Electronic Supporting Information for Conformationally Dynamic Copper Coordination Complexes

Bronte J. Charette, Paul J. Griffin, Claire M. Zimmerman and Lisa Olshansky* Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 618081, United States

Table of Contents

VT-NMR lineshape analysis
Table S1. EPR simulation parameters for [CuCl(dpa ^{OMe})][PF6]S2
Table S2. EPR simulation parameters for CuCl ₂ (dpa ^H). S2
Table S3 . Peak integrations obtained from DPVs for CuCl(dpa ^{OMe}) and CuCl(dpa ^H). S2
Table S4. CV simulations parameters for CuCl(dpa ^{OMe}) and [CuCl(dpa ^{OMe})][PF ₆]S3
Table S5. CV simulation parameters for CuCl(dpa ^H) and CuCl ₂ (dpa ^H). S3
$\textbf{Table S6. XRD parameters for } [{Cu(dpa^{OMe})}_2(\mu\text{-}Cl)][CuCl_2] \text{ and } [CuCl(dpa^{OMe})][PF_6]S4$
Figure S1. Mass spectrum of CuCl(dpa ^{OMe})
Figure S2. Mass spectrum of CuCl(dpa ^H)
Figure S3. Overlayed ¹ H-NMR spectrum of CuCl(dpa ^{OMe}) and dpa ^{OMe} ligand in <i>d</i> ₆ -DMSO S7
Figure S4. Overlayed ¹ H-NMR spectrum of CuCl(dpa ^H) and dpa ^H ligand in d_6 -DMSO
Figure S5. CV of ligand dpa ^{OMe}
Figure S6. CV scan rate dependencies of CuCl(dpa ^{OMe}) and [CuCl(dpa ^{OMe})][PF ₆]S10
Figure S7. DPV of CuCl(dpa ^{OMe}) and CuCl(dpa ^H) at various concentraions
Figure S8. CV simulations
Figure S9. CV scan rate dependencies of $CuCl(dpa^H)$ and $CuCl_2(dpa^H)$ S13
Figure S10. ¹ H-NMR spectrum of CuCl(dpa ^{OMe}) in <i>d</i> ₆ -DMSO
Figure S11. ¹³ C-NMR spectrum of CuCl(dpa ^{OMe}) in <i>d</i> ₆ -DMSO
Figure S12. ¹ H-NMR spectrum of CuCl(dpa ^H) in <i>d</i> ₆ -DMSO
Figure S13. ¹³ C-NMR spectrum of CuCl(dpa ^H) in <i>d</i> ₆ -DMSO
Figure S14. VT-NMR spectra of CuCl(dpa ^{OMe}) in <i>d</i> ₂ -DCM
Figure S15. Eyring plot for the dynamic NMR process of CuCl(dpa ^{OMe})
Figure S16. VT-NMR spectra of CuCl(dpa ^H) in <i>d</i> ₂ -DCM
Figure S17. Eyring plot for the dynamic NMR process of CuCl(dpa ^H)
Figure S18. UV-visible absorption spectra
References

VT-NMR lineshape analysis was performed using equations derived from Bloch equations modified to include a pseudo-first order decay term.^{1,2} Each signal was fit to a Lorentzian shape in MestReNova Software.³ Using an estimation of the transverse relaxation (T_2^{eff}) in the absence of exchange from the full width at half max (fwhm) of a non-exchanging proton signal (equation 1), the pseudo-first order rate constant (k) can be calculated from the fwhm for the subsequent signal (Eq 2).

$$T_2^{eff} = \frac{1}{\pi \, [fwhm]} \tag{1}$$

$$k = \pi [fwhm - \frac{1}{\pi T_2^{eff}}]$$
⁽²⁾

Following determination of k, a plot of $\ln(k/T)$ versus 1/T was used to extract activation parameters using the following equations:

$$ln\left(\frac{k}{T}\right) = \frac{\Delta H^{\ddagger}}{R} * \frac{1}{T} + ln\left(\frac{k_b}{h}\right) + \frac{\Delta S^{\ddagger}}{R}$$
(3)

Where:

$$Slope = \frac{\Delta H^{\ddagger}}{R}$$
(4)

$$Intercept = \ln\left(\frac{k_b}{h}\right) + \frac{\Delta S^{\ddagger}}{R}$$
(5)

Constants used: $k_{\rm b} = 1.38 \ge 10^{-23} \text{ J-K}^{-1}$ $h = 6.63 \ge 10^{-34} \text{ J-s}$ $R = 1.98 \text{ cal K}^{-1}\text{-mol}^{-1}$

	g⊥ 2.04	g11 2.25	
Cu	2.04	2.23 464	MHz
N(1)	48	5	MHz
N(2)	47	11	MHz
N(3)	40	8	MHz

Table S1. EPR simulation parameters for [CuCl(dpa^{OMe})][PF6].

Table S2. EPR simulation parameters for CuCl₂(dpa^H).

