Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Iron Complexes Supported by Pyrazolyl-Substituted Cyclopentadienyl Ligands

Pokpong Rungthanaphatsophon,^a Nigam P. Rath,^b and Jamie M. Neely^a

^aDepartment of Chemistry, Saint Louis University, Saint Louis, Missouri, 63103, United States

^bDepartment of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, Missouri, 63121, United States

Supporting Information

Table of Contents

General Considerations	S 1
Ligand Synthesis	S3
Preparation of Iron Complexes	S5
NMR Spectra	S9
Crystallographic Data	S39
References	S41

General Considerations

All air- and moisture-sensitive compounds were manipulated under an inert atmosphere either inside an M. Braun glovebox (nitrogen) or on a Schlenk line (argon).¹ All solvents, with the exception of tetrahydrofuran, were dried over activated molecular sieves in a solvent purification system from LC Technology Solutions Inc. Tetrahydrofuran was distilled from benzophenone ketyl radical prior to use. Potassium tert-butoxide (KO'Bu, Oakwood Chemical), silver trifluoromethanesulfonate (AgOTf, Oakwood Chemical), benzylbromide (MilliporeSigma), and iron(II) chloride (FeCl₂, Oakwood Chemical) were purchased and used as received. Sodium azide (NaN₃) was purchased from Oakwood Chemical and used as received. *Warning: sodium azide is* extremely toxic and has the potential to form explosive compounds when exposed to organic electrophiles or heavy metals. Use caution when handling this reagent. Butyl lithium ("BuLi, 1.6M in hexanes) was purchased from MilliporeSigma and used as received. Warning: butyl lithium reacts violently with water and other protic species. Handling and quenching of this reagent should be done with extreme care. Column chromatography was performed on silica gel (60 Å, from MilliporeSigma. Benzyl potassium,² MebPzCpLi(THF),³ 230-400 mesh) 6.6'diphenylfulvene,⁴ 3,5-diisopropyl-1H-pyrazole,⁵ sodium 3,5-diisopropylpyrazole,⁶ bis(3,5diisopropylpyrazolyl)methane,⁷ and 5-methyl-3-(trifluoromethyl)pyrazole⁸ were synthesized according to literature procedures.

Benzene- d_6 was obtained from Cambridge Isotope Laboratories, dried over molecular sieves, and degassed prior to use. Chloroform-d was purchased from Cambridge Isotope Laboratories and used as received. ¹H and ¹³C NMR data were recorded using either a Bruker 400 MHz Avance III or a 700 MHz Avance II HDTM spectrometer. ¹⁹F and ⁷Li NMR data were obtained using a Bruker 400 MHz Avance III spectrometer. ¹H and ¹³C NMR shifts are reported in parts per million (ppm) referenced internally to the residual solvent peaks at δ 7.16 ppm for C₆D₅H and δ 7.26 ppm for CHCl₃. All ¹⁹F NMR shifts are reported in ppm, referenced externally to monofluorobezene (C₆H₅F) at δ -113.15 ppm. All ⁷Li NMR shifts are reported in ppm, referenced externally to LiCl in D₂O at δ 0 ppm. NMR multiplicities are reported as s (singlet), d (doublet), t (triplet), sep (septet), and m (multiplet). Infrared spectra were recorded on a Shimadzu FTIR-8400S spectrometer using samples prepared in the glovebox as KBr pellets. Elemental analyses were performed by Midwest Microlab (Indianapolis, IN).

Crystals of compounds **2a**, **2b**, **3**, **4**, **5**, **6**, **10**, and **11** of appropriate dimension were obtained by slow diffusion of pentane into saturated tetrahydrofuran (THF) or diethyl ether solution at -35 °C or by slow evaporation from saturated diethyl ether or toluene solution at -35 °C. The crystals were coated with polyisobutylene oil in a drybox and mounted on MiTeGen cryoloops in random orientations for data collection. Preliminary examination and data collection were performed using a Bruker Venture Duo Photon-II single crystal X-ray diffractometer equipped with an Oxford Cryostream LT device. Data sets were collected using an Incoatec IµS micro-focus source (Cu or Mo) with multi-layer mirror optics. Preliminary unit cell constants were determined from a set of 180 degree fast φ scan frames (typically, 1 second exposure, 1° scan). Intensity data collections consist of combinations of ω and φ scan frames with typical scan width of 0.5° and counting time of 1 to 10 seconds/frame at a crystal to detector distance of 3.7 cm. The collected frames were integrated using an orientation matrix determined from the narrow frame scans. Apex II and SAINT software packages⁹ were used for data collection and data integration. Analysis of the integrated data did not show any decay. Final cell constants were determined by global refinement of reflections harvested from the complete data set. Collected data were corrected for systematic errors using SADABS⁹ based on the Laue symmetry using equivalent reflections. Crystal data and intensity data collection parameters are listed in Table S1.

