Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022 Electronic Supplementary Material (ESI) for *Dalton Transactions*. This journal is © The Royal Society of Chemistry 2020

Supporting Information

A simple synthetic entryway into new families of NHC-gold-amido complexes and their in vitro antitumor activity

Ekaterina A. Martynova, ^a Thomas Scattolin,^{b,c} Enrico Cavarzerani,^b Min Peng,^a Kristof Van Hecke,^a Flavio Rizzolio^{b,c} and Steven P. Nolan^{*a}

Abstract: A simple synthetic pathway to Au-NHC amido complexes is described. Syntheses and isolation of [Au(NHC)(NR¹R²)] complexes, bearing various NHC ligands and NH-containing heterocycles under mild conditions are reported. The *in vitro* anticancer activity of these gold-complexes was investigated on three human cancer cell lines. A number of these show comparable or even better antiproliferative activity than cisplatin. Noteworthy is the non-toxicity of most of the complexes on normal cells.

Table of Contents

Optimization of reaction conditions	2
Scope of heterocyclic compounds	3
X-ray Crystallography	4
NMR Spectra	8
Stability of the complex 4a in DMSO-d $_6/D_2O$ (3:1)	34

Optimization of reaction conditions

Scheme S1. Optimization of reaction conditions on model reaction of [Au(IPr)Cl] with 5,6-dimethyl-1*H*-benzimidazole.

Table S1. The effect of different weak bases and solvents on the model reaction.

Entry/	Solvent	Base	Time	Conversion ^a
Metal				
1/Au	Acetone	K ₂ CO ₃ (3 eq.)	16h	100%
2/Au	Acetone	K ₂ CO ₃ (3 eq.)	5h	100%
3/Au	Acetone	K ₂ CO ₃ (3 eq.)	30min	71%
4/Au	EtOH	K ₂ CO ₃ (3 eq.)	16h	100%
5/Au	EtOH	K_2CO_3 (3 eq.)	5h	100%
6 /Au	EtOH	K ₂ CO ₃ (3 eq.)	30min	100%
7/Au	Acetone	NaOAc (3	24h	40%
		eq.)		
8/Au	EtOH	NaOAc (3	1h	82%
		eq.)		
9/Au	EtOH	NaOAc (3	24h	82%
		eq.)		
10/Au	Acetone	Et ₃ N (3 eq.)	24h	66%
11/Au	EtOH	Et ₃ N (3 eq.)	1h	35%
12/Au	EtOH	Et ₃ N (3 eq.)	24h	35%
13Cu	EtOH	K ₂ CO ₃ (3 eq.)	24h	NR
14/Cu	Acetone	K ₂ CO ₃ (3 eq.)	24h	NR

^a Conversion was determined by NMR; NR=no reaction.

Scope of heterocyclic compounds

Scheme S2. Model reaction used for the scope of heterocyclic compounds.

Heterocycle	pKa	Time (h)	Conversion (%)
1 (5,6-dimethyl-1 <i>H</i> - benzo[d]imidazole)	16.4 (for 1H- benzo[d]imidazole)	0.5	100
2 (1 <i>H</i> -pyrazole)	19.8	0.5	100
3 (10 <i>H</i> - phenothiazine)	23	0.5	100ª
4 (2-chloro-1 <i>H</i> -	16.4 (for 1H- benzo[d]imidazole)	0.5	100
5 (1 <i>H</i> -imidazole)	14.4	0.5	100
6 (2,4,5-triphenyl- 1 <i>H</i> -imidazole)	11.7 (predicted)	0.5	100
, 7 (7 <i>H</i> -purine)	8.9	0.5	Unidentified mixture of compounds
		24	Ratio didn't changed
8 (1 <i>H</i> -1,2,4-triazole)	10.3	24	compounds, which couldn't be separated

Reaction conditions: 1 eq. of [Au(IPr)CI] (50 mg), 1 eq. of heterocycle, 3 eq. of K_2CO_3 , 0,5 mL of EtOH; ^ainert atmosphere is required.

