Supplementary Information for

Probing The Redox-conversion of Co(II)-disulfide to Co(III)thiolate Complexes: The Effect of Ligand Field Strength

Christian Marvelous,^a Lucas de Azevedo Santos,^b Maxime A. Siegler,^c Célia Fonseca Guerra,^{a,b}* and Elisabeth Bouwman^{a*}

^aLeiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

^b Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM),

Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

^c Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States of America

Corresponding authors: c.fonsecaguerra@vu.nl / bouwman@lic.leidenuniv.nl

Part 2 – Experimental Data

Figure S9. ESI-MS spectrum of a) the isolated brown-reddish powder from the reaction
between $[2_{Cl}](BPh_4)_2$ with AgSbF ₆ , the powder was dissolved in acetonitrile; b) the
experimental isotopic distribution; c) simulated isotopic distribution7
Figure S10. ESI-MS spectrum of a) the isolated purple powder from the reaction between
$[3](SbF_6)_2$ with NEt ₄ Cl, the powder was dissolved in acetonitrile; b) the experimental isotopic
distribution; c) the experimental isotopic distribution for compound $[1_{Cl}]$ 7
Figure S11. ¹ H-NMR spectrum of the isolated purple powder from the reaction between
$[3](SbF_6)_2$ with NEt ₄ Cl, the powder was dissolved in CD ₃ CN
Figure S12. ESI-MS spectrum of a) $[Co(L^1S)(phen)](SbF_6)_2$, the powder was dissolved in
acetonitrile; b) the experimental isotopic distribution; c) simulated isotopic distribution8
Figure S13. Displacements ellipsoid plot (50% probability level) of the oxidized compound
[Co(L ¹ SO ₂)(phen)](SbF ₆) ₂ at 110(2) K9

Part 3 – Crystallographic Data

Table S1.Crystallographic Data for the crystal structures in the present work	10
Table S2. Selected bond distances and bond angles in [Co(L ¹ SO ₂)(phen)](SbF ₆) ₂	11

Part 4 – Computational Data

Table S3 . Bond energies and coordinates of the optimized structures of $[1^*]$ and $[4]^{2^+}$ 12
Table S4. Bond energies and coordinates of the optimized structures of $[2^*]^+_{fac}$ and $[2^*]^+_{mer}$.
Table S5. Bond energies and coordinates of the optimized structures of $[3]^{2+}_{fac}$ and $[3]^{2+}_{mer}$. 14
Figure S14. Several frontier orbitals of [1*] associated with Co d-orbitals along with their
energies, orbital visualization, and orbital composition
Figure S15. Several frontier orbitals of $[2^*]^+_{fac}$ associated with Co d-orbitals along with their
energies, orbital visualization, and orbital composition
Figure S16. Several frontier orbitals of $[2^*]^+_{mer}$ associated with Co d-orbitals along with their
energies, orbital visualization, and orbital composition
Figure S17. Several frontier orbitals of $[3]^{2+}_{mer}$ associated with Co d-orbitals along with their
energies, orbital visualization, and orbital composition
Figure S18. Several frontier orbitals of $[4]^{2+}$ associated with Co d-orbitals along with their
energies, orbital visualization, and orbital composition19

Part 1 – Synthesis of Compound [Co(L¹S)(phen)](SbF₆)₂

The compound $[Co(L^1S)(phen)](SbF_6)_2$ was prepared in a similar manner as compound $[3](SbF_6)_2$, using 1,10-phenanthroline (phen) instead of bpy. A red powder was obtained in 85% yield. IR (neat, cm⁻¹): 1608s, 1518m, 1485w, 1426s, 1376w, 1344w, 1298w, 1247w, 1225w, 1149w, 1105m, 1091m, 1058m, 1022m, 979w, 955w, 909w, 869w, 847s, 769s, 726s, 649vs, 569m, 526m, 448m, 421s. ESI-MS in acetonitrile calcd. for $[Co(L^1S)(phen)](SbF_6)^+$ *m/z* 732.0, found *m/z* 732.0; calcd. for $[Co(L^1S)(phen)]^{2+}$ *m/z* 248.55, found m/z 248.6; calcd. for $[Co(phen)_3]^{2+}$ *m/z* 299.6, found *m/z* 299.9. Elemental analysis (%) for $[Co(L^1S)(phen)](SbF_6)_2$, calcd. C, 32.23; H, 2.50; N, 7.23; found C, 33.03; H, 2.48; N, 7.18. Single crystals were obtained by vapor diffusion of dry and deoxygenated diethyl ether into the dry and deoxygenated acetonitrile solution of compound $[Co(L^1S)(phen)](SbF_6)_2$.