Structure solution and refinement were carried out using the SHELXTL-PLUS software package.¹⁰ The structure of **2a** was solved and refined in the monoclinic space group $P2_1/c$. Complex 2a crystallizes with a molecule of THF disordered over two sites (75:25%). Disorder in one of the phenyl rings of the ligand was resolved with two orientations with refined occupancies of 52:48%. The disordered atoms were refined with restraints (SADI/SIMU). The structure of 2b was refined in the space group $P2_1/n$. A molecule of diethyl ether was found in the lattice. Compound 3 crystallizes in the orthorhombic space group Pbca with a molecule of diethyl ether. The solvent is disordered and could not be modeled. Platon/Squeeze was used to remove the solvent contribution. Compound 4 and 5 crystallize in the space group $P2_1/n$. Compound 4 contains a molecule of THF in the lattice. The benzyl ligand and a pyrazolyl isopropyl group are disordered, and this disorder was modeled with partial occupancy atoms and refined with geometrical and displacement parameter restraints (SADI, RIGU, SIMU and ISOR). Compound 5 crystallizes with a molecule of diethyl ether. Disorder in the solvent and CF₃ substituent were modeled using geometrical and displacement parameter restraints (SADI and SIMU). Compound 6 was refined in the monoclinic space group $P2_1/c$. The terminal nitrogen of the azide ligand is disordered and was refined over two positions (68:32%). The disordered atoms were refined with geometrical restraints and displacement parameter constraints. Compounds 10 and 11 crystallize in the triclinic space group P-1. Compound **10** contains a coordinated THF molecule that is disordered over two orientations (68:28%). A partial occupancy water (partial occupancy refines to 0.21) overlaps the position of the THF molecule. The THF and water were refined as PART (1 and 2) and the water was refined as PART 3. Compound 11 crystallizes with a molecule of disordered diethyl ether which sits on a symmetry element. The solvent contribution was removed with Platon/Squeeze. Two isopropyl groups are disordered, and the disorder was resolved with partial occupancies refined to 64:36% and 82:18% and refined with SADI/SIMU restraints.

Tables of calculated and observed structure factors are available in electronic format. Picture representations of molecular structures were rendered using Olex2 software.¹⁰

Ligand Synthesis

Synthesis of ^{iPr}bPzCpLi(THF) (1b). ^{iPr}bPzCpLi(THF) was prepared following a modified procedure.³ 100 Schlenk bis(3,5literature А mL flask was charged with diisopropylpyrazolyl)methane (300 mg, 0.95 mmol), pentane (20 ml), diethyl ether (10 ml), and a stir bar in the glovebox. The flask was brought out of the glovebox, connected to the Schlenk line, and cooled to -78 °C using a dry ice/acetone bath. To this solution. "BuLi (1.6M in hexanes, 0.6 ml, 0.96 mmol) was added via syringe. The resulting cloudy mixture was stirred at -78 °C for 1 hour and then warmed to 0 °C. 6,6'-Diphenylfulvene (218 mg, 0.95 mmol) in diethyl ether (5 ml) was added via syringe at 0 °C. The mixture was stirred at 0 °C for an additional hour and then the solvent was removed *in vacuo*. The flask was returned to the glovebox and the resulting dark green solid was dissolved in THF, layered with pentane, and placed in the freezer (-35 °C) overnight. The liquid was decanted and the solid residue was washed with pentane (3 x 5 ml) and dried in vacuo to yield ^{iPr}bPzCpLi(THF) as colorless crystals (343 mg, 58%). ¹H NMR (400 MHz, C₆D₆, 296.8 K): § 7.63-7.60 (m, 5H, o-Ph and -CH), 7.04-6.99 (m, 4H, m-Ph), 6.94-6.90 (m, 2H, p-Ph), 6.56-6.55 (m, 2H, Cp), 5.80-5.79 (m, 2H, Cp), 5.70 (s, 2H, Pz), 3.59-3.55 (m, THF), 2.77 (sep, 2H, $CH(CH_3)_2$, ${}^{3}J_{H-H} = 6.73$ Hz), 2.62 (sep, 2H, $CH(CH_3)_2$, ${}^{3}J_{H-H} = 6.78$ Hz), 1.43-1.40 (m, THF). 1.12 (d, 6H, CH(CH₃)₂, ${}^{3}J_{H-H} = 6.86$ Hz), 1.10 (d, 6H, CH(CH₃)₂, ${}^{3}J_{H-H} = 6.94$ Hz), 0.88 (d, 6H, CH(CH₃)₂, ${}^{3}J_{H-H} = 6.86$ Hz), 0.85 (d, 6H, CH(CH₃)₂, ${}^{3}J_{H-H} = 6.72$ Hz). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 297.1 K): δ 157.2, 151.8, 148.9, 131.1, 127.7, 126.1, 114.5, 109.5, 102.7, 99.6, 73.8, 67.8, 64.0, 28.0, 26.4, 25.8, 24.3, 23.5, 22.5, 22.4. ⁷Li{¹H} NMR (C₆D₆, 296.9 K): δ -5.84. IR (KBr, cm⁻¹): 3061 (w), 2964 (m), 2870 (w), 1595 (w), 1549 (vs), 1491 (w), 1456 (m), 1385 (m), 1323 (w), 1281 (w), 1233 (w), 1179 (m), 1103 (w), 1070 (s), 1003 (m), 928 (w), 901 (w), 822 (w), 797 (s), 760 (w), 719 (vs). Anal. Calcd for C₄₁H₅₃LiN₄O: C, 78.81; H, 8.55; N, 8.97. Found: C, 78.54; H, 8.73; N, 9.04.

Synthesis of bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (7). A stirring mixture of 5-methyl-3-(trifluoromethyl)pyrazole (2.44 g, 16.3 mmol), sodium hydroxide (4.88 g, 122 mmol), dichloromethane (20.8 ml, 325 mmol), water (5 ml), and tetrabutylammonium bisulfate (1.10 g,

3.24 mmol) was heated to reflux overnight. The mixture was cooled to room temperature and water (50 ml) was added. The resulting solution was transferred into a separatory funnel and extracted with diethyl ether (3 x 50 ml). The combined organic phase was dried over magnesium sulfate, filtered, and the solvent was removed *in vacuo*. The resulting residue was purified by column chromatography (8:2 hexanes/ethyl acetate) to yield bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane as a white powder (673 mg, 27%). ¹H NMR (400 MHz, C₆D₆, 298.0 K): δ 5.70 (s, 2H, Pz), 5.14 (s, 2H, *CH*₂), 1.83 (s, 6H, *CH*₃).¹³C{¹H} NMR (C₆D₆, 298.1 K): δ 141.9, 105.1, 60.6, 10.6. The *C*F₃ and *C*-CF₃ signals could not be located. ¹⁹F{¹H} (C₆D₆, 298.1 K): δ -62.1.

