Supporting Information

Contents

Supporting Information	1
General considerations	3
Synthesis and characterization of arylpyridine ligands	4
2-(3,5-Difluorophenyl)pyridine (1c)	5
2-(4-Methylphenyl)-4-(trifluoromethyl)pyridine (1d)	10
2-(4-(Trifluoromethyl)phenyl)pyridine (1e)	15
2-(3,5-Bis(trifluoromethyl)phenyl)pyridine (1f)	20
2-(3-Trifluoromethyl)phenyl)pyridine (1g)	25
2-(3,5-Dimethylphenyl)pyridine (1h)	29
6-Methyl-2-(4-methylphenyl)pyridine (1i)	33
2-(3,5-Dimethoxyphenyl)pyridine (1j)	37
2-(4-Methoxyphenyl)pyridine (1k)	41
4-Methoxy-2-(4-methylphenyl)pyridine (1l)	45
6-Methoxy-2-(4-methylphenyl)pyridine (1m)	49
3-Methoxy-2-(4-methylphenyl)pyridine (1n)	53
2-(4-Nitrophenyl)pyridine (1o)	57
3-Nitro-2-(4-methylphenyl)pyridine (1p)	61
2-(3,5-dichlorophenyl)pyridine (1q)	65
2-(2,2'',3,3'',4,4'',5,5'',6,6''-decafluoro-[1,1':3',1''-terphenyl]-5'-yl)pyridine (1r)	68
2-(3,5-diisopropylphenyl)pyridine (1s)	72
2-(3,5-diethylphenyl)pyridine (1t)	76
2-(3,5-diethylphenyl)pyridine (1u)	80
Synthesis and characterization of Au(III) complexes	83
2c-Au(OAc ^F) ₂	83
2d-Au(OAc ^F) ₂	87
2e-Au(OAc ^F) ₂	92
1f-Au(OAc ^F) ₃	96
$2g-p-Au(OAc^{F})_{2}$ and $2g-o-Au(OAc^{F})_{2}$	102
2h-Au(OAc ^F) ₂	108

2i-Au(OAc ^F) ₂	114
Attempted synthesis of 2j-Au(OAc ^F) ₂	119
2k-Au(OAc ^F) ₂	121
2I-Au(OAc ^F) ₂	125
2m-Au(OAc ^F) ₂	130
2n-Au(OAc ^F) ₂	135
2o-Au(OAc ^F) ₂	140
2p-Au(OAc ^F) ₂	144
2r-Au(OAc ^F) ₂	149
3s-AuOAc ^F	154
3t-AuOAc ^F	159
2u-p-Au(OAc ^F) ₂ and 3u-AuOAc ^F	165
¹ H- ¹⁵ N HMBC spectra of previously reported Au(III) complexes	170
Crystallographic methods	180
Computational details	222
Formal Charge Analysis calculations	223
DFT calculations on the formation of 2s-Au(OAc F) ₂	225
DFT calculations on the formation of 3u-AuOAc ^F	225
Optimized Cartesian coordinates (in Å) and energies (G, in Hartrees)	227
References	292

