Supporting Information

Inserting protonated phenanthroline derivatives to interchain voids of anionic halometallate units to generate hybrid materials with tunable photochromic performance

Gang-Mei Li, Zhen-Gang Liang, Zhen-Zhen Xue,* Song-De Han,* Jie Pan, and GuoMing Wang

College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.

Instruments used in this work.

Elemental analyses (C, H, and N) were measured on a Perkin-Elmer 240C analyzer (Perkin-Elmer, USA). IR spectra were measured on a MAGNA-560 (Nicolet) FT-IR spectrometer with KBr pellets. The luminescence data were measured on an F-7000 FL spectrophotometer. The solid-state UV-Vis spectra were measured on a PerkinElmer Lamda-950 spectrophotometer. Electron paramagnetic resonance (EPR) spectroscopy was measured on a JEOL JES-FA200 EPR spectrometer. The Xe-lamp for photochromic characterization is a Perfect Light PLSSXE 300. The experimental powder X-ray diffraction (PXRD) analyses were conducted on a Rigaku D/max-2550 diffractometer with $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation $(\lambda=1.5418 \AA)$. Simulation of the PXRD curve was carried out by the singlecrystal data and diffraction-crystal module of the Mercury software.

Fig. S1 The $\pi \cdots \pi$ stacking interactions for complexes 1-3.

Fig. S2 The time-dependent UV-Vis spectra of $\mathbf{1}$ (a), 2 (b) and $\mathbf{3}$ (c).

Fig. $\mathbf{S 3}$ PXRD patterns of $\mathbf{1}$ (a), 2 (b) and $\mathbf{3}$ (c).

Fig. S4 IR patterns of $\mathbf{1}$ (a), 2 (b) and $\mathbf{3}$ (c).

Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$

$\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$2.6957(18)$	$\mathrm{Bi}(1)-\mathrm{Cl}(3)$	$2.7523(19)$
$\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$2.9718(19)$	$\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$2.9249(19)$
$\mathrm{Bi}(1)-\mathrm{Cl}(2)$	$2.5655(19)$	$\mathrm{Bi}(1)-\mathrm{Cl}(4)$	$2.5066(19)$
$\mathrm{Cl}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$83.95(5)$	$\mathrm{Cl}(3)-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$83.03(5)$
$\mathrm{Cl}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$93.57(5)$	$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$171.30(6)$
$\mathrm{Cl}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	$176.21(5)$	$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$89.14(6)$
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$93.55(6)$	$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(2)$	$94.92(6)$
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$90.80(6)$	$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$90.48(6)$
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	$89.69(6)$	$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	$92.55(6)$
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$171.12(6)$	$\mathrm{Bi}(1)-\mathrm{Cl}(1)-\mathrm{Bi}(1) \# 1$	$96.05(5)$
$\mathrm{Cl}(3)-\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$94.03(5)$	$\mathrm{Bi}(1)-\mathrm{Cl}(3)-\mathrm{Bi}(1) \# 2$	$96.97(5)$
$\mathrm{Cl}(3) \# 2-\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$84.68(6)$		

Symmetry code: \#1: $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$.

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 2

$\operatorname{Bi}(1)-\mathrm{Cl}(2)$	$2.512(4)$	$\operatorname{Bi}(1)-\mathrm{Cl}(3)$	$2.739(3)$
$\mathrm{Bi}(1)-\mathrm{Cl}(4)$	$2.521(4)$	$\operatorname{Bi}(1)-\mathrm{Cl}(1)$	$2.957(4)$
$\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$2.714(3)$	$\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$2.961(4)$
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(4)$	$93.44(17)$	$\mathrm{Cl}(1) \# 1-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$82.70(11)$
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$93.19(14)$	$\mathrm{Cl}(3)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$92.54(12)$
$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(1) \# 1$	$90.86(14)$	$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$168.92(13)$
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	$90.15(14)$	$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$93.69(15)$
$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	$93.84(14)$	$\mathrm{Cl}(1) \# 1-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$95.17(12)$
$\mathrm{Cl}(1) \# 1-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	$174.06(13)$	$\mathrm{Cl}(3)-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$80.93(11)$
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$87.65(15)$	$\mathrm{Cl}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(3) \# 2$	$86.21(13)$
$\mathrm{Cl}(4)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$173.53(12)$		

Symmetry code: \#1: -x+2, $-\mathrm{y}+1,-\mathrm{z}$.