Figure S1. ESI-MS spectrum of a) $[\mathbf{1}_{CI}]$ dissolved in acetonitrile; b) the experimental isotopic distribution of the main signals; c) simulated isotopic distribution of the main signals. ESI-MS found (calcd.) for $[\mathbf{1}_{CI} - 2Cl^{-}]^{2+} m/z$ 352.0 (352.0), for $[\mathbf{1}_{CI} - Cl^{-}]^{+} m/z$ 741.0 (741.0), and for $[\mathbf{1}_{CI} - 2Cl^{-} + \text{HCOO}^{-}]^{+} m/z$ 749.0 (749.0).

Figure S2. ESI-MS spectrum of a) $[1_{Br}]$ dissolved in acetonitrile; b) the experimental isotopic distribution; c) simulated isotopic distribution. ESI-MS found (calcd.) for $[1_{Br} - 2Br^{-}]^{2+} m/z$ 398.0 (397.9), for $[1_{Br} - 2Br^{-} + HCOO^{-}]^{+} m/z$ 839.0 (838.9), and for $[1_{Br} - Br^{-}]^{+} m/z$ 872.9 (872.8).

Figure S3. ¹H-NMR spectrum of compound $[1_{CI}]$ dissolved in CD₃CN.

Figure S4. ¹H-NMR spectrum of compound $[1_{Br}]$ dissolved in CD₃CN.

Figure S5. ESI-MS spectrum of a) $[\mathbf{2}_{Cl}](BPh_4)_2$ dissolved in methanol; b) the experimental isotopic distribution; c) simulated isotopic distribution. ESI-MS found (calcd.) for $[\mathbf{2}_{Cl} - Cl^- + OMe^-]^2 m/z$ 506.5 (506.1), for partially reduced species $[\mathbf{2}_{Cl} - Cl^- + OMe^-]^+ m/z$ 1011.9 (1012.2).

Figure S6. ¹H-NMR spectrum of compound $[2_{Cl}](BPh_4)_2$ dissolved in DMSO-d₆. The diamagnetic region contains peaks that corresponds to the ligand L¹SSL¹ and bipyridine, indicating dissociation of the ligand upon dissolution of the compound.

Figure S7. ¹H-NMR spectrum of compound [**3**](SbF₆)₂ (black trace) dissolved in CD₃CN. ¹H-NMR spectrum of [Co(L¹S)(MeCN)₂]²⁺ (blue trace) and 2,2'-bipyridine (red trace) dissolved in CD₃CN are provided. The red dots and blue stars indicated the presence of 2,2'-bipyridine and [Co(L¹S)(MeCN)₂]²⁺, respectively.

Figure S8. ESI-MS spectrum of a) [3](SbF₆)₂ dissolved in acetonitrile; b) the experimental isotopic distribution;
c) simulated isotopic distribution. ESI-MS found (calcd.) for [3]²⁺ m/z 236.6 (236.55), for [3](SbF₆)⁺ m/z 708.0
(708.0). Species [Co(L¹S)(MeCN)₂]²⁺ (m/z 199.6 (199.55)) and [2,2'-bipyridine + H]⁺ (m/z 157.1 (157.0)) are present.

Figure S9. ESI-MS spectrum of a) the isolated brown-reddish powder from the reaction between [2_{CI}](BPh₄)₂ with AgSbF₆, the powder was dissolved in acetonitrile; b) the experimental isotopic distribution; c) simulated isotopic distribution. ESI-MS found (calcd.) for [(Co(bpy)₃]²⁺ m/z 263.6 (263.6).