Synthesis of ^{Me,CF3}**bPzCpLi(THF) (8).** ^(Me,CF3)**b**PzCpLi(THF) was prepared in a manner similar to ^{iPr}**b**PzCpLi(THF) using bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (231 mg, 0.74 mmol), 1.6 M ⁿBuLi (0.46 ml, 0.74 mmol), and 6,6'-diphenylfulvene (170 mg, 1.07 mmol). The product was recrystallized from THF layered with pentane to yield ^(Me,CF3)**b**PzCpLi(THF) as a light yellow crystalline powder (200 mg, 44%). ¹H NMR (400 MHz, C₆D₆, 298.1 K): δ 7.45-7.43 (m, 4H, *o*-Ph), 7.13 (s, 1H, -C*H*), 6.97-6.94 (m, 4H, *m*-Ph), 6.90-6.87 (m, 2H, *p*-Ph), 6.53-6.51 (m, 2H, Cp), 5.80-5.79 (m, 2H, Cp), 5.63 (s, 2H, Pz), 3.58-3.55 (m, THF), 1.43-1.40 (m, THF), 1.32 (s, 6H, C*H*₃). ¹³C{¹H} NMR (C₆D₆, 298.1 K): δ 147.9, 142.2, 130.5, 127.8, 126.4, 113.1, 104.8, 103.4, 75.3, 67.9, 63.0, 25.6, 10.9. The *C*F₃, *C*-CF₃, and *ipso*-Cp signals could not be located. ⁷Li{¹H} NMR (C₆D₆, 298.1 K): δ -6.38. ¹⁹F{¹H} NMR (C₆D₆, 298.1 K): δ -62.2. IR (KBr, cm⁻¹): 3063 (w), 2976 (w), 2876 (w), 1491 (s), 1468 (w), 1443 (w), 1381 (w), 1319 (w), 1231 (vs), 1179 (vs), 1134 (vs), 1042 (w), 995 (w), 972 (w), 937 (w), 901 (w), 804 (w), 745 (w), 721 (m), 642 (w), 610 (w). Despite multiple attempts, satisfactory elemental analysis could not be obtained for this compound.

Synthesis of 1-benzyl-3,5-diisopropylpyrazole (9). To a stirring solution of sodium 3,5diisopropylpyrazole (330 mg, 1.89 mmol) in THF (20 ml), benzyl bromide (0.25 ml, 2.10 mmol) was added via syringe at room temperature. The resulting solution was heated to reflux overnight. After removal of the solvent *in vacuo*, the residue was purified by column chromatography (9:1 hexanes/ethyl acetate) to yield 1-benzyl-3,5-diisopropylpyrazole as a yellow oil (372 mg, 73%). ¹H NMR (400 MHz, C₆D₆, 295.5 K): δ 7.07-6.96 (m, 5H, *o*-Ph, *m*-Ph, and *p*-Ph), 5.94 (s, 1H, Pz), 5.02 (s, 2H, -CH₂-), 3.15 (sep, 1H, CH(CH₃)₂, ³J_{H-H} = 6.96 Hz), 2.53 (sep, 1H, CH(CH₃)₂, ³J_{H-H} = 6.80 Hz), 1.41 (d, 6H, CH(CH₃)₂, ³J_{H-H} = 6.92 Hz), 0.95 (d, 6H, CH(CH₃)₂, ³J_{H-H} = 6.80 Hz). ¹³C {¹H} NMR (C₆D₆, 295.9 K): δ 158.0, 149.6, 138.9, 128.7, 127.4, 126.9, 99.0, 52.7, 28.6, 25.7, 23.2, 23.0.