	\mathbf{g}_1	\mathbf{g}_2	g ₃	
	2.02	2.12	2.25	
Cu	51	130	437	MHz
N(1)	58	54	25	MHz
N(2)	60	55	35	MHz
N(3)	59	55	30	MHz

Table S3. Peak^a integrations obtained from DPV for CuCl(dpa^{OMe}) and CuCl(dpa^H).

CuCl(dpa ^{OMe})		CuCl(dpa ^H)			
	E_{p1} °'	E_{p2} °'		E_{p1} °'	E_{p2} °'
1.4 mM	9.17 ×10 ⁻⁷	9.33 ×10 ⁻⁷	0.6 mM	6.37 ×10 ⁻⁷	7.67×10^{-7}
2.8 mM	1.62×10^{-6}	1.30×10^{-6}	1.2 mM	1.36×10^{-6}	9.14 ×10 ⁻⁷
7.0 mM	2.87×10^{-5}	1.72×10^{-6}	5.0 mM	2.39 ×10 ⁻⁶	1.04×10^{-6}

^{*a*} E_{p1} °' and E_{p2} °' refer to the oxidative peak potentials measured by DPV.

	CuCl(dpa ^{OMe})		[CuCl(d	pa ^{OMe})][PF ₆]
	E_1 °'	E_2 °'	E_1 °'	E_2 °'
V vs $Fc^{+/0 a}$	-0.56	-0.01	-0.59	-0.01
K_{eq}	125 ^b	0.65 ^c		0.007^{c}
$k_{\rm s}/{\rm cm}^{-1} d$	0.016	0.006	0.011	10
$k_{ m f}/{ m s}^{-1}$ e	0.01	8 x10 ⁻⁵		0.07
$k_{ m r}/{ m s}^{-1}$ f	0.1	0.15		10
α^{g}	0.5	0.5	0.5	0.5
$\mathrm{R_u}$ / Ω h	100	100	100	100
C_{dl} / μF^{i}	1×10^{-5}	1×10^{-6}	1×10^{-5}	1×10^{-5}
$D/cm^{2} s^{-1j}$	8×10^{-6}	8×10^{-6}	1.1×10^{-5}	$1.1 imes 10^{-5}$

Table S4. Parameters obtained from simulated CVs of CuCl(dpa^{OMe}) and [CuCl(dpa^{OMe})]⁺.

Table S5. Parameters obtained from simulated CVs of CuCl(dpa^H) and CuCl₂(dpa^H).

	CuCl((dpa ^H)	CuC	$l_2(dpa^H)$
	E_1 °'	E_2 °'	E_1 °'	E_2 °'
V vs $Fc^{+/0 a}$	-0.44	-0.04	-0.47	-0.06
K_{eq}	125 ^b	0.4 ^c	1.5 x10 ⁻⁴ ^b	9.5 x10 ⁻⁴ ^c
$k_{\rm s}/{\rm cm}^{-1} d$	0.015	0.004	0.017	0.005
$k_{ m f}/{ m s}^{-1}$ e	0.01	8 x10 ⁻⁵	0.08	533
$k_{\rm r}/{ m s}^{-1f}$	0.1	0.26	0.017	17.8
α^{g}	0.5	0.5	0.5	0.5
R_{u} / Ω h	100	100	100	100
C_{dl} / μF^{i}	1×10^{-5}	1×10^{-5}	1×10^{-5}	1×10^{-5}
$D/cm^2 s^{-1j}$	8.5×10^{-6}	8.5×10^{-6}	1.5×10^{-5}	1.5×10^{-5}

^{*a*}Redox potential. ^{*b*}Equilibrium constant for the dynamic process in the copper (II) state. ^{*c*}Equilibrium constant for the dynamic process in the copper (I) state. ^{*d*}Rate constant for the electron transfer. ^{*c*}Rate constant for the dynamic process in the copper (II) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic process in the copper (I) state. ^{*f*}Rate constant for the dynamic proces (I) state. ^{*f*}

	[{Cu(dpa ^{OMe})}2(µ-Cl)][CuCl2]	[CuCl(dpa ^{OMe})][PF6]•2CH2Cl2		
empirical formula	$C_{38}H_{38}Cl_3Cu_3N_6O_2$	C21H23Cl5CuF6N3OP		
formula weight	907.71	719.18		
crystal system	orthorhombic	triclinic		
space group	$P2_{1}2_{1}2_{1}$	$P_{\bar{1}}$		
T(K)	130.0	100.0		
<i>a</i> / Å	8.2127(2)	10.4034(6)		
b / Å	19.9564(5)	11.1847(7)		
<i>c</i> / Å	23.1694(6)	13.3875(7)		
α / deg	90	72.920(2)		
β / deg	90	69.922(2)		
γ / \deg	90	78.631(2)		
$V/\text{\AA}^3$	3797.37(17)	1390.49(14)		
Ζ	4	2		
refl. collected	28242	50210		
indep. refl.	7769 [R(int) = 0.0453]	5716 [R(int) = 0.0399]		
R1 $(I > 2\sigma)^a$	0.0295(0.0356)	0.0472 (0.0550)		
wR2 (all data) ^b	0.0570(0.0596)	0.1249 (0.1336)		
GOF	1.054	1.055		
${}^{a}\mathrm{R1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} ; {}^{b}w\mathrm{R2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{\frac{1}{2}}$				

Table S6. XRD collection and refinement parameters for $[{Cu(dpa^{OMe})}_2(\mu-Cl)][CuCl_2]$ and $[CuCl(dpa^{OMe})][PF_6]$.