Figure S10. ESI-MS spectrum of a) the isolated purple powder from the reaction between $[3](SbF_6)_2$ with NEt₄Cl, the powder was dissolved in acetonitrile; b) the experimental isotopic distribution; c) the experimental isotopic distribution for compound $[1_{Cl}]$. ESI-MS found (calcd.) for $[1_{Cl} - 2Cl^{-}]^2 m/z$ 352.0 (352.0), for $[1_{Cl} - Cl^{-}]^+ m/z$ 741.0 (741.0), and for $[1_{Cl} - 2Cl^{-} + HCOO^{-}]^+ m/z$ 749.0 (749.0).

Figure S11. ¹H-NMR spectrum of the isolated purple powder from the reaction between $[3](SbF_6)_2$ with NEt₄Cl, the powder was dissolved in CD₃CN.

Figure S12. Changes of absorbance at 394 nm and 458 nm as a function of the amount of added NEt₄Cl to 5 mM solution of [3](SbF₆)₂. Linear fitting details are provided.

Figure S13. ESI-MS spectrum of a) [Co(L¹S)(phen)](SbF₆)₂, the powder was dissolved in acetonitrile;
b) the experimental isotopic distribution; c) simulated isotopic distribution. ESI-MS found (calcd.) for [Co(L¹S)(phen)]²⁺ m/z 248.6 (248.55) and for [Co(L¹S)(phen)](SbF₆)⁺ m/z 732.0 (732.0). The species [Co(phen)₃]²⁺ is also found (calcd.) at m/z 299.9 (299.6).

Figure S14. Displacements ellipsoid plot (50% probability level) of the oxidized compound [Co(L¹SO₂)(phen)](SbF₆)₂ at 110(2) K. Hydrogen atoms, non-coordinated anions, and lattice solvent molecules are omitted for clarity.

Part 3 – Crystallographic Data

Chemical formula	$ \begin{bmatrix} 1_{Br} \end{bmatrix} \\ C_{28}H_{32}Br_4Co_2N_6S_2, \\ CH_4O $	$[2_{C1}](BPh_4)_2$ $C_{48}H_{48}Cl_2Co_2N_{10}S_2,$ $2(C_{24}H_{20}B),$ $2(C_3H_6O), 0.42(O)$	$[Co(L^{1}SO_{2})(phen)](SbF_{6})_{2}$ $C_{26}H_{24}CoN_{5}O_{2}S, 2(F_{6}Sb),$ $0.566(C_{4}H_{10}O),$ $1.434(C_{2}H_{3}N)$
M.	986.26	1779.17	1101.82
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1/c}$	$C^{2/c}$	$P2_{1/c}$
Cell lengths (a, b, c) (Å)	157651(7)	10.0130(7)	215627(5) 136523(4)
Cell lengths $(u, b, c)(A)$	15.7051(7), 11.0665(5)	10.0130(7), 20.1121(7)	14.0215(4)
	11.9003(3), 10.63/3(8)	20.1121(7), 27.0156(13)	14.0313 (4)
Call angles (α, β, α) (°)	19.0343(0) 00 102 245(4) 00	27.0130(13)	00 102 050 (2) 00
Cell angles $(a, p, \gamma)()$	90, 105.545(4), 90	90, 100.1/1(4), 90	90, 103.039 (3), 90 4022 8 (2)
Cell volume (A ³)	5004.1(5)	9013.0(7)	4023.8 (2)
	4	4	4
μ (mm ⁻¹)	5.50	0.49	1.89
Crystal size (mm)	$0.11 \times 0.08 \times 0.02$	$0.26 \times 0.19 \times 0.10$	$0.29 \times 0.09 \times 0.05$
Temperature (K)	110(2)	110(2)	110(2)
Diffractometer	SuperNova, Dual,	SuperNova, Dual,	SuperNova, Dual, Cu at
	Cu at zero, Atlas	Cu at zero, Atlas	zero, Atlas detector
	detector	detector	
Radiation type	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο Κα
T_{\min}, T_{\max}	0.734, 0.982	0.520, 1.000	0.439, 1.000
No. of measured,	28658, 6355, 4720	38544, 11261, 8613	50549, 7091, 5615
independent and			
observed $[I > 2\sigma(I)]$			
reflections			
R _{int}	0.065	0.038	0.049
$(\sin \theta/\lambda)_{max}$ (Å ⁻¹)	0.595	0.650	0.595
$R[F^2 > 2\sigma(F^2)] wR(F^2)$	0.046. 0.110. 1.04	0.043, 0.105, 1.02	0.039. 0.102. 1.04
S			
No. of reflections	6355	11261	7091
No. of parameters	411	652	661
No. of restraints	39	309	404
H-atom treatment	H-atoms treated by	H-atom parameters	H-atom parameters
	a mixture of	constrained	constrained
	independent and		
	constrained		
	refinement		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	1.94, -0.58	0.56, -0.31	0.79, -0.77