X-ray Crystallography

Crystals that were of suitable quality for single crystal X-ray diffraction analysis were obtained in all cases by slow vapor diffusion of the antisolvent (pentane) into saturated solutions of the complexes (in acetone or dichloromethane) at 4 °C. 2120383-2120388 **1a**, **1c**, **2d**, **3a**, **3b** and **5b**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/structures</u>.

FigureS3. X-ray molecular structures of complexes 1a, 1c, 2d, 3a, 3b and 5b are presented, showing thermal displacement ellipsoids at the 50% probability level and hydrogen atoms omitted for clarity.

Complex **1a** was obtained by slow vapor diffusion of the antisolvent (pentane) into saturated solutions of the complexes in DCM: CCDC number 2120383:

Empirical formula	C ₇₃ H ₉₂ Au ₂ Cl ₂ N ₈
Formula weight	1546.39
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	14.2796(2)
b/Å	18.0093(2)
c/Å	28.1639(4)
α/°	90
β/°	99.6310(10)
γ/°	90
Volume/Å ³	7140.71(16)
Z	4
$ ho_{calc}g/cm^3$	1.438
µ/mm₋1	8.643
F(000)	3112.0
Crystal size/mm₃	0.099 × 0.048 × 0.032
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	5.85 to 147.694
Index ranges	$-17 \le h \le 16$, $-22 \le k \le 21$, $-35 \le l \le 34$
Reflections collected	65277
Independent reflections	14224 [R _{int} = 0.1044, R _{sigma} = 0.0770]
Data/restraints/parameters	14224/84/786
Goodness-of-fit on F ²	1.022
Final R indexes [I>=2σ (I)]	$R_1 = 0.0529$, w $R_2 = 0.1236$
Final R indexes [all data]	$B_1 = 0.0819 \text{ w} B_2 = 0.1403$
	2 67/ 0 16
Largest diff. peak/noie / e A-3	3.077-2.13

Complex **1c** was obtained by slow vapor diffusion of the antisolvent (pentane) into saturated solutions of the complexes in DCM: CCDC number 2120384:

Empirical formula	$C_{78}H_{65}AuN_4$
Formula weight	1255.31
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.0142(2)
b/Å	13.9263(3)
c/Å	21.1975(5)
α/°	88.846(2)
β/°	83.837(2)
γ/°	86.417(2)
Volume/Å ³	3226.02(12)
Z	2
ρ _{calc} g/cm ³	1.292
µ/mm ⁻¹	4.628
F(000)	1280.0
Crystal size/mm ³	0.02 × 0.012 × 0.01
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	6.36 to 147.694
Index ranges	$-13 \le h \le 13, -17 \le k \le 15, -26 \le l \le 26$
Reflections collected	60247
Independent reflections	12847 [R _{int} = 0.0694, R _{sigma} = 0.0552]
Data/restraints/parameters	12847/532/830
Goodness-of-fit on F ²	1.046
Final R indexes [I>=2σ (I)]	R ₁ = 0.0495, wR ₂ = 0.1200
Final R indexes [all data]	R ₁ = 0.0628, wR ₂ = 0.1276
Largest diff. peak/hole / e Å-3	2.37/-1.52

Complex **2d** was obtained by slow vapor diffusion of the antisolvent (pentane) into saturated solutions of the complexes in DCM: CCDC number 2120385:

Empirical formula	$C_{26}H_{35}AuN_4$
Formula weight	600.54
Temperature/K	100(2)
Crystal system	orthorhombic
Space group	Pbcn
a/Å	20.70080(10)
b/Å	12.45040(10)
c/Å	27.2297(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	7018.00(8)
Z	12
ρ _{calc} g/cm ³	1.705
µ/mm ⁻¹	11.961
F(000)	3576.0
Crystal size/mm ³	0.177 × 0.095 × 0.056
Radiation	Cu Kα (λ = 1.54184)
2O range for data collection/°	6.492 to 147.778
Index ranges	$-25 \le h \le 25, -15 \le k \le 15, -27 \le l \le 33$
Reflections collected	49241
Independent reflections	7066 [R _{int} = 0.0398, R _{sigma} = 0.0212]
Data/restraints/parameters	7066/0/421
Goodness-of-fit on F ²	1.039
Final R indexes [I>=2σ (I)]	R ₁ = 0.0194, wR ₂ = 0.0447
Final R indexes [all data]	R ₁ = 0.0236, wR ₂ = 0.0462
Largest diff. peak/hole / e Å ^{.3}	0.73/-0.75