Synthesis of ^{iPr}PzPhCpLi(THF)_x (10). A 100 mL Schlenk flask was charged with 1-benzyl-3,5diisopropylpyrazole (259 mg, 1.07 mmol), pentane (20 ml), diethyl ether (10 ml), and a stir bar in the glovebox. The flask was brought out of the glovebox, connected to the Schlenk line, and cooled to -78 °C using a dry ice/acetone bath. To this solution, ⁿBuLi (1.6M in hexanes, 0.65 ml, 1.04 mmol) was added via syringe. The resulting cloudy mixture was stirred at -78 °C for 1 hour and then warmed to 0 °C. 6,6'-Diphenylfulvene (246 mg, 1.07 mmol) in diethyl ether (5 ml) was added via syringe at 0 °C. The mixture was stirred at 0 °C for an additional hour and then the solvent was removed *in vacuo*. The flask was returned to the glovebox and the resulting yellow solid was dissolved in THF and transferred into a scintillation vial. The solvent was removed *in vacuo*. The resulting orange solid was dissolved in diethyl ether, layered with pentane, and placed in the freezer (-35 °C) overnight. The liquid was decanted and the solid residue was washed with pentane (3 x 5 ml) and dried *in vacuo* to yield ^{iPr}PzPhCpLi(THF)_x as colorless crystals (458 mg, 80%). The degree of THF association to the product varies depending on the time of solvent removal in vacuo. X-ray quality crystals were obtained from toluene solution at -35 °C. ¹H NMR (700 MHz, C₆D₆, 298.0 K): δ 7.99 (br s, 2H, Ph-H, $v_{1/2}$ = 13.0 Hz), 7.16-7.13 (m, 2H, Ph-H), 7.08-7.06 (m, 1H, Ph-H), 7.04-7.02 (m, 2H, Ph-H), 7.01-6.98 (m, 1H, Ph-H), 6.94-6.92 (m, 1H, Ph-H), 6.91-6.88 (m, 2H, Ph-H), 6.86-6.84 (m, 2H, Ph-H), 6.74 (s, 1H, -CH-Ph), 6.65-6.63 (m, 2H, Ph-H), 6.42-6.41 (m, 1H, Cp), 6.31-6.30 (m, 1H, Cp), 5.88 (s, 1H, Pz), 5.83-5.81 (m, 1H, Cp), 5.59-5.58 (m, 1H, Cp), 3.48-3.47 (m, THF), 2.83 (sep, 1H, CH(CH₃)₂, ${}^{3}J_{H-H} = 6.86$ Hz), 2.45 (sep, 1H, CH(CH₃)₂, ${}^{3}J_{\text{H-H}} = 6.93 \text{ Hz}$, 1.36-1.34 (m, THF), 1.14 (d, 3H, CH(CH₃)₂, ${}^{3}J_{\text{H-H}} = 6.81 \text{ Hz}$), 0.96 (d, 3H, $CH(CH_3)_2$, ${}^{3}J_{H-H} = 6.93 Hz$, 0.93 (d, 3H, $CH(CH_3)_2$, ${}^{3}J_{H-H} = 6.93 Hz$), 0.67 (d, 3H, $CH(CH_3)_2$, 0.67 (d, 3H, $CH(CH_3)_2$), 0.67 (d, 3H, CH(CH_3)_2), 0 _H = 6.84 Hz). ¹³C{¹H} NMR (C₆D₆, 298.0 K): δ 158.4, 153.2, 150.4, 150.3, 141.4, 132.5, 130.8, 129.7, 127.2, 127.1, 127.1, 126.5, 125.8, 118.7, 110.1, 108.2, 105.3, 102.3, 99.8, 69.1, 68.0, 61.4, 27.6, 26.3, 25.6, 23.3, 22.6, 21.8. ⁷Li{¹H} NMR (C₆D₆, 295.7 K): δ -7.12. IR (KBr, cm⁻¹): 3057 (w), 2965 (m), 2930 (w), 2872 (w), 1545 (m), 1493 (m), 1458 (w), 1319 (w), 1294 (w), 1240 (w), 1182 (w), 1067 (w), 1042 (w), 1005 (w), 903 (m), 874 (w), 816 (w), 793 (w), 748 (m), 708 (vs), 650 (w). Anal. Calcd for C₃₄H₃₅LiN₂·(C₄H₈O)_{1.65}: C, 81.60; H, 8.13; N, 4.69. Found: C, 81.32; H, 8.35; N. 4.96.

Preparation of Iron Complexes

Synthesis of ^{Me}**bPzCpFeCl (2a).** To a 20 ml scintillation vial charged with FeCl₂ (25 mg, 0.20 mmol) and a stir bar, ^{Me}bPzCpLi(THF) (100 mg, 0.20 mmol) in THF (5 ml) was added at room temperature. The resulting mixture was stirred at room temperature overnight to give a slightly darker solution. The solvent was removed *in vacuo*. The resulting solid residue was extracted with toluene (3 x 3 ml) and filtered through Celite. The solvent was removed *in vacuo* to yield ^{Me}bPzCpFeCl as an off-white solid (50 mg, 47%). X-ray quality crystals were obtained from THF solution layered with pentane at -35 °C. ¹H NMR (400 MHz, C₆D₆, 295.5 K): δ 54.0 (s, 2H), 7.97 (s, 2H), 5.97 (s, 4H), 4.93 (s, 4H), 1.94 (s, 6H), -3.05 (s, 6H), -28.2 (s, 1H), -115 (bs, *v*_{1/2} = 1721 Hz), -160 (bs, *v*_{1/2} = 1608 Hz). µ_{eff} (Evans method, C₆D₆, 298.0 K) = 4.5 µ_B. IR (KBr, cm⁻¹): 3098 (w), 3057 (w), 3028 (w), 2957 (w), 2922 (w), 1558 (w), 1489 (w), 1454 (w), 1418 (w), 1387 (m), 1323 (s), 1238 (w), 1040 (s), 984 (w), 941 (w), 835 (m), 797 (m), 760 (vs), 719 (s), 700 (s), 625 (s). Anal. Calcd for C₂₉H₂₉ClFeN₄: C, 66.36; H, 5.57; N, 10.67. Found: C, 65.13; H, 5.68; N, 10.50.

Synthesis of ^{iPr}**bPzCpFeCl (2b).** ^{iPr}**b**PzCpFeCl was prepared in a manner similar to ^{Me}bPzCpFeCl using ^{iPr}**b**PzCpLi(THF) (120 mg, 0.19 mmol), FeCl₂ (24 mg, 0.19 mmol), and THF (5ml). After extraction with toluene (3 x 1 ml) and solvent removal, the product was isolated as a white powder (72 mg, 57%). X-ray quality crystals were obtained from diethyl ether solution layered with pentane at -35 °C. ¹H NMR (400 MHz, C₆D₆, 295.5 K): δ 55.1 (s, 2H), 7.93 (s, 2H), 6.08 (s, 4H), 3.80-2.47 (m, 18H), -0.96 (s, 6H), -2.27 (s, 2H), -15.2 (s, 6H), -29.2 (s, 1H), -129 (bs, *v*_{1/2} = 3696 Hz), -160 (bs, *v*_{1/2} = 3865 Hz). µ_{eff} (Evans method, C₆D₆, 295.1 K) = 5.1 µ_B. IR (KBr, cm⁻¹): 3094 (w), 2967 (vs), 2930 (m), 2870 (m), 1551 (m), 1491 (m), 1466 (vs), 1391 (vs), 1317 (w), 1298 (m), 1204 (w), 1180 (s), 1159 (w), 1105 (w), 1059 (vs), 1018 (w), 878 (m), 853 (w), 824 (m), 802 (s), 756 (vs), 725 (m), 704 (s), 654 (w). Anal. Calcd for C₃₇H₄₅ClFeN₄: C, 69.76; H, 7.12; N, 8.79. Found: C, 69.65; H, 7.09; N, 8.87.