General considerations

2a-Au(OAc^F)₂,^[1] 3b-AuOAc^F,^[2] 2a-Au(OAc)₂,^[3, 4] 2a-Au(CH₂=CHCH₂)Br,^[5] 2a-Au(C₆H₅)Br,^[1] 2a-Au(CH₃)Br,^[1] **2a-Au(CH₃)**₂,^[1] 3,5-diethylphenylboronic acid^[6, 7] and 3,5-diisopropylphenylboronic acid^[6, 7] were synthesized according to literature procedures. Au(OAc)₃ was obtained from abcr. THF (unstabilized) and CH₂Cl₂ were dried using an MB SPS-800 solvent purifier system from MBraun. Hexanes and ethyl acetate were distilled before use. Deionized water was used. Other chemicals and solvents were used as received from commercial sources. TLC was performed using Merck 60 F254 plates. Flash chromatography was performed using silica gel from Merck (60, 0.040-0.063 mm). Microwave reactions were performed with a Milestone MicroSYNTH microwave reactor with a SK-10 rotor or, for reaction volumes smaller than 10 mL, in an Anton Paar GmbH Monowave 300 synthesis reactor equipped with an internal IR probe calibrated with a Ruby thermometer. NMR spectroscopy was performed using Bruker Avance DPX300, AVII400, AVIIIHD400, DRX500, AVI600, AVI600 or AVIIIHD800 operating at 300 MHz (¹H NMR), or 400 MHz (¹H NMR), 376 MHz (¹⁹F NMR), 101 MHz (¹³C NMR), or 500 MHz (¹H NMR), or 600 MHz (¹H NMR) and 151 MHz (¹³C NMR), or 800 MHz (¹H NMR) and 201 MHz (¹³C NMR) respectively. All spectra were recorded at room temperature. ¹H NMR and ¹³C NMR spectra have been referenced relative to the residual solvent signals. Chemical shifts in ¹⁹F NMR have been referenced to CFCl₃ by using C₆F₆ or C₆H₅F (−164.9 ppm and -116.1 ppm with respect to CFCl₃ at 0 ppm) as an internal standard, and are proton decoupled. Chemical shifts in ¹⁵N NMR have been calibrated against CH₃NO₂ as an external standard (0.0 ppm). All ¹⁵N NMR chemical shifts were obtained and assigned using ¹H-¹⁵N HMBC experiments. The resonances in the ¹H NMR and ¹³C NMR spectra were assigned using various 2D experiments (COSY, NOESY, HSQC and HMBC). MS (ESI and APPI) was recorded on a Bruker maXis II ETD spectrometer. All melting points are uncorrected and were obtained with a Stuart SMP10 melting point apparatus. Elemental analysis was performed by Mikroanalytisches Laboratorium Kolbe, Oberhausen, Germany.

Synthesis and characterization of arylpyridine ligands

General procedure for synthesis of arylpyridine ligands. 2-Bromopyridine or substituted 2bromopyridine (5.00 mmol, 1.0 equiv.) and arylboronic acid (4.75-5.50 mmol, 0.95-1.1 equiv.) were dissolved in *n*-PrOH (10 mL). A solution of K₃PO₄ (10.0-11.5 mmol, 2.0-2.3 equiv.) in water (10 mL) was added, and the resulting biphasic mixture was degassed for 10 min by bubbling Ar through it. Pd(OAc)₂ (0.100 mmol, 2.0 mol-%) and PPh₃ (0.300 mmol, 6.0 mol-%) were added, and the reaction mixture was heated at reflux temperature for 3 h under Ar. After cooling to rt, CH₂Cl₂ (50 mL) and water (50 mL) were added. The phases were separated, and the CH₂Cl₂ solution was washed with 2M NaOH (aq) (2x 50 mL), brine (50 mL), and was dried over Na₂SO₄. The solvent was removed under reduced pressure. The obtained residue was purified by flash column chromatography (hexanes/EtOAc, hexanes/CH₂Cl₂ or hexanes/EtOAc/CH₂Cl₂ mixtures), furnishing the arylpyridine ligand.

2-(3,5-Difluorophenyl)pyridine (1c). The general procedure was followed. 2-Bromopyridine (0.789 g, 4.99 mmol, 1.0 equiv.), 3,5-difluorophenylboronic acid (0.866 g, 5.48 mmol, 1.1 equiv.), K_3PO_4 (2.14 g, 10.1 mmol, 2.0 equiv.), Pd(OAc)₂ (0.0236 g, 0.105 mmol, 2.1 mol-%) and PPh₃ (0.0808 g, 0.308 mmol, 6.2 mol-%) were used. The crude product was purified by flash column chromatography (98 % hexanes/2 % EtOAc to 95 % hexanes/5 % EtOAc) yielding **1c** as a colorless solid.

Yield: 0.870 g, 4.55 mmol, 91 %.

M.p. 61-62 °C.

¹**H NMR** (600 MHz, CDCl₃): δ 8.70 (d, ³*J*_{H,H} = 4.8 Hz, 1H, H⁶), 7.78 (ddd, ³*J*_{H,H} = 7.8 Hz, ³*J*_{H,H} = 7.7 Hz, ⁴*J*_{H,H} = 1.8 Hz, 1H, H⁴), 7.69 (d, ³*J*_{H,H} = 7.9 Hz, 1H, H³), 7.53-7.57 (m, 2H, H²'), 7.29 (ddd, ³*J*_{H,H} = 7.4 Hz, ³*J*_{H,H} = 4.8 Hz, ⁴*J*_{H,H} = 0.9 Hz, 1H, H⁵), 6.85 ppm (m, 1H, H⁴').