Complex **3a** was obtained by slow vapor diffusion of the antisolvent (pentane) into saturated solutions of the complexes in Acetone: CCDC number 2120386:

Empirical formula	C ₃₉ H ₄₄ AuN ₃ S
Formula weight	783.80
Temperature/K	100.0(1)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	16.8713(2)
b/Å	39.1909(3)
c/Å	11.13870(10)

a/°	90
β/°	108.4560(10)
γ/°	90
Volume/Å ³	6986.12(12)
Z	8
ρ _{calc} g/cm ³	1.490
µ/mm-1	8.694
F(000)	3152.0
Crystal size/mm ³	0.112 × 0.047 × 0.032
Radiation	Cu Kα (λ = 1.54184)
2O range for data collection/°	5.966 to 133.196
Index ranges	-19 ≤ h ≤ 20, -46 ≤ k ≤ 46, -13 ≤ l ≤ 13
Reflections collected	48938
Independent reflections	12243 [R _{int} = 0.0470, R _{sigma} = 0.0405]
Data/restraints/parameters	12243/0/809
Goodness-of-fit on F ²	1.007
Final R indexes [I>=2σ (I)]	R ₁ = 0.0288, wR ₂ = 0.0626
Final R indexes [all data]	R ₁ = 0.0409, wR ₂ = 0.0677
Largest diff. peak/hole / e Å-³	2.85/-1.49

Complex **3b** was obtained by slow vapor diffusion of the antisolvent (pentane) into saturated solutions of the complexes in DCM: CCDC number 2120387:

Empirical formula	C ₃₅ H ₄₀ AuN ₃ S
Formula weight	731.73
Temperature/K	100(2)
Crystal system	orthorhombic
Space group	Pbca
a/Å	11.07582(15)
b/Å	18.5823(2)
c/Å	28.4054(5)
a/°	90
β/°	90
γ/°	90
Volume/Å ³	5846.22(14)
Z	8
ρ _{calc} g/cm ³	1.663
µ/mm⁻¹	10.340
F(000)	2928.0
Crystal size/mm ³	0.132 × 0.097 × 0.077
Radiation	Cu Kα (λ = 1.54184)
2O range for data collection/°	6.224 to 147.732
Index ranges	-13 ≤ h ≤ 12, -22 ≤ k ≤ 23, -34 ≤ l ≤ 34
Reflections collected	28502
Independent reflections	5832 [R _{int} = 0.0548, R _{sigma} = 0.0423]
Data/restraints/parameters	5832/0/361
Goodness-of-fit on F ²	1.014
Final R indexes [I>=2σ (I)]	$R_1 = 0.0384$, $wR_2 = 0.0980$
Final R indexes [all data]	R ₁ = 0.0499, wR ₂ = 0.1069
Largest diff. peak/hole / e Å ⁻³	2.64/-0.81

Complex **5b** was obtained by slow vapor diffusion of the antisolvent (pentane) into saturated solutions of the complexes in DCM: CCDC number 2120388:

Empirical formula	$C_{48}H_{53}AuN_4$
Formula weight	882.91
Temperature/K	100.0(1)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	17.73610(10)
b/Å	18.81190(10)
c/Å	25.19810(10)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	8407.34(7)
Z	8
ρ _{calc} g/cm ³	1.395
µ/mm⁻¹	6.846
F(000)	3584.0
Crystal size/mm3	0.243 × 0.129 × 0.109

RadiationCu 2Θ range for data collection/°5.86Index ranges-20Reflections collected159Independent reflections169Data/restraints/parameters169Goodness-of-fit on F²1.03Final R indexes [I>= 2σ (I)] R_1 =Final R indexes [all data] R_1 =Largest diff. peak/hole / e Å-30.88Flack parameter0.28