Synthesis of ^{iPr}**bPzCpFeO'Bu (3).** To a 20 ml scintillation vial charged with ^{iPr}bPzCpFeCl (75 mg, 0.12 mmol) and a stir bar, KO'Bu (13 mg, 0.12 mmol) in THF (5 ml) was added at room temperature. The resulting mixture was stirred at room temperature overnight to yield a yellow solution. The solvent was removed *in vacuo*. The resulting solid residue was extracted with toluene (3 x 1 ml) and filtered through Celite. The solvent was removed *in vacuo* to yield ^{iPr}bPzCpFeO'Bu as a yellow powder (67 mg, 86%). X-ray quality crystals were obtained from diethyl ether solution at -35 °C. ¹H NMR (400 MHz, C₆D₆, 297.9 K): δ 48.6 (s, 2H), 8.92 (s, 2H), 7.72 (s, 4H), 5.45 (s, 4H), 3.56 (s, 2H), 1.71 (s, 6H), 1.42 (s, 1H), 0.49 (s, 6H), -0.51–-1.04 (m, 7H), -10.8–-11.96 (m, 7H), -137.4–-143.0 (m). One signal could not be located. μ_{eff} (Evans method, C₆D₆, 298.0 K): 4.8 μ_{B} . IR (KBr, cm⁻¹): 3102 (w), 2965 (m), 2930 (w), 2870 (w), 1703 (w), 1670 (w), 1655 (w), 1639 (w), 1632 (w), 1602 (w), 1547 (m), 1526 (w), 1493 (w), 1472 (w), 1460 (w), 1443 (w), 1385 (m), 1323 (w), 1300 (w), 1198 (s), 1155 (s), 1113 (vs), 995 (m), 905 (w), 876 (w), 824 (w), 800 (m), 760 (w), 746 (m), 723 (m), 704 (m), 677 (w), 623 (m), 596 (m). Anal. Calcd for C₄₁H₅₄FeN₄O: C, 72.98; H, 8.07; N, 8.30. Found: C, 71.25; H, 8.55; N, 7.96.

Synthesis of ^{iPr}bPzCpFeBn (4). ^{iPr}bPzCpFeBn was prepared in manner similar to ^{iPr}bPzCpFeO^tBu using ^{iPr}bPzCpFeCl (56 mg, 0.09 mmol), benzyl potassium (12 mg, 0.09 mmol), and THF (5 ml). After extraction with toluene (3 x 1 ml) and removal of solvent, the product was isolated as a yellow solid (50 mg, 82%). X-ray quality crystals were obtained from THF solution layered with pentane at -35 °C. ¹H NMR (400 MHz, C₆D₆, 297.9 K): δ 48.3 (s, 2H), 21.7 (s, 2H), 7.78 (s, 2H), 6.42 (s, 4H), 4.5-2.74 (m, 18H), -0.28 (s, 2H), -0.43 (s, 6H), -15.1 (s, 6H), -20.2 (s, 1H), -34.3 (s, 2H), -34.3 (s

2H), -42.4 (s, 1H), -134 – -139 (m). One signal could not be located. μ_{eff} (Evans method, C₆D₆, 298.1 K): 5.1 μ_B . IR (KBr, cm⁻¹): 3059 (w), 2967 (s), 2928 (m), 2868 (m), 1589 (m), 1547 (m), 1466 (m), 1387 (m), 1300 (m), 1207 (m), 1179 (m), 1058 (s), 959 (m), 902 (w), 876 (w), 800 (m), 752 (m), 721 (w), 700 (m), 625 (w). Despite multiple attempts, satisfactory elemental analysis could not be obtained for this compound.

Synthesis of ^{iPr}**bPzCpFeOTf (5).** To 20 ml scintillation vial charged with ^{iPr}bPzCpFeCl (65 mg, 0.1 mmol) and a stir bar and wrapped in aluminum foil, AgOTf (26 mg, 0.1 mmol) in THF (5 ml) was added at room temperature. The resulting mixture was stirred at room temperature overnight to yield a yellow solution with a gray precipitate. The solvent was removed *in vacuo*. The resulting solid residue was extracted with toluene (3 x 1 ml) and filtered through Celite. The solvent was removed *in vacuo* to yield ^{iPr}bPzCpFeOTf as a yellow powder (72 mg, 94%). X-ray quality crystals were obtained from THF solution layered with pentane at -35 °C. ¹H NMR (400 MHz, C₆D₆, 297.9 K): δ 58.8 (s, 2H), 7.79 (s, 2H), 7.03 (s, 4H), 5.70 (s, 4H), 1.88 (s, 6H), -1.45 (s, 6H), -3.50 (s, 2H), -15.1 (s, 6H), -43.2 (s, 1H). Multiple signals could not be located. μ_{eff} (Evans method, C₆D₆, 298.6 K): 4.8 μ_{B} . ¹⁹F NMR (C₆D₆, 294.6 K): δ -14.10. IR (KBr, cm⁻¹): 2967 (m), 2932 (w), 2870 (w), 1641 (m), 1549 (m), 1391 (m), 1331 (m), 1292 (w), 1258 (w), 1234 (m), 1204 (s), 1177 (m), 1059 (m), 1014 (s), 930 (w), 878 (w), 802 (m), 762 (m), 704 (m), 635 (s), 584 (w). Anal. Calcd for C₃₈H₄₅F₃FeN₄O₃S: C, 60.80; H, 6.04; N, 7.46. Found: C, 60.49; H, 6.39; N, 7.44.