 Table S1.Crystallographic Data for the crystal structures in the present work.

Atoms	distance (Å)	Atoms	Bond angles (°)
Co1–N1	1.976(4)	S1-Co1-N1	86.78(11)
Co1-N11	1.921(4)	S1-Co1-N11	88.59(13)
Co1-N21	1.929(4)	S1-Co1-N21	95.64(11)
Co1-N31	2.084(4)	S1-Co1-N31	172.01(12)
Co1-N41	1.969(4)	S1-Co1-N41	92.32(12)
Co1–S1	2.1866(13)	N31-Co1-N41	82.36(16)
S1-O1	1.460(4)	N31-Co1-N1	98.77(15)
S1–O2	1.456(4)	N21-Co1-N1	84.00(16)

Table S2. Selected bond distances and bond angles in $[Co(L^1SO_2)(phen)](SbF_6)_2$.

Part 4 – Computational Data

Table S3. Bond energies and coordinates of the optimized structures of $[1^*]$ and $[4]^{2+}$.

[1 *] E =	-4845.07 kc	cal/mol	$[4]^{2+}E =$	-6598.97 kc	al/mol
1.C	2.844744	6.382931 15.971685	1.Co	0.225934	0.048155 0.362324
2.Co	3.386012	8.479512 13.894811	2.H	-2.114316	-0.727316 -1.573008
3.H	3.806330	6.749578 16.320430	3.C	1.002934	-1.078319 -2.425821
4.C	0.630152	7.294129 13.186178	4.C	3.007437	-0.849292 1.131444
5.Cl	4.160892	7 699974 11 877657	5.H	0.841295	-2.527154 1.904743
6 Cl	5 401121	8 524228 15 084964	6 H	-0 440469	-4 609507 2 303702
7 H	0.963185	6 719459 12 312007	7 S	-0.095386	0 694749 2 456075
8 H	-0.468560	7 265252 13 189977	8 C	-0.886231	-3 805997 1 722546
9 N	2 337893	7 008872 14 892136	9.C	-2 224593	1 407243 1 030650
10 N	1 167871	8 645361 13 056652	10 H	-3 302185	1 434723 0 825238
10.IV 11 N	2 832228	10 450830 14 190168	10.11 11 H	-1 841954	2 430734 1 008494
12 C	1 517070	10.739125 14.240323	12 C	-1 892457	0 794848 2 361932
12.C	1.055172	12 029467 14 479685	12.C 13 H	-2 362861	-0.181415 2.516533
13.C 14 Н	0.015117	12.029407 14.479085	13.11 14 Ц	2 232046	1 461732 3 163513
14.11 15 C	-0.013117	0 15/007 11 605500	14.11 15 C	-2.232940	2 640756 1 408885
15.C 16 Ц	1.972497	9.104997 11.095599	15.C 16 N	-0.155582	1 628100 0 780241
10.11 17 LI	1.4/401/	0.493985 10.983020 10.151820 11.600552	10.IN 17 N	-0.048030	-1.028100 0.780241 1 827715 0 178114