Table S3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 3

$\operatorname{Bi}(00)-\mathrm{Cl}(00)$	$2.687(2)$	$\mathrm{Bi}(00)-\mathrm{Cl}(2)$	$2.517(3)$
$\mathrm{Bi}(00)-\mathrm{Cl}(00) \# 1$	$2.983(3)$	$\mathrm{Bi}(00)-\mathrm{Cl}(3)$	$2.518(3)$
$\mathrm{Bi}(00)-\mathrm{Cl}(1) \# 2$	$2.951(3)$	$\mathrm{Cl}(00)-\mathrm{Bi}(00) \# 1$	$2.983(3)$
$\mathrm{Bi}(00)-\mathrm{Cl}(1)$	$2.753(3)$	$\mathrm{Cl}(1)-\mathrm{Bi}(00) \# 2$	$2.951(3)$
$\mathrm{Cl}(00)-\mathrm{Bi}(00)-\mathrm{Cl}(00) \# 1$	$84.27(9)$	$\mathrm{Cl}(2)-\mathrm{Bi}(00)-\mathrm{Cl}(1) \# 2$	$92.89(9)$
$\mathrm{Cl}(00)-\mathrm{Bi}(00)-\mathrm{Cl}(1) \# 2$	$93.75(8)$	$\mathrm{Cl}(2)-\mathrm{Bi}(00)-\mathrm{Cl}(3)$	$93.24(12)$
$\mathrm{Cl}(00)-\mathrm{Bi}(00)-\mathrm{Cl}(1)$	$175.66(8)$	$\mathrm{Cl}(3)-\mathrm{Bi}(00)-\mathrm{Cl}(00) \# 1$	$86.49(11)$
$\mathrm{Cl}(1)-\mathrm{Bi}(00)-\mathrm{Cl}(00) \# 1$	$93.07(8)$	$\mathrm{Cl}(3)-\mathrm{Bi}(00)-\mathrm{Cl}(00)$	$93.02(10)$
$\mathrm{Cl}(1) \# 2-\mathrm{Bi}(00)-\mathrm{Cl}(00) \# 1$	$88.10(8)$	$\mathrm{Cl}(3)-\mathrm{Bi}(00)-\mathrm{Cl}(1)$	$90.23(10)$
$\mathrm{Cl}(1)-\mathrm{Bi}(00)-\mathrm{Cl}(1) \# 2$	$82.72(8)$	$\mathrm{Cl}(3)-\mathrm{Bi}(00)-\mathrm{Cl}(1) \# 2$	$170.87(10)$
$\mathrm{Cl}(2)-\mathrm{Bi}(00)-\mathrm{Cl}(00)$	$89.90(10)$	$\mathrm{Bi}(00)-\mathrm{Cl}(00)-\mathrm{Bi}(00) \# 1$	$95.72(9)$
$\mathrm{Cl}(2)-\mathrm{Bi}(00)-\mathrm{Cl}(00) \# 1$	$174.14(8)$	$\mathrm{Bi}(00)-\mathrm{Cl}(1)-\mathrm{Bi}(00) \# 2$	$97.28(8)$
$\mathrm{Cl}(2)-\mathrm{Bi}(00)-\mathrm{Cl}(1)$	$92.79(10)$		

Symmetry code: \#1: -x+1, $-\mathrm{y},-\mathrm{z}+2$.

Table S4. Details of selected hydrogen bond in $\mathbf{1}$

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$d(\mathrm{D}-\mathrm{H})(\AA)$	$d(\mathrm{H} \cdots \mathrm{A})(\AA)$	$d(\mathrm{D} \cdots \mathrm{A})(\AA)$	$\angle(\mathrm{DHA})(\mathrm{deg})$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl} 3$	0.93	2.923	3.790	155
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 4$	0.93	2.887	3.559	130
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{Cl4}$	0.93	3.146	3.409	102
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A} \cdots \mathrm{Cl4}$	0.93	2.933	3.564	126
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A} \cdots \mathrm{Cl} 2$	0.93	2.926	3.784	154
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Cl4}$	0.93	2.923	3.574	125

Table S5. Details of selected hydrogen bond in 2

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$d(\mathrm{D}-\mathrm{H})(\AA)$	$d(\mathrm{H} \cdots \mathrm{A})(\AA)$	$d(\mathrm{D} \cdots \mathrm{A})(\AA)$	$\angle(\mathrm{DHA})(\mathrm{deg})$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	0.93	2.822	3.522	132
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1$	0.93	3.006	3.430	109
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Cl} 3$	0.93	2.861	3.774	167

Table S6. Details of selected hydrogen bond in $\mathbf{3}$

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$d(\mathrm{D}-\mathrm{H})(\AA)$	$d(\mathrm{H} \cdots \mathrm{A})(\AA)$	$d(\mathrm{D} \cdots \mathrm{A})(\AA)$	$\angle(\mathrm{DHA})(\mathrm{deg})$
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cl} 3$	0.94	2.80	$3.1811(3)$	105
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Cl} 1$	0.95	2.76	$3.6827(3)$	164