Figure S1. Mass spectrum of CuCl(dpa^{OMe}) in DCM.

Figure S2. Mass spectrum of CuCl(dpa^H) in DCM.

DMSO at 298 K.

DMSO at 298 K.

Figure S5. CV recorded with 1 mM ligand dpa^{OMe} concentration with 100 mM [NBu₄][PF₆] electrolyte in dry degassed DMF under a nitrogen atmosphere using a 3 mm glassy carbon working electrode, Pt wire counter electrode and $Ag^{+/0}$ pseudo-reference electrode at room temperature with 100 mVs⁻¹ scan rate.

Figure S6. CV scan rate dependencies of a) CuCl(dpa^{OMe}) and b) [CuCl(dpa^{OMe})][PF₆] at 25, 50, 75, 100, 150, 200, 300, 400 and 500 mV sec⁻¹ scan rates. Cyclic voltammograms were recorded with 1 mM analyte and 100 mM [NBu₄][PF₆] electrolyte in dry degassed DMF under a nitrogen atmosphere using a 3 mm glassy carbon working electrode, Pt wire counter electrode and Ag^{+/0} pseudo-reference electrode at ambient temperature.

Figure S7. Differential pulse voltammograms for a) CuCl(dpa^{OMe}) at 1.4 mM, 2.8 mM and 7.0 mM concentrations and b) CuCl(dpa^H) at 0.6 mM, 1.2 mM and 5 mM in DMF at ambient temperatures. Data were collected using the same solution conditions to cyclic voltammograms.

Figure S8. CV simulations on 1 mM solutions of a) CuCl(dpa^{OMe}), b) [CuCl(dpa^{OMe})][PF₆], c) CuCl(dpa^H) and d) CuCl₂(dpa^H) performed using BASi DigiElch 8.0 with simulated spectra in red dashed lines and experimental spectra in black solid lines.

Figure S9. CV scan rate dependencies of a) CuCl(dpa^H) and b) CuCl₂(dpa^H) at 25, 50, 75, 100, 150, 200, 300, 400 and 500 mV sec⁻¹ scan rates. Cyclic voltammetry were recorded with 1 mM analyte concentration with 100 mM [NBu₄][PF₆] electrolyte in dry degassed DMF under a nitrogen atmosphere using a 3 mm glassy carbon working electrode, Pt wire counter electrode and $Ag^{+/0}$ pseudo-reference electrode at ambient temperature.

Figure S10. ¹H-NMR spectrum of CuCl(dpa^{OMe}) in *d*₆-DMSO at 298 K.

Figure S11. ¹³C-NMR spectrum of CuCl(dpa^{OMe}) in d_6 -DMSO at 298 K.

Figure S12. ¹H-NMR spectrum of CuCl(dpa^H) in d_6 -DMSO at 298 K.

Figure S13. ¹³C-NMR spectrum of CuCl(dpa^H) in d_6 -DMSO at 298 K.

Figure S14. ¹H-NMR spectra (500 MHz) of CuCl(dpa^{OMe}) in d_2 -DCM over the temperature range of 238-298 K.

Figure S15. Plot of $\ln(k/T)$ versus 1/T (where k = rate constant and T = temperature in K) for the dynamic NMR process of CuCl(dpa^{OMe}) in d₂-DCM from 238-298 K. The shown linear fit was used to calculate the activation parameters listed in the main text via the Eyring equation (R² = 0.9766).

Figure S16. ¹H-NMR spectra (500 MHz) of CuCl(dpa^H) in d_2 -DCM over the temperature range of 238–298 K.

Figure S17. Plot of $\ln(k/T)$ versus 1/T (where k = rate constant and T = temperature in K) for the dynamic NMR process of CuCl(dpa^H) in d_2 -DCM from 238–298 K. The shown linear fit was used to calculate the activation parameters listed in the main text via the Eyring equation (R² = 0.96445).

Figure S18. Extinction coefficient plots for [CuCl(dpa^{OMe})][PF₆] (green), CuCl(dpa^H) (blue) and CuCl(dpa^{OMe}) (orange) in DCM. Inset: Zoomed in region of [CuCl(dpa^{OMe})][PF₆] spectra from 400–900 nm.

References

- 1. J. Sandstrom, Dynamic NMR Spectroscopy, Academic Press, London, 1982.
- 2. M. Hasani, L. Nordstierna and A. Martinelli, *Phys. Chem. Chem. Phys.*, 2019, **21**, 22014–22021.
- 3. M. R. Willcott, J. Am. Chem. Soc., 2009, 131, 13180-13180.