1/.П 10 П	1.412/01	10.151820 11.009555	17.IN 19 N	0.737437	1.82//13 - 0.1/8114
10.П 10.С	0.420011	4.0930// 10.380330	10.N	-1.330311	0.0/1238 - 0.103832 0.520106 - 0.518334
19.C	2.198200	3.333140 10.003779 4.862206 17.472281	19.C	-2.332333	-0.330190 -0.318334
20.H	2.038300	4.803290 17.472281	20.H	-3.40/0/8	-0.346237 -0.434178
21.C	1.9/4//0	13.056275 14.664189	21.C	-0.164033	2.445102 -0.950101
22.H	1.634/53	14.074028 14.849059	22.C	0.041414	3./25416 -1.44/24/
23.C	3.332649	12.760444 14.594965	23.H	-0./2/646	4.193912 -2.056413
24.H	4.091563	13.529311 14.723199	24.C	1.229623	4.3824/3 -1.150050
25.C	3.717862	11.44/921 14.360959	25.H	1.414347	5.384/18 -1.531/55
26.H	4.766855	11.166158 14.316009	26.C	2.166/01	3.744766 -0.344940
27.C	0.598254	9.569623 14.042648	27.H	3.105451	4.220961 -0.0/2635
28.H	0.512465	9.038219 14.998775	28.C	1.893604	2.471621 0.131307
29.H	-0.412798	9.911644 13.786780	29.H	2.592885	1.952876 0.776176
30.C	1.144570	6.603320 14.416475	30.C	-1.379947	1.626550 -1.231420
31.C	0.432026	5.563610 15.008922	31.H	-2.274807	2.245917 -1.354842
32.H	-0.534062	5.273564 14.600911	32.H	-1.236512	1.060269 -2.156173
33.C	0.966737	4.912028 16.113378	33.C	-1.902080	-1.709693 0.287000
34.H	-0.096240	9.220218 11.439182	34.C	-2.693054	-2.834734 0.486530
			35.H	-3.702000	-2.860026 0.082239
			36.C	-2.174893	-3.903235 1.207342
			37.H	-2.774962	-4.795464 1.375419
			38.N	1.935529	-0.504262 0.860571
			39.C	4.337904	-1.277195 1.468881
			40.H	4.766005	-0.591534 2.207952
			41.H	4.959583	-1.281077 0.567253
			42.H	4.299166	-2.287826 1.889608
			43.N	0.614222	-0.616783 -1.436593
			44.C	1.479703	-1.647329 -3.657692
			45.H	2.308469	-2.330527 -3.443375
			46.H	1.827103	-0.846373 -4.318629
			47.H	0.668331	-2.199596 -4.143453

Table S4. Bond energies and coordinates of the optimised	otimized structures of	$[2^*]^+_{\text{fac}}$ and	$[2^*]^+_{mer}$
---	------------------------	----------------------------	-----------------

