Electronic Supplementary Information

Ultrafine cobalt selenide nanowires tangled with MXene nanosheets as

highly-efficient electrocatalysts toward the hydrogen evolution reaction

Linlin Hao, Haiyan He,* Chenyu Xu, Mingqiang Zhang, Haoxuan Feng, Lu Yang, Quanguo Jiang,

Huajie Huang*

College of Mechanics and Materials, Hohai University, Nanjing 210098, China

*E-mail: he.haiyan@hhu.edu.cn or huanghuajie@hhu.edu.cn

Supplementary Results

Fig. S1 Representative SEM images of bulk Ti₃AlC₂ at different magnifications.

Fig. S2 The Tyndall phenomenon of the as-obtained $\text{Ti}_3\text{C}_2\text{T}_x$ MXene suspension.

Fig. S3 Representative SEM images of bare CoSe at different magnifications.

Fig. S4 Typical XRD patterns of $Ti_3C_2T_x$ nanosheets and Ti_3AlC_2 powder.

Fig. S5. EDX spectrum of the CoSe NW/Ti₃C₂T_x nanoarchitecture on copper mesh discloses the presence of Ti, C, Se and Co components in the composite.

Fig. S6. The comparison of Co 2p XPS peaks of CoSe NW/Ti₃C₂T_x with that of bare CoSe.

Fig. S7. The CV curve for (a) CoSe, (b) $Ti_3C_2T_x$ and (c) Ti_3AlC_2 at potential from 120 mV to 220 mV vs. RHE at scan rates from 20 to 120 mV s⁻¹. (d) The electrochemical double layer capacitance (C_{dl}) value of CoSe NW/Ti₃C₂T_x(5%), CoSe, $Ti_3C_2T_x$ and Ti_3AlC_2 .

Table S1. Comparison of hydrogen evolution reaction activity for the CoSe NW/Ti₃C₂T_x(10%) catalyst with recent state-of-the-art .

Type of electrocatalyst	Electrolyte	Onset potential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
CoSe NW/Ti ₃ C ₂ T _x	$0.5 \mathrm{~M~H_2SO_4}$	84	56	This work
MoSe _{2-x}	$0.5 \mathrm{~M~H_2SO_4}$	N.A.	98	S1
$\mathrm{Co}_{0.9}\mathrm{Ni}_{0.1}\mathrm{Se}$	$0.5 \mathrm{~M~H_2SO_4}$	N.A.	58	S2
Co _{0.8} Mo _{0.2} Se	$0.5 \mathrm{~M~H_2SO_4}$	N.A.	~59	S3
CoSe/MoSe ₂	$0.5 \mathrm{~M~H_2SO_4}$	N.A.	62	S4
MoSe ₂ /NiSe	$0.5 \mathrm{~M~H_2SO_4}$	150	56	S5
CoSe ₂ /CNT	$0.5 \mathrm{~M~H_2SO_4}$	N.A.	98	S6
$Pt/Ti_3C_2T_x$	$0.5 \mathrm{~M~H_2SO_4}$	N.A.	79	S7
$Ti_3C_2T_x$ nanofibers	$0.5 \mathrm{~M~H_2SO_4}$	~100	97	S8

References

- S1. X. L. Zhou, J. Jiang, T. Ding, J. J. Zhang, B. C. Pan, J. Zuo and Q. Yang, Nanoscale, 2014, 6, 11046-11051.
- S2. W. W. Zhong, Z. P. Wang, N. Gao, L. G. Huang, Z. P. Lin, Y. P. Liu, F. Q. Meng, J. Deng, S. F.
 Jin, Q. H. Zhang and L. Gu, *Angew. Chem. Int. Ed.*, 2020, **59**, 22743-22748.
- S3. Y. Zhou, J. T. Zhang, H. Ren, Y. Pan, Y. G. Yan, F. C. Sun, X. Y. Wang, S. T. Wang and J. Zhang, *Appl. Catal. B*, 2020, **268**, 118467.
- S4. W. Song, K. L. Wang, G. P. Jin, Z. B. Wang, C. X. Li, X. M. Yang and C. N. Chen,

ChemElectroChem, 2019, **6**, 4842-4847.

- S5. X. L. Zhou, Y. Liu, H. X. Ju, B. C. Pan, J. F. Zhu, T. Ding, C. D. Wang and Q. Yang, *Chem. Mater.*, 2016, **28**, 1838-1846.
- S6. H. Ding, G. C. Xu, L. Zhang, B. Wei, J. C. Hei and L. Chen, *J. Colloid Interface Sci.*, 2020, **566**, 296-303.
- S7. B. S. Li, R. K. Ye, Q. Y. Wang, X. Q. Liu, P. P. Fang and J. Q. Hu, *Ionics*, 2021, **27**, 1221-1231.
- S8. W. Y. Yuan, L. F. Cheng, Y. R. An, H. Wu, N. Yao, X. L. Fan and X. H. Guo, ACS Sustain. Chem. Eng., 2018, 6, 8976-8982.