¹³**C NMR** (151 MHz, CDCl₃): δ 163.4 (dd, ¹*J*_{C,F} = 248.1 Hz, ³*J*_{C,F} = 12.4 Hz, **C**³), 154.8 (m, **C**²) 149.8 (**C**⁶), 142.7 (m, **C**¹), 137.0 (**C**⁴), 123.2 (**C**⁵), 120.5 (**C**³), 109.6-109.8 (m, **C**²), 104.1 ppm (m, **C**⁴).

¹⁹**F NMR** (376 MHz, CDCl₃): δ –112.8 ppm (Ar-**F**).

¹⁵N{¹H} NMR (600 MHz, CDCl₃): δ –72.2 ppm (N¹).

MS (ESI): *m/z* (rel. %): 192.062 (100) [M+H]⁺.

HRMS (ESI): Found 192.0619; calcd for C₁₁H₈F₂N [M+H]⁺: 192.0619.

The NMR data are in accordance with those reported in the literature.^[8]

Figure S1. ¹H NMR (600 MHz, CDCl₃) of **1c**.

Figure S2. 13 C NMR (151 MHz, CDCl₃) of **1c**.

Figure S3. ^{19}F NMR (376 MHz, CDCl₃) of 1c.

Figure S4. ${}^{1}H{}^{-15}N$ HMBC (600 MHz, CD₂Cl₂) of **1c**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(4-Methylphenyl)-4-(trifluoromethyl)pyridine (1d). The general procedure was followed. 2-Bromo-4-(trifluoromethyl)pyridine (1.14 g, 5.04 mmol, 1.0 equiv.), 4-methylphenylboronic acid (0.790 g, 5.81 mmol, K₃PO₄ (2.15 g, 10.1 mmol, 2.0 equiv.), Pd(OAc)₂ (0.0230 g, 0.102 mmol, 2.0 mol-%) and PPh₃ (0.0808 g, 0.308 mmol, 6.1 mol-%) were used. The crude product was purified by flash column chromatography (99 % hexanes/1 % EtOAc to 98 % hexanes/2 % EtOAc) yielding **1d** as a pale yellow oil.

Yield: 1.03 g, 4.35 mmol, 86 %.

¹**H NMR** (600 MHz, CDCl₃): δ 8.84 (d, ${}^{3}J_{H,H}$ = 5.0 Hz, 1H, H⁶), 7.93 (d, ${}^{3}J_{H,H}$ = 8.2 Hz, 2H, H²), 7.90 (s, 1H, H³), 7.41 (d, ${}^{3}J_{H,H}$ = 4.7 Hz, 1H, H⁵), 7.31 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 2H, H³), 2.42 ppm (s, 3H, CH₃).

¹³**C** NMR (151 MHz, CDCl₃): δ 158.8 (**C**²), 150.5 (**C**⁶), 140.0 (**C**^{4'}), 139.0 (q, ²*J*_{C,F} = 33.8 Hz, **C**⁴), 135.3 (**C**^{1'}), 129.7 (**C**^{3'}), 126.9 (**C**^{2'}), 123.0 (q, ¹*J*_{C,F} = 273.3 Hz, **C**F₃), 117.2 (q, ³*J*_{C,F} = 3.3 Hz, **C**⁵), 115.7 (q, ³*J*_{C,F} = 3.4 Hz, **C**³), 21.3 ppm (**C**H₃).

¹⁹**F NMR** (376 MHz, CDCl₃): δ –68.0 ppm (C**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –64.9 ppm (N¹).

MS (ESI): m/z (rel. %): 238.084 (100) [M+H]⁺.

HRMS (ESI): Found 238.0838; calcd for C₁₃H₁₁F₃N [M+H]⁺: 238.0838.

The NMR data are in accordance with those reported in the literature.^[9]

Figure S5. ¹H NMR (600 MHz, CDCl₃) of 1d.

Figure S6. 13 C NMR (151 MHz, CDCl₃) of **1d**.

Figure S7. 19 F NMR (376 MHz, CDCl₃) of **1d**.

Figure S8. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1d**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(4-(Trifluoromethyl)phenyl)pyridine (1e). The general procedure was followed. 2-Bromopyridine (0.802 g, 5.07 mmol, 1.0 equiv.), 4-(trifluoromethyl)phenylboronic acid (1.05 g, 5.52 mmol, 1.1 equiv.), K_3PO_4 (2.15 g, 10.1 mmol, 2.0 equiv.), $Pd(OAc)_2$ (0.0211 g, 0.0940 mmol, 1.8 mol-%) and PPh₃ (0.0783 g, 0.298 mmol, 5.9 mol-%) were used. The obtained crude product was purified by flash column chromatography (50 % hexanes/50 % CH₂Cl₂), furnishing **1e** as a colorless solid.