[2 *] ⁺ fog E	=-7754.13	kcal/mol		[2 *] ⁺ E	=-7749.08	kcal/mol	
1.Co	-4.705905	-4.191381	7.721768	1.Co	1.027591	-0.388613	-0.031175
2.Cl	-5.855791	-6.008439	8.430441	2.H	-2.122372	-0.740773	-1.540858
3.N	-6.345606	-3.202751	6.677648	3.H	3.360204	-0.763558	1.895706
4.N	-4.250841	-4.905331	5.715097	4.H	-0.449241	-0.863034	-2.976517
5 N	-4 861196	-3 236899	9 600409	5 H	1 280405	-3 310357	0 736888
6 N	-2.945247	-4 800594	8 718999	6 H	-0 170476	-5 166245	1 520492
7 C	-2.675310	-1 519675	7 405107	7 Cl	1 178569	0 168456	2 155637
9.0 8 H	-1 852054	-2 172513	7 703687	8 C	-0.616795	-4 251198	1 136424
9 H	-3 143757	-1 124670	8 309402	9.C	-1 692184	1 129464	1 152271
10 C	-4 774843	-1 395976	6 266849	10 H	-2 712741	1 533745	1 052171
11 H	-4 503692	-0 735370	5 428151	11 H	-1 009785	1 929698	1 441771
12 H	-4 951782	-0 736280	7 126774	12 H	5 324458	-2.433315	-2.259971
13 C	-2.998836	-2.842053	5 438769	13 H	6 741920	-2.388297	-0.239710
14 H	-1 987411	-3 141463	5 744026	14 H	4 060648	-2.500192	-3 838912
15 H	-2.865795	-2.075473	4 659036	15 C	0 197553	-3 216883	0.696856
16.C	-6.077903	-2.089215	5.973908	16.N	-0.279560	-2.058093	0.215096
17.C	-6.998372	-1.532939	5.087258	17.N	1.206806	1.586412	-0.858767
18 H	-6 740562	-0.635923	4 526362	18 N	-1 249268	0.525910	-0 114803
19.C	-8.243958	-2.131660	4.936854	19.C	-2.109456	-0.607361	-0.451973
20.H	-8.979257	-1.712161	4.251142	20.H	-3.155706	-0.435067	-0.156522
21.C	-8.526369	-3.275585	5.675993	21.C	0.102223	2.305213	-1.130793
22.H	-9.485956	-3.782868	5.596218	22.C	0.160332	3.666524	-1.419193
23.C	-7.548935	-3.780660	6.523259	23.H	-0.757564	4.215473	-1.622599
24.H	-7.706654	-4.686142	7.107162	24.C	1.391769	4.310979	-1.433678
25.C	-3.656209	-4.062529	4.853087	25.H	1.456298	5.376556	-1.650318
26.C	-3.554439	-4.344141	3.491686	26.C	2.532893	3.568954	-1.151739
27.H	-3.076267	-3.630803	2.822241	27.H	3.521119	4.024245	-1.139748
28.C	-4.061924	-5.543906	3.006254	28.C	2.391425	2.217475	-0.868029
29.H	-3.991066	-5.785066	1.946234	29.H	3.261307	1.610450	-0.629207
30.C	-4.662879	-6.423071	3.900865	30.C	-1.199831	1.548082	-1.159184
31.H	-5.075420	-7.375574	3.573501	31.H	-2.042636	2.253637	-1.091752
32.C	-4.744702	-6.060986	5.238857	32.H	-1.281495	1.065318	-2.140543
33.H	-5.226635	-6.698542	5.978238	33.C	-1.613672	-1.892920	0.159027
34.C	-3.932095	-3.583248	10.519298	34.C	-2.496773	-2.880920	0.587980
35.C	-4.025005	-3.150496	11.845892	35.H	-3.570120	-2.705476	0.538249
36.H	-3.276552	-3.435930	12.578736	36.C	-1.995148	-4.078860	1.083286
37.C	-5.093056	-2.356050	12.235609	37.H	-2.670368	-4.860149	1.429881
38.H	-5.178711	-2.018279	13.267255	38.N	1.422400	-1.190525	-2.175879
39.C	-6.052573	-2.011876	11.288566	39.C	0.551391	-1.225638	-3.190467
40.H	-6.916109	-1.401787	11.545911	40.C	0.849618	-1.690136	-4.464344
41.C	-5.893466	-2.477212	9.991084	41.C	2.138401	-2.152002	-4.706435
42.H	-6.630373	-2.244455	9.225980	42.H	0.086212	-1.687744	-5.240152
43.C	-2.852052	-4.454802	10.022363	43.H	2.426265	-2.525916	-5.687943
44.C	-1.806094	-4.921040	10.825272	44.C	3.053681	-2.133903	-3.665922
45.H	-1.736805	-4.636354	11.870672	45.C	2.668896	-1.651004	-2.407937
46.C	-0.848360	-5.765195	10.283101	46.N	3.057823	-1.164319	-0.094266
47.H	-0.032297	-6.138298	10.900046	47.C	3.583812	-1.629359	-1.250455
48.C	-0.958702	-6.131745	8.945387	48.C	4.909374	-2.070370	-1.325077
49.H	-0.242108	-6.802738	8.475968	49.C	5.708780	-2.046698	-0.191092
50.C	-2.020844	-5.625868	8.209660	50.C	5.160710	-1.581043	0.998129
51.H	-2.150068	-5.899470	7.165182	51.C	3.840692	-1.149859	0.997824
52.N	-3.661985	-2.286870	6.627994	52.H	5.739073	-1.543390	1.919316
53.H	-2.261166	-0.676678	6.829625	53.H	-1.670457	0.382904	1.947165