Synthesis of ^{iPr}**bPzCpFeN₃ (6).** To a 20 ml scintillation vial charged with ^{iPr}**b**PzCpFeOTf (30 mg, 0.04 mmol) and a stir bar, NaN₃ (3.0 mg, 0.05 mmol) in THF (2 ml) was added at room temperature. The resulting mixture was stirred at room temperature overnight to yield an orange solution. The solvent was removed *in vacuo*. The resulting solid residue was extracted with toluene (3 x 1 ml) and filtered through Celite. The solvent was removed *in vacuo* to yield ^{iPr}bPzCpFeN₃ as a yellow powder (25 mg, 97%). X-ray quality crystals were obtained from THF solution layered with pentane at -35 °C. ¹H NMR (400 MHz, C₆D₆, 297.9 K): δ 56.5 (s, 2H), 8.01 (s, 2H), 6.24 (s, 4H), 5.02-2.90 (m, 11 H), 2.46 (s, 6H), -0.71 (s, 6H), -1.77 (s, 2H), -13.7 (s, 6H), -29.4 (s, 1H), -127.9 (bs, $v_{1/2}$ = 2229 Hz), -159.1 (bs, $v_{1/2}$ = 2313 Hz). μ_{eff} (Evans method, C₆D₆, 298.0 K): 5.2 μ_{B} . IR (KBr, cm⁻¹): 3059 (w), 2970 (m), 2930 (m), 2870 (m), 2062 (vs), 1549 (m), 1491 (w), 1466 (m), 1387(m), 1300 (m), 1182 (w), 1061 (m), 804 (w), 758 (m), 706 (m), 627 (w), 519 (w). Anal. Calcd for C₃₇H₄₅FeN₇: C, 69.04; H, 7.05; N, 15.23. Found: C, 68.87; H, 7.21; N, 14.83.

Synthesis of (^{iPr}PzPhCp)₂Fe (11). To a 20 ml scintillation vial charged with FeCl₂ (20 mg, 0.16 mmol) and a stir bar, ^{iPr}PzPhCpLi(THF) (173 mg, 0.31 mmol) in THF (5 ml) was added at room temperature. The resulting mixture was stirred at room temperature overnight to give an orange solution. The solvent was removed in vacuo. The resulting solid residue was extracted with toluene (3 x 1 ml) and filtered through Celite. The solvent was removed *in vacuo* to yield (^{iPr}PzPhCp)₂Fe as a yellow powder (100 mg, 64%, 84:16 mixture of diastereomers). X-ray quality crystals were obtained from diethyl ether solution at -35 °C. ¹H NMR (400 MHz, C₆D₆, 297.9 K): δ 7.77-7.73 (m, 4H, Ph), 7.67-7.62 (m, 4H, Ph), 7.40-7.34 (m, 4H, Ph), 7.14-7.06 (m, 12H, Ph), 6.96-6.90 (m, 6H, Ph), 6.36 (s, 2H, -CH-Ph), 5.67 (s, 2H, Pz), 3.93-3.53 (m, 4H, Cp), 2.93 (sep, 2H, $CH(CH_3)_{2,3}J_{H-H} = 6.64$ Hz), 2.60 (sep, 2H, $CH(CH_3)_{2,3}J_{H-H} = 6.48$ Hz), 1.33 (d, 6H, $CH(CH_3)_{2,3}$ ${}^{3}J_{\text{H-H}} = 6.84 \text{ Hz}$, 1.30 (d, 6H, CH(CH₃)₂, ${}^{3}J_{\text{H-H}} = 6.88 \text{ Hz}$), 1.00 (d, 6H, CH(CH₃)₂, ${}^{3}J_{\text{H-H}} = 6.56$ Hz), 0.81 (d, 6H, CH(CH₃)₂, ${}^{3}J_{H-H} = 6.80$ Hz). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 298.2 K): δ 156.7, 151.1, 146.2, 139.7, 133.2, 131.9, 131.7, 127.4, 127.2, 126.7, 126.6, 126.5, 126.0, 98.4, 73.6, 71.5, 70.1, 68.4, 60.9, 28.5, 25.9, 23.9, 23.3, 22.8, 22.3. IR (KBr, cm⁻¹): 3055 (w), 2963 (s), 2930 (w), 2868 (m), 1601 (m), 1543 (s), 1493 (s), 1449 (w), 1385 (w), 1292 (m), 1234 (w), 1184 (m), 1069 (m), 1038 (m), 1001 (m), 878 (w), 824 (m), 743 (s), 706 (vs), 617 (w). Anal. Calcd for C₆₈H₇₀FeN₄: C, 81.74; H, 7.06; N, 5.61. Found: C, 81.12; H, 7.32; N, 5.27.

NMR Spectra

Figure S2. ¹³C{¹H} NMR spectrum of ^{iPr}bPzCpLi(THF) (1b) in C₆D₆ at 297 K.

Figure S3. DEPT135 NMR spectrum of ^{iPr}bPzCpLi(THF) (1b) in C₆D₆ at 297 K.

Figure S4. HMQC NMR spectrum of ^{iPr}bPzCpLi(THF) (1b) in C₆D₆ at 297 K.

Figure S5. COSY NMR spectrum of ^{iPr}bPzCpLi(THF) (1b) in C₆D₆ at 297 K.

Figure S6. NOESY NMR spectrum of ^{iPr}bPzCpLi(THF) (1b) in C₆D₆ at 297 K.

Figure S7. HMBC NMR spectrum of ^{iPr}bPzCpLi(THF) (1b) in C₆D₆ at 297 K.

Figure S8. ⁷Li NMR spectrum of ^{iPr}bPzCpLi(THF) (1b) in C₆D₆ at 297 K.

Figure S9. ¹H NMR spectrum of bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (7) in C_6D_6 at 298.0 K.

Figure S10. ¹³C{¹H} NMR spectrum of bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (7) in C₆D₆ at 298.0 K.

Figure S11. DEPT135 NMR spectrum of bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (7) in C₆D₆ at 298.1 K.

Figure S12. HMQC NMR spectrum of bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (7) in C₆D₆ at 298.4 K.

Figure S13. NOESY NMR spectrum of bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (7) in C_6D_6 at 298.1 K.