Yield: 1.04 g, 4.66 mmol, 92 %.

M.p. 75-76 °C (Lit.^[10]: 70-72 °C).

¹**H NMR** (800 MHz, CDCl₃): δ 8.73 (d, ³*J*_{H,H} = 4.5 Hz, 1H, H⁶), 8.12 (d, ³*J*_{H,H} = 8.2 Hz, 2H, H²'), 7.80 (ddd, ³*J*_{H,H} = 7.6 Hz, ³*J*_{H,H} = 7.6 Hz, ⁴*J*_{H,H} = 1.8 Hz, 1H, H⁴), 7.77 (d, ³*J*_{H,H} = 7.9 Hz, 1H, H³), 7.73 (d, ³*J*_{H,H} = 8.2 Hz, 2H, H³'), 7.30 ppm (ddd, ³*J*_{H,H} = 7.3 Hz, ³*J*_{H,H} = 4.8 Hz, ⁴*J*_{H,H} = 1.2 Hz, 1H, H⁵).

¹³**C NMR** (201 MHz, CDCl₃): δ 155.9 (**C**²), 149.9 (**C**⁶), 142.7 (**C**¹), 137.0 (**C**⁴), 130.8 (q, ²*J*_{C,F} = 32.5, **C**⁴), 127.2 (**C**²), 125.6-126.7 (m, **C**³), 124.2 (q, ¹*J*_{C,F} = 271.8 Hz, **C**F₃), 122.9 (**C**⁵), 120.8 ppm (**C**³).

¹⁹**F NMR** (376 MHz, CDCl₃): δ –65.8 ppm (C**F**₃).

¹⁵N{¹H} NMR (600 MHz, CDCl₃): δ –71.1 ppm (N¹).

MS (ESI): *m/z* (rel. %): 224.068 (100) [M+H]⁺.

HRMS (ESI): Found 224.0681; calcd for C₁₂H₉F₃N [M+H]⁺: 224.0682.

The NMR data are in accordance with those reported in the literature.^[10]

Figure S9. ¹H NMR (800 MHz, CDCl₃) of 1e.

Figure S10. 13 C NMR (201 MHz, CDCl₃) of **1e**.

Figure S11. ¹⁹F NMR (376 MHz, CDCl₃) of **1e**.

Figure S12. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1e**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(3,5-Bis(trifluoromethyl)phenyl)pyridine (1f). The general procedure was followed. 2-Bromopyridine (1.58 g, 10.0 mmol, 1.0 equiv.), 3,5-bis(trifluoromethyl)phenylboronic acid (2.84 g, 11.0 mmol, 1.1 equiv.), K_3PO_4 (4.25 g, 20.0 mmol, 2.0 equiv.), Pd(OAc)₂ (0.0451 g, 0.201 mmol, 2.0 mol-%) and PPh₃ (0.158 g, 0.602 mmol, 6.0 mol-%) in *n*-PrOH (20 mL) and water (20 mL) were used. The crude product was purified by flash column chromatography (75 % hexanes/25 % CH₂Cl₂), furnishing **1f** as a colorless solid.

Yield: 2.70 g, 9.26 mmol, 92 %.

M.p. 48-49 °C (Lit.^[11]: 45-46 °C).

¹H NMR (600 MHz, CD₂Cl₂): δ 8.76 (d, ³J_{H,H} = 4.8 Hz, H⁶), 8.56 (s, 2H, H²'), 7.96 (s, 1H, H⁴'), 7.88-7.89 (m, 2H, H⁴ + H³), 7.37-7.41 ppm (m, 1H, H⁵).

¹³**C NMR** (151 MHz, CD_2Cl_2): δ 154.2 (**C**²), 150.5 (**C**⁶), 141.8 (**C**^{1'}), 137.6 (**C**³ or **C**⁴), 132.2 (q, ²J_{C,F} = 33.3, **C**^{3'}), 127.3-127.4 (m, **C**^{2'}), 124.0 (**C**⁵), 123.9 (q, ¹J_{C,F} = 272.7 Hz, **C**F₃), 122.7-122.8 (m, **C**^{4'}), 120.9 ppm (**C**³ or **C**⁴).

¹⁹F NMR (188 MHz, CD₂Cl₂): δ –65.4 ppm (CF₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –72.5 ppm (N¹).