Table S5. Bond energies an	d coordinates of the optimized	structures of [3]	²⁺ _{fac} and [3] ²	2+ mer
----------------------------	--------------------------------	-------------------	--	-----------

$[3]^{2+}$ fac E =	= -7880.35 k	cal/mol		$[3]^{2+}$ mer E	= -7888.61	kcal/mol	
1.N	-1.257881	-1.556936 -	0.933532	1.Co	0.883410	-0.387903	-0.117866
2.C	-1.796961	-0.999977 -2	2.212091	2.H	-2.169401	-0.784362	-1.395651
3.C	-1.938285	0.468333 -2	2.100484	3.H	2.966779	-0.903247	2.038423
4.C	-2.877227	1.221295 -2	2.797532	4.H	-0.812286	-1.096596	-2.814957
5 C	-2.919069	2 595655 -2	2 604635	5 H	1 585563	-3 156498	0 964154
6.C	-2 045471	3 162100 -	1 680932	6 H	0.253872	-5 168991	1 502979
0.C	-1 138599	2 347343	1.021805	7 S	0.255672	0 187927	2 023461
9.0 8 N	-1 045357	1 023313	1.258463	8 C	-0 244253	-4 276639	1 129375
9.0	-2 346005	-1 712954 (0.076091	9.C	-1 265360	1 210287	1.086199
10 C	-2 288864	-0.677590	1 165932	10 H	-2 347751	1 406850	1 080348
10.0 11 N	-1 189680	0.100727	1 218419	11 H	-0 739757	2 165911	1.008815
12 C	-1 073286	0.995279	2 216401	12 C	-0 784950	0.499868	2 315528
12.C	-2 044685	1 156119	3 191834	12.C 13 H	-1 343051	-0.414836	2.515520
14 C	-3 188805	0 364694	3 133417	14 H	-0 864142	1 167200	3 183278
14.C	-3.100805	0.563613	2 1070/2	15 C	-0.804142	3 15/010	0.825541
15.C	-0.632044	-0.303013	1 287007	15.C 16 N	-0.037762	-2 010315	0.356440
10.C	0.585630	-2.680497	-1.207997	10.N 17 N	1 /07100	1 /03017	-0.684237
17.C	1 207002	1 012581	1 087658	17.IN 18 N	0.033226	0.410244	0.162117
10.5 10 Co	0.003/07	-1.013381 -	0.271247	10.IN	1 023802	0.419244	-0.102117
19.C0 20 C	2 288064	-0.241555	1 /60060	20 H	-1.923892	-0.070905	0 162464
20.C	2.288004	1 22888	2 470000	20.11 21 C	-2.80/4//	-0.422290	1 238657
21.C	2.083333	-1.220000	2.4/0333	21.C 22.C	0.574300	2.111334	1 706806
22.C	2.092339	-2.393917	2.100057	22.C 22 LI	0.370231	3.407280	-1.700890
23.C	0.740049	-2.972795	1 707542	23.11 24 C	-0.271980	4 002687	1 602574
24.C 25 N	0.740946	-2.3/4239	1.727343	24.C	1.022347	4.003087	1.003374
23.N	1.129007	-1.2/1/13	1.003/30	23.П 26.С	1.965290	2.018/44	-1.903932
20.C	2.00/449	0.343212	0.740081	20.C	2.031009	3.28/223	-1.004/88
27.C	3.818939	1.220905	0.851259	27.H	3.842070	3./1/240	-0.8/2100
28.C	4.000102	2.322084	0.03/2/9	28.C	2.004488	1.999940	-0.550054
29.C	5.100805	2.078773 - 1.064274	0.8904/0	29.П 20.С	3.362297	1.451918	-0.033202
50.C	1.913307	1.904574 -	0.944//9	21 II	-0.9100/0	1.388920	-1.200904
22 II	1.050181	0.946217 -	2 002100	ЭТ.П 22 Ц	-1./0084/	2.080012	-1.214233