 $\begin{array}{l} Cu\;K\alpha\;(\lambda=1.54184)\\ 5.862\;to\;148.132\\ -20\leq h\leq 21,\;-23\leq k\leq 23,\;-31\leq l\leq 31\\ 159999\\ 16900\;[R_{int}=0.0589,\;R_{sigma}=0.0291]\\ 16900/0/972\\ 1.031\\ R_1=0.0220,\;wR_2=0.0521\\ R_1=0.0238,\;wR_2=0.0529\\ 0.89/\text{-}0.73\\ 0.291(5) \end{array}$

NMR Spectra

¹*H NMR and* ¹³*C {*¹*H} NMR for* [N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)](5,6-dimethyl-1*H*-benzo[d]imidazol-1-yl)gold(l) 1a:

¹*H* NMR and ¹³*C* {¹*H*} NMR for [N,N'-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene)](5,6-dimethyl-1*H*-benzo[d]imidazol-1-yl)gold(l) 1b:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene)](5,6-dimethyl-1H-benzo[d]imidazol-1-yl)gold(l) 1c:

¹*H* NMR and ¹³C {¹*H*} NMR for [N,N-Bis(adamantyl)imidazol-2-ylidene](5,6-dimethyl-1*H*-benzo[d]imidazol-1-yl)gold(I) 1d:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(tert-butyl)imidazol-2-ylidene] (5,6-dimethyl-1H-benzo[d]imidazol-1-y)gold(l)

¹H NMR and ¹³C {¹H} NMR for [N,N'-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene)](1H-pyrazol-1-yl)gold(l) 2b:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene](1H-pyrazol-1-yl)gold(l) 2c:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(adamantyl)imidazol-2-ylidene][(1H-pyrazol-1-yl)gold(l) 2d:

¹H NMR and ¹³C {¹H} NMR for [N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)](10H-phenothiazin-10-yl)gold(I) 3a:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(adamantyl)imidazol-2-ylidene](10H-phenothiazin-10-yl)gold(I) 3b:

¹H NMR and ¹³C {¹H} NMR for [N,N²-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)](2-chloro-1H-benzo[d]imidazol-1-yl)gold(l) 4a:

¹*H NMR and* ¹³*C* {¹*H*} *NMR for* [N,N'-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene)](2-chloro-1H-benzo[d]imidazol-1-yl)gold(l) 4b:

¹*H* NMR and ¹³*C* {¹*H*} NMR for [N,N-Bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene](2-chloro-1H-benzo[d]imidazol-1-yl)gold(l) 4c:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(adamantyl)imidazol-2-ylidene](2-chloro-1H-benzo[d]imidazol-1-yl)gold(l) 4d:

¹H NMR and ¹³C {¹H} NMR for [N,N²-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)](1H-imidazol-1-yl))gold(l) 5a:

¹H NMR and ¹³C {¹H} NMR for [N,N'-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene)](1H-imidazol-1-yl))gold(l) 5b:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene](1H-pyrazol-1-yl)gold(I) 5c:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(adamantyl)imidazol-2-ylidene](1H-imidazol-1-yl)gold(l) 5d:

¹H NMR and ¹³C {¹H} NMR for [N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)](2,4,5-triphenyl-1H-imidazol-1-yl)gold(l)] 6a:

¹H NMR and ¹³C {¹H} NMR for [N,N'-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene)](2,4,5-triphenyl-1H-imidazol-1-yl)gold(I) 6b:

¹*H* NMR and ¹³*C* {¹*H*} NMR for [N,N-Bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene](2,4,5-triphenyl-1H-imidazol-1-yl)gold(I) 6c:

¹H NMR and ¹³C {¹H} NMR for [N,N-Bis(adamantyl)imidazol-2-ylidene](2,4,5-triphenyl-1H-imidazol-1-yl)gold(l) 6d:

Stability of the complex 4a in DMSO-d₆/D₂O (3:1)

¹H NMR in DMSO-d₆/D₂O for [N,N²-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)](2-chloro-1H-benzo[d]imidazol-1yl)gold(I) 4a after 24, 72 and 96 hours:

¹H NMR spectra were recorded at the same concentration as the stock solution prepared for biological tests (10 mM).