MS (ESI): *m/z* (rel. %): 292.056 (100) [M+H]⁺.

HRMS (ESI): Found 292.0555; calcd for $C_{13}H_8F_6N [M+H]^+$: 292.0555.

The NMR data are in accordance with those reported in the literature.^[11]

Figure S13. ¹H NMR (600 MHz, CD₂Cl₂) of **1f**.

Figure S14. 13 C NMR (151 MHz, CD₂Cl₂) of **1f**.

Figure S15. $^{19}\mathsf{F}$ NMR (188 MHz, CD₂Cl₂) of $\mathbf{1f}.$

Figure S16. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1f**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(3-(Trifluoromethyl)phenyl)pyridine (1g). The general procedure was followed. 2-Bromopyridine (0.673 g, 4.26 mmol, 1.0 equiv.), 3-(trifluoromethyl)phenylboronic acid (0.891 g, 4.69 mmol, 1.1 equiv.), K_3PO_4 (2.12 g, 10.0 mmol, 2.3 equiv.), Pd(OAc)₂ (0.0187 g, 0.0883 mmol, 2.0 mol-%) and PPh₃ (0.0664 g, 0.253 mmol, 6.0 mol-%) were used. The obtained crude product was purified by flash column chromatography (90 % hexanes/10 % EtOAc), furnishing **1g** as a pale yellow oil.

Yield: 0.801 g, 3.59 mmol, 84 %.

¹**H NMR** (600 MHz, CDCl₃): δ 8.73 (d, ³*J*_{H,H} = 4.7 Hz, 1H, H⁶), 8.29 (s, 1H, H²), 8.18 (d, ³*J*_{H,H} = 7.8 Hz, 1H, H⁶), 7.78-7.81 (m, 1H, H⁴), 7.76 (d, ³*J*_{H,H} = 7.8 Hz, 1H, H³), 7.67 (d, ³*J*_{H,H} = 7.6 Hz, 1H, H⁴), 7.58-7.61 (m, 1H, H⁵), 7.28-7.30 ppm (m, 1H, H⁵).

¹³**C** NMR (151 MHz, CDCl₃): δ 155.8 (**C**²), 149.9 (**C**⁶), 140.1 (**C**^{1'}), 136.9 (**C**⁴), 131.2 (q, ²*J*_{C,F} = 32.1 Hz, **C**^{3'}), 130.0 (**C**^{6'}), 129.2 (**C**^{5'}), 125.5 (q, ³*J*_{C,F} = 3.9 Hz, **C**^{4'}), 124.4 (q, ¹*J*_{C,F} = 272.5 Hz, **C**F₃), 123.8 (q, ³*J*_{C,F} = 3.9 Hz, **C**^{2'}), 122.8 (**C**⁵), 120.5 ppm (**C**³).

¹⁹**F NMR** (376 MHz, CDCl₃): δ –65.8 ppm (Ar-C**F**₃).

MS (ESI): m/z (rel. %): 246.050 (36) [M+Na]⁺.

HRMS (ESI): Found 246.0501; calcd for C₁₂H₈F₃NNa [M+Na]⁺: 246.0501.

The NMR data are in accordance with those reported in the literature.^[11]

Figure S17. ¹H NMR (600 MHz, CDCl₃) of **1g**.

Figure S18. $^{\rm 13}{\rm C}$ NMR (151 MHz, CDCl₃) of ${\rm 1g}.$

Figure S19. 19 F NMR (376 MHz, CDCl₃) of **1g**.

2-(3,5-Dimethylphenyl)pyridine (1h). The general procedure was followed. 2-Bromopyridine (0.816 g, 5.16 mmol, 1.0 equiv.), 3,5-dimethylphenylboronic acid (0.867 g, 5.67 mmol, 1.1 equiv.), K_3PO_4 (2.16 g, 10.2 mmol, 2.0 equiv.), Pd(OAc)₂ (0.0241 g, 0.107 mmol, 2.0 mol-%) and PPh₃ (0.0830 g, 0.316 mmol, 6.1 mol-%) were used. The crude product was purified by flash column chromatography (1:1 CH₂Cl₂:95 % hexanes/5 % EtOAc), furnishing **1h** as a pale yellow oil.

Yield: 0.875 g, 4.77 mmol, 93 %.

