+} \times \mathbf{C}_{+} \times \Delta \mathbf{V}_{+} = \mathbf{Q}_{+}$$
(5)

Where m (g), C (F/g) and ΔV (V) are active materials, specific capacitance, and charge-discharge voltage of positive and negative electrodes, respectively.

The energy density (E, Wh/kg) and power density (W/kg) calculation equation of $Co_3S_4@NiCo_2O_4/rGO/NF//AC/NF$ cell is as follows:

$$E = \frac{C_s \times (\Delta V)^2}{2 \times 3.6}$$
(6)
$$P = \frac{3600 \times E}{\Delta t}$$
(7)

Where C (F/g), Δt (s) and ΔV (V) are specific capacitance, discharging time and working voltage of Co₃S₄@NiCo₂O₄/rGO/NF//AC/NF cell, respectively.

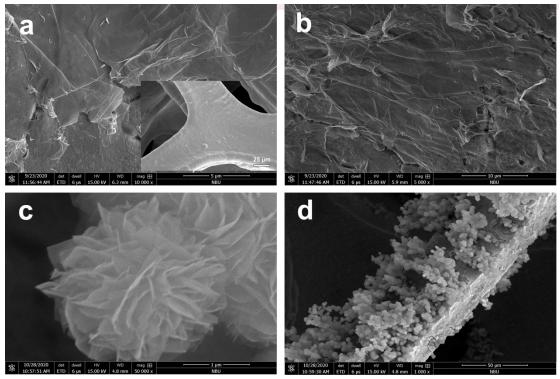
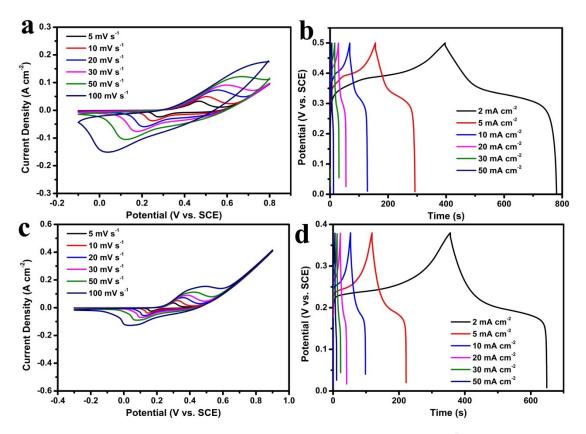



Fig. S1 SEM images of sample. (a,b) rGO/NF, inset: bare NF; (c,d) NiCo₂O₄/rGO/NF.

Fig. S2 (a) CV curves of the $Co_3S_4/rGO/NF$ at different scanning rates. (b) GCD curves of the $Co_3S_4/rGO/NF$ at different current densities. (c) CV curves of the NiCo₂O₄/rGO/NF at different scanning rates. (d) GCD curves of the NiCo₂O₄/rGO/NF at different current densities.

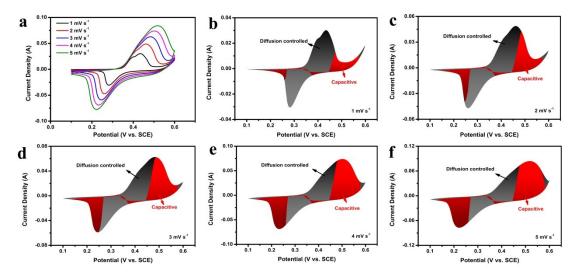
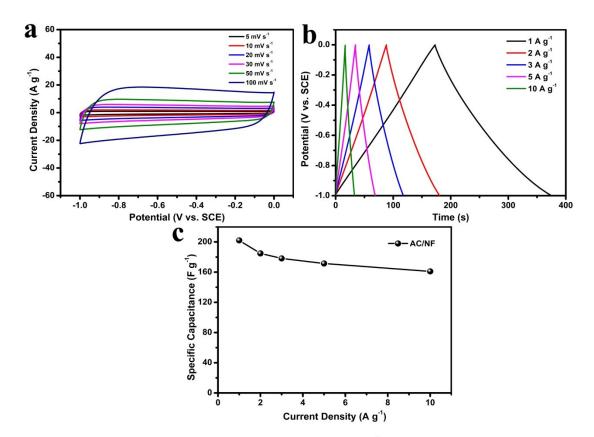



Fig. S3 (a) CV curves of the Co_3S_4 @NiCo_2O_4/rGO/NF at different scanning rates. CV curves with capacitive fraction shown by the shaded area at a scan rate at (b) 1 mV s⁻¹, (c) 2 mV s⁻¹, (d) 3 mV s⁻¹, (e) 4 mV s⁻¹ and (f) 5 mV s⁻¹.

Fig. S4 (a) CV curves of the AC at different scanning rates. (b) GCD curves of the AC at different current densities. (c) Specific capacitances of the AC at different current densities.