32.E	-1.030419	-1.204440 -	-2.995100	32.П 22.С	-1.010019	0.839130	-2.23/10/
33.П 24 Ц	-2./30448	-1.498300 -	-2.4/9404	33.C	-1.3/9133	-1.900018	0.199420
34.П 25 Ц	-3.300994	0.727071 - 2.210501	-3.4/9334	24.U	-2.190/92	-3.032330	0.494303
33.П 26 Ц	-3.037732	3.210301 -	1 459445	33.П 26 С	-5.2/4512	-2.909270	0.303246
30.П 27 Ц	-2.005550	4.227230 -	0.078001	27 H	-1.024003	-4.229149	1 200406
37.П 29 П	-0.40/934	2.704045 -	0.278221	37.П 29 М	-2.240//1	-3.089984	1.200490
30.П 20.Ц	-2.207736	-2./109/2	0.324965	20.C	1.125510	-1.091388	-2.0/10/1
39.П 40 Ц	-3.32/340	-1.000499 -	-0.412550	39.C	0.229012	-1.208014	-3.030931
40.H	-0.10/324	1.390980	2.223493	40.C	0.333003	-1.00/208	-4.343323
41.H	-1.901642	0.467022	2.970092	41.C	0.020520	-1.69/300	-4.030812
42.E	-3.9/0/22	0.407925	2.025015	42.EL	-0.232336	-1./8/9/0	-3.080/09
43.H	-4.189830	-1.201327	2.055915	43.H	2.19/344	-2.191131	-3.03330/
44.N	-0.346306	-3.5/0389 -	-0.502039	44.C	2.824020	-1.//2380	-3.034137
43.H	-1.392800	-3.304901 -	-1.//0399	45.C	2.413278	-1.392990	-2.332881
46.H	0.3449/3	-2.818248 -	-3.236/74	46.N	2.724889	-1.054139	-0.01640/
4/.H	1.339/18	-3.433290 -	·1.919403 2 765291	47.C	3.314933	-1.3/3013	-1.199410
48.H	4.005147	-0./36194	2.765381	48.C	4.665372	-1./23//3	-1.26/041
49.H	5.5085/5	-2.855425	3.889333 2.211022	49.C	5.450021 4.912450	-1.///000	-0.111038
50.H	1.100343	-3.8/4101	3.211933 1.457090	50.C	4.813438	-1.48/862	1.099551
51.H	-0.216500	-2./99900	1.45/989	51.0	5.4/3044	-1.150484	1.102936
52.H	4.581502	0.88/111	1.545385	52.H	5.101064	-1.529209	2.044471
53.H	5.009767	2.801066	0.105293	53.H	5.121264	-1.966469	-2.2215/8
54.H	5.259107	3.491/3/ -	1.002218	54.H	6.483217	-2.050557	-0.156795
55.H	1.1/56/3	2.194877 -	1./03434	33.H	3.869016	-1.985257	-3.839306

Figure S15. Several frontier orbitals of [1*] associated with Co d-orbitals along with their energies, orbital visualization, and orbital composition.

Figure S16. Several frontier orbitals of $[2^*]^+_{fac}$ associated with Co d-orbitals along with their energies, orbital visualization, and orbital composition.

Figure S17. Several frontier orbitals of $[2^*]^+_{mer}$ associated with Co d-orbitals along with their energies, orbital visualization, and orbital composition.

Figure S18. Several frontier orbitals of $[3]^{2+}_{mer}$ associated with Co d-orbitals along with their energies, orbital visualization, and orbital composition.

Figure S19. Several frontier orbitals of [4]²⁺ associated with Co d-orbitals along with their energies, orbital visualization, and orbital composition.