¹**H NMR** (400 MHz, CDCl₃): δ 8.68 (d, ³*J*_{H,H} = 4.8 Hz, 1H, H⁶), 7.69-7.75 (m, 2H, H³ + H⁴), 7.60 (s, 2H, H²), 7.21 (ddd, ³*J*_{H,H} = 6.3 Hz, ³*J*_{H,H} = 4.8 Hz, ⁴*J*_{H,H} = 2.2 Hz, 1H, H⁵), 7.06 (s, 1H, H⁴), 2.40 (s, 6H, CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 157.8 (C²), 149.5 (C⁶), 139.3 (C¹), 138.3 (C³), 136.6 (C³ or C⁴), 130.6 (C⁴), 124.7 (C²), 121.9 (C⁵), 120.6 (C³ or C⁴), 21.4 (CH₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –72.6 ppm (N¹).

MS (ESI): *m/z* (rel. %): 184.112 (100) [M+H]⁺.

HRMS (ESI): Found 184.1120; calcd for C₁₃H₁₄N [M+H]⁺: 184.1121.

The NMR data are in accordance with those reported in the literature.^[12]

Figure S20. ¹H NMR (400 MHz, CDCl₃) of **1h**.

Figure S21. ^{13}C NMR (101 MHz, CDCl₃) of 1h.

Figure S22. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1h**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

6-Methyl-2-(4-methylphenyl)pyridine (1i). The general procedure was followed. 2-Bromo-6methylpyridine (0.737 g, 4.26 mmol, 1.0 equiv.), 4-methylphenylboronic acid (0.638 g, 4.69 mmol, 1.1 equiv.), K_3PO_4 (2.12 g, 10.0 mmol, 2.3 equiv.), $Pd(OAc)_2$ (0.0187 g, 0.0883 mmol, 2.0 mol-%) and PPh₃ (0.0664 g, 0.253 mmol, 5.9 mol-%) were used. The obtained crude product was purified by flash column chromatography (1:2 CH₂Cl₂:95 % hexanes/5 % EtOAc), furnishing **1i** as a colorless oil.

Yield: 0.717 g, 3.91 mmol, 92 %.

¹H NMR (600 MHz, CDCl₃): δ 7.89 (d, ${}^{3}J_{H,H}$ = 8.3 Hz, 2H, H²), 7.59-7.62 (m, 1H, H⁴), 7.49 (d, ${}^{3}J_{H,H}$ = 7.9 Hz, 1H, H³), 7.27 (d, ${}^{3}J_{H,H}$ = 8.3 Hz, 2H, H³), 7.06 (d, ${}^{3}J_{H,H}$ = 8.3 Hz, 1H, H⁵), 2.62 (s, 3H, pyr-CH₃), 2.40 ppm (s, 3H, Ar-CH₃).

¹³**C NMR** (151 MHz, CDCl₃): δ 158.2 (**C**⁶), 156.9 (**C**²), 138.6 (**C**⁴), 137.0 (**C**¹), 136.7 (**C**⁴), 129.4 (**C**³), 126.8 (**C**²), 121.2 (**C**⁵), 117.2 (**C**³), 24.8 (pyr-**C**H₃), 21.2 ppm (Ar-**C**H₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ -73.5 ppm (N¹).

MS (ESI): *m/z* (rel. %): 184.112 (100) [M+H]⁺.

HRMS (ESI): Found 184.1121; calcd for $C_{13}H_{14}N [M+H]^+$: 184.1121.

The NMR data are in accordance with those reported in the literature.^[13]

Figure S23. ¹H NMR (600 MHz, CDCl₃) of **1i**.

Figure S24. $^{\rm 13}{\rm C}$ NMR (151 MHz, CDCl₃) of **1i**.

Figure S25. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **1i**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(3,5-Dimethoxyphenyl)pyridine (1j). The general procedure was followed. 2-Bromopyridine (0.781 g, 4.94 mmol, 1.0 equiv.), 3,5-dimethoxyphenylboronic acid (0.998 g, 5.48 mmol, 1.1 equiv.), K₃PO₄ (2.13 g, 10.0 mmol, 2.0 equiv.), Pd(OAc)₂ (0.0225 g, 0.100 mmol, 2.0 mol-%) and PPh₃ (0.0788 g, 0.300 mmol, 6.0 mol-%) were used. The crude product was purified by flash column chromatography (80 % hexanes/20 % EtOAc), yielding **1j** as a pale yellow oil.

Yield: 0.923 g, 4.29 mmol, 87 %.