Figure S14. HMBC NMR spectrum of bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (7) in C_6D_6 at 298.1 K.

Figure S15. ${}^{19}F{}^{1}H$ NMR spectrum of bis(5-methyl-3-(trifluoromethyl)pyrazol-1-yl)methane (7) in C₆D₆ at 298.1 K.

Figure S16. ¹H NMR spectrum of ^{Me,CF3}bPzCpLi(THF) (8) in C₆D₆ at 298.1 K.

Figure S17. ¹³C{¹H} NMR spectrum of ^{Me,CF3}bPzCpLi(THF) (8) in C₆D₆ at 298.1 K.

Figure S18. DEPT135 NMR spectrum of Me,CF3bPzCpLi(THF) (8) in C₆D₆ at 298.1 K.

Figure S19. HMQC NMR spectrum of Me,CF3bPzCpLi(THF) (8) in C₆D₆ at 298.1 K.

Figure S20. COSY NMR spectrum of Me,CF3bPzCpLi(THF) (8) in C₆D₆ at 298.1 K.

Figure S21. NOESY NMR spectrum of Me,CF3bPzCpLi(THF) (8) in C₆D₆ at 298.1 K.

Figure S22. ⁷Li NMR spectrum of ^{Me,CF3}bPzCpLi(THF) (8) in C₆D₆ at 298.1 K.

Figure S23. ¹⁹F NMR spectrum of ^{Me,CF3}bPzCpLi(THF) (8) in C₆D₆ at 298.1 K.

Figure S24. ¹H NMR spectrum of 1-benzyl-3,5-diisopropylpyrazole (9) in C₆D₆ at 295.5 K.

Figure S25. ¹³C{¹H} NMR spectrum of 1-benzyl-3,5-diisopropylpyrazole (9) in C₆D₆ at 295.5 K.

Figure S26. DEPT135 NMR spectrum of 1-benzyl-3,5-diisopropylpyrazole (9) in C_6D_6 at 295.5 K.

Figure S27. HMQC NMR spectrum of 1-benzyl-3,5-diisopropylpyrazole (9) in C₆D₆ at 295.5 K.

Figure S28. COSY NMR spectrum of 1-benzyl-3,5-diisopropylpyrazole (9) in C₆D₆ at 295.5 K.

Figure S29. HMBC NMR spectrum of 1-benzyl-3,5-diisopropylpyrazole (9) in C₆D₆ at 295.5 K.

Figure S31. Zoom of ¹H NMR spectrum of ^{iPr}PzPhCpLi(THF)_x (10) in C₆D₆.

Figure S32. ¹³C{¹H} NMR spectrum of ${}^{iPr}PzPhCpLi(THF)_x$ (10) in C₆D₆ at 298 K.

Figure S33. DEPT 135 NMR spectrum of ^{iPr}PzPhCpLi(THF)_x (10) in C₆D₆ at 298 K.

Figure S34. HMQC NMR spectrum of ^{iPr}PzPhCpLi(THF)_x (10) in C₆D₆ at 298 K.

Figure S35. COSY NMR spectrum of ^{iPr}PzPhCpLi(THF)_x (10) in C₆D₆ at 296.1 K.

Figure S36. NOESY NMR spectrum of ^{iPr}PzPhCpLi(THF)_x (10) in C₆D₆ at 296.1 K.

Figure S37. HMBC NMR spectrum of ${}^{iPr}PzPhCpLi(THF)_x$ (10) in C₆D₆ at 298 K.

Figure S38. ⁷Li NMR spectrum of ${}^{iPr}PzPhCpLi(THF)_x$ (10) in C₆D₆ at 298 K.

Figure S39. ¹H NMR spectrum of ^{Me}bPzCpFeCl (2a) in C₆D₆ at 298.1 K.

Figure S40. Zoom of ¹H NMR spectrum of ^{Me}bPzCpFeCl (2a) in C₆D₆ at 298.1 K.

Figure S41. ¹H NMR spectrum of ^{iPr}bPzCpFeCl (2b) in C₆D₆ at 295.3 K

Figure S42. Zoom of ¹H spectrum of ^{iPr}bPzCpFeCl (2b) in C₆D₆ at 296.1 K.

Figure S43. ¹H NMR spectrum of ^{iPr}bPzCpFeO^tBu (3) in C₆D₆ at 298.1 K.

Figure S44. Zoom of ¹H spectrum of ^{iPr}bPzCpFeO^tBu (3) in C₆D₆ at 298.1 K.

Figure S45. ¹H NMR spectrum of ^{iPr}bPzCpFeBn (4) in C₆D₆ at 298.1 K.

Figure S46. Zoom of ¹H NMR spectrum of ^{iPr}bPzCpFeBn (4) in C₆D₆ at 298.1 K.

Figure S47. ¹H NMR spectrum of ^{iPr}bPzCpFeOTf (5) in C₆D₆ at 298.4 K.

Figure S48. Zoom of ¹H NMR spectrum of ^{iPr}bPzCpFeOTf (5) in C₆D₆ at 298.4 K.

Figure S49. ¹H NMR spectrum of ${}^{iPr}bPzCpFeN_3$ (6) in C₆D₆ at 298.0 K.

Figure S50. Zoom of ¹H NMR spectrum of ^{iPr}bPzCpFeN₃ (6) in C₆D₆ at 298.0 K.

Figure S51. ¹H NMR spectrum of $({}^{iPr}PzPhCp)_2Fe$ (11) in C₆D₆ at 297.9 K.

Figure S52. ¹³C{¹H} NMR spectrum of $({}^{iPr}PzPhCp)_2Fe$ (11) in C₆D₆ at 298.2 K.

Figure S53. DEPT135 NMR spectrum of (^{iPr}PzPhCp)₂Fe (11) in C₆D₆ at 298.2 K.