¹**H NMR** (600 MHz, CDCl₃): δ 8.68-8.69 (m, 1H, H⁶), 7.75 (dd, ³*J* = 7.9 Hz, ³*J*_{H,H} = 7.5 Hz, ⁴*J*_{H,H} = 1.9 Hz, 1H, H⁴), 7.69-7.71 (m, 1H, H³), 7.24 (ddd, ³*J* = 7.3 Hz, ³*J*_{H,H} = 4.9 Hz, ⁴*J*_{H,H} = 1.2 Hz, 1H, H⁵), 7.15 (d, ⁴*J*_{H,H} = 2.3 Hz, 1H, H^{2'}), 6.53 (m, 1H, H^{4'}), 3.87 ppm (s, 6H, OCH₃).

¹³**C NMR** (151 MHz, CDCl₃): δ 161.0 (**C**^{3′}), 157.1 (**C**²), 149.5 (**C**⁶), 141.5 (**C**^{1′}), 136.8 (**C**⁴), 122.4 (**C**⁵), 120.8 (**C**³), 104.8 (**C**^{2′}), 101.3 (**C**^{4′}), 55.5 ppm (OCH₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ -72.3 ppm (N¹).

MS (ESI): m/z (rel. %): 216.102 (100) [M+H]⁺, 238.084 (100) [M+Na]⁺.

HRMS (ESI): Found 216.1019; calcd for $C_{13}H_{14}NO_2$ [M+H]⁺: 216.1019.

HRMS (ESI): Found 238.0838; calcd for C₁₃H₁₃NNaO₂ [M+Na]⁺: 238.0838.

The NMR data are in accordance with those reported in the literature.^[14]

Figure S26. ¹H NMR (600 MHz, CDCl₃) of **1j**.

Figure S27. ^{13}C NMR (151 MHz, CDCl₃) of 1j.

Figure S28. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1j**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(4-Methoxyphenyl)pyridine (1k). The general procedure was followed. 2-Bromopyridine (0.673 g, 4.26 mmol, 1.0 equiv.), 4-methoxyphenylboronic acid (0.713 g, 4.69 mmol, 1.1 equiv.), K_3PO_4 (2.12 g, 10.0 mmol, 2.3 equiv.), $Pd(OAc)_2$ (0.0187 g, 0.0883 mmol, 2.0 mol-%) and PPh_3 (0.0664 g, 0.253 mmol, 6.0 mol-%) were used. The obtained crude product was purified by flash column chromatography (70 % hexanes/30 % EtOAc), furnishing **1k** as a pale yellow solid.

Yield: 0.666 g, 3.60 mmol, 85 %.

¹**H NMR** (600 MHz, CDCl₃): δ 8.65 (m, 1H, H⁶), 7.95 (d, ³*J*_{H,H} = 8.8 Hz, 2H, H²), 7.71 (ddd, ³*J*_{H,H} = 7.9 Hz, ³*J*_{H,H} = 7.3 Hz, ⁴*J*_{H,H} = 1.8 Hz, 1H, H⁴), 7.67 (d, ³*J*_{H,H} = 7.9 Hz, 1H, H³), 7.17 (ddd, ³*J*_{H,H} = 7.3 Hz, ³*J*_{H,H} = 4.8 Hz, ⁴*J*_{H,H} = 1.1 Hz, 1H, H⁵), 7.00 (d, ³*J*_{H,H} = 8.8 Hz, 2H, H^{3'}), 3.86 ppm (s, 3H, Ar-OCH₃).

¹³**C NMR** (151 MHz, CDCl₃): δ 160.4 (**C**⁴), 157.1 (**C**²), 149.5 (**C**⁶), 135.6 (**C**⁴), 132.0 (**C**¹), 128.1 (**C**²), 121.3 (**C**⁵), 119.7 (**C**³), 114.1 (**C**³), 55.3 ppm (Ar-O**C**H₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ -74.6 ppm (N¹).

MS (ESI): *m*/*z* (rel. %): 186.091 (100) [M+H]⁺.

HRMS (ESI): Found 186.0913; calcd for C₁₂H₁₂NO [M+H]⁺: 186.0913.

The NMR data are in accordance with those reported in the literature.^[15]

Figure S29. ¹H NMR (600 MHz, CDCl₃) of **1k**.

Figure S30. ^{13}C NMR (151 MHz, CDCl₃) of 1k.