Figure S54. HMQC NMR spectrum of (^{iPr}PzPhCp)₂Fe (11) in C₆D₆ at 298.2 K.

Figure S55. COSY NMR spectrum of (^{iPr}PzPhCp)₂Fe (11) in C₆D₆ at 298.2 K.

Figure S56. NOESY NMR spectrum of (^{iPr}PzPhCp)₂Fe (11) in C₆D₆ at 298.2 K.

Figure S57. HMBC NMR spectrum of $({}^{iPr}PzPhCp)_2Fe$ (11) in C₆D₆ at 298.2 K.

Crystallographic Data

Complex	10	2a	2b	3
CCDC deposit number	2132880	2132878	2132879	2132883
Empirical formula	C ₃₈ H _{43.25} Li N ₂ O _{1.12}	C ₃₃ H ₃₇ Cl Fe N ₄ O	C ₄₁ H ₅₅ Cl Fe N ₄ O	C ₄₅ H ₆₄ Fe N ₄ O ₂
Formula weight (g/mol)	552.93	596.96	711.19	748.85
Crystal habit, color	Block,	Rod,	Needle,	Rod,
	Colorless	Yellow	Colorless	Yellow
Temperature (K)	100(2)	100(2)	100(2)	100(2)
Space group	P-1	P2 ₁ /c	P2 ₁ /n	Pbca
Crystal system	Triclinic	Monoclinic	Monoclinic	Orthorhombic
Volume (Å3)	1602.03(5)	2909.2(4)	3664.3(7)	8382.0(4)
a (Å)	10.0097(2)	9.3586(8)	9.8833(10)	17.3309(5)
b (Å)	13.3716(2)	19.0408(15)	20.930(2)	20.9805(6)
c (Å)	13.7414(2)	16.5843(14)	18.162(2)	23.0522(7)
α (°)	69.6737(8)	90	90	90
β (°)	77.3700(8)	100.123(4)	102.751(4)	90
γ (°)	69.1267(8)	90	90	90
Z	2	4	4	8
Calculated density (Mg/m3)	1.146	1.363	1.289	1.187
Absorption coefficient (mm-1)	0.068	0.644	0.522	3.187
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0523,	R1 = 0.0515,	R1 = 0.0631,	R1 = 0.0526,
	wR2 = 0.1261	wR2 = 0.1511	wR2 = 0.1732	wR2 = 0.1272

Table S1. X-ray crystallographic data for complexes 2a, 2b, 3, 4, 5, 6, 10, and 11.

Complex	4	5	6	11
CCDC deposit number	2132881	2132885	2132882	2132884
Empirical formula	C ₄₈ H ₆₀ Fe N ₄ O	C ₃₈ H ₄₅ F ₃ Fe N ₄ O ₃ S	C ₃₇ H ₄₅ Fe N ₇	C ₇₂ H ₈₀ Fe N ₄ O
Formula weight (g/mol)	764.85	750.69	643.65	1073.25
Crystal habit, color	Block,	Rod,	Plate,	Plate,
	Yellow	Colorless	Yellow	Yellow
Temperature (K)	157(2)	100(2)	104(2)	100(2)
Space group	$P2_1/c$	P2 ₁ /n	P2 ₁ /c	P-1
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Volume (Å3)	4323.0(11)	7369.5(14)	3341.3(2)	2971.89(13)
a (Å)	11.9677(19)	19.996(2)	17.8020(7)	13.4458(3)
b (Å)	11.7643(17)	15.5867(17)	10.9200(4)	13.7445(3)
c (Å)	30.947(4)	24.582(3)	18.9400(7)	19.3806(5)
α (°)	90	90	90	70.2161(14)
β(°)	97.162(6)	105.866(5)	114.840(2)	80.4435(18)
γ (°)	90	90	90	61.8637(13)
Z	4	8	4	2
Calculated density (Mg/m3)	1.175	1.353	1.280	1.199
Absorption coefficient (mm-1)	0.388	4.289	3.899	2.390
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0635,	R1 = 0.0625,	R1 = 0.0574,	R1 = 0.0460,
	wR2 = 0.1711	wR2 = 0.1514	wR2 = 0.1520	wR2 = 0.1141

References

- 1. D. F. Shriver and M. A. Drezdzon, *The manipulation of air-sensitive compounds*. Wiley: 1986.
- S. Kundu, S. Sinhababu, M. M. Siddiqui, A. V. Luebben, B. Dittrich, T. Yang, G. Frenking, H. W. Roesky, J. Am. Chem. Soc., 2018, 140, 9409–9412.
- 3. A. Otero, J. Fernández-Baeza, A. Antiñolo, J. Tejeda, A. Lara-Sánchez, L. Sánchez-Barba, A. M. Rodríguez, M. A. Maestro, M *J. Am. Chem. Soc.*, 2004, **126**, 1330–1331.
- 4. J. Zhang, Z. Qiu, P.-F. Xu, Z. Xie, ChemPlusChem, 2014, 79, 1044–1052.
- 5. F. Wu, H. Tong, K. Wang, X. Zhang, J. Zhang, W.-K. Wong, X. Zhu, J. Coord. Chem., 2016, 69, 926–933.
- 6. C. Yélamos, M. J. Heeg, C. H. Winter, Inorg. Chem., 1998, 37, 3892-3894.
- M. T. Alonso, O. Juanes, J. de Mendoza, J. C. Rodríguez-Ubis, *J. Organomet. Chem.*, 1994, 484, 19–26.
- 8. O. Obulesu, V. Murugesh, B. Harish, S. Suresh, J. Org. Chem., 2018, 83, 6454-6465.
- 9. Bruker Analytical X-Ray, Madison, WI, 2020.
- 10. G. M. Sheldrick, G. M. Acta. Crystallogr. A, 2008, 64 (Pt 1), 112-122.