Figure S31. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1k**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

4-Methoxy-2-(4-methylphenyl)pyridine (11). The general procedure was followed. 2-Bromo-4methoxypyridine (0.968 g, 5.15 mmol, 1.0 equiv.), 4-methylphenylboronic acid (0.782 g, 5.75 mmol, 1.1 equiv.), K_3PO_4 (2.19 g, 10.3 mmol, 2.0 equiv.), $Pd(OAc)_2$ (0.0236 g, 0.105 mmol, 2.0 mol-%) and PPh₃ (0.0824 g, 0.314 mmol, 6.1 mol-%) were used. The crude product was purified by flash column chromatography (CH₂Cl₂), furnishing **1** as a pale yellow solid.

Yield: 0.912 g, 4.58 mmol, 89 %.

M.p. 58-59 °C.

¹**H NMR** (600 MHz, CDCl₃): δ 8.50 (d, ${}^{3}J_{H,H}$ = 5.7 Hz, 1H, H⁶), 7.86 (d, ${}^{3}J_{H,H}$ = 8.1 Hz, 2H, H²), 7.27 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 2H, H³), 7.21 (d, ${}^{4}J_{H,H}$ = 2.4 Hz, 1H, H³), 6.75 (dd, ${}^{3}J_{H,H}$ = 5.7 Hz, ${}^{4}J_{H,H}$ = 2.4 Hz, 1H, H⁵), 3.90 (s, 3H, OCH₃), 2.40 ppm (s, 3H, CH₃).

¹³C NMR (151 MHz, CDCl₃): δ 166.3 (C⁴), 159.1 (C²), 150.8 (C⁶), 139.0 (C⁴), 136.5 (C¹), 129.4 (C³), 126.7 (C²), 107.8 (C⁵), 106.4 (C³), 55.1 (OCH₃), 21.3 ppm (CH₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –94.2 ppm (N¹).

MS (ESI): m/z (rel. %): 200.107 (100) [M+H]⁺.

HRMS (ESI): Found 200.1070; calcd for C₁₃H₁₄NO [M+H]⁺: 200.1070.

The NMR data are in accordance with those reported in the literature.^[16]

Figure S32. 1 H NMR (600 MHz, CDCl₃) of **1**.

Figure S33. ¹³C NMR (151 MHz, CDCl₃) of **1**.

Figure S34. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD_2Cl_2) of **1**. The chemical shifts have been calibrated using CH_3NO_2 as an external standard (blue star in the projection).

6-Methoxy-2-(4-methylphenyl)pyridine (1m). The general procedure was followed. 2-Bromo-6methoxypyridine (0.803 g, 4.27 mmol, 1.0 equiv.), 4-methylphenylboronic acid (0.638 g, 4.69 mmol, 1.1 equiv.), K_3PO_4 (2.12 g, 10.0 mmol, 2.3 equiv.), $Pd(OAc)_2$ (0.0187 g, 0.0883 mmol, 2.0 mol-%) and PPh_3 (0.0664 g, 0.253 mmol, 5.9 mol-%) were used. The obtained crude product was purified by flash column chromatography (98 % hexanes/2 % EtOAc), furnishing **1m** as a colorless oil.

Yield: 0.697 g, 3.50 mmol, 82 %.

¹**H NMR** (400 MHz, CDCl₃): δ 7.95 (d, ³*J*_{H,H} = 8.2 Hz, 2H, **H**^{2'}), 7.59-7.63 (m, 1H, **H**⁴), 7.32 (d, ³*J*_{H,H} = 7.4 Hz, 1H, **H**³), 7.25-7.28* (m, 2H, **H**^{3'}), 6.66 (d, ³*J*_{H,H} = 8.2 Hz, 1H, **H**⁵), 4.04 (s, 3H, OC**H**₃), 2.41 ppm (s, 3H, Ar-C**H**₃).

*The resonance was found to partially overlap with the resonance corresponding to residual CHCl₃ in the NMR solvent.

¹³C NMR (101 MHz, CDCl₃): δ 163.6 (C⁶), 154.7 (C²), 139.07 (C⁴), 138.77 (C^{4'}), 136.3 (C^{1'}), 129.3 (C^{3'}), 126.6 (C^{2'}), 112.4 (C³), 108.8 (C⁵), 53.1 (OCH₃), 21.2 ppm (Ar-CH₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –121.5 ppm (N¹).

MS (ESI): *m/z* (rel. %): 222.089 (100) [M+Na]⁺.

HRMS (ESI): Found 222.0887; calcd for C₁₃H₁₃NNaO [M+Na]⁺: 222.0889.

The NMR data are in accordance with those reported in the literature.^[17]

Figure S35. ¹H NMR (400 MHz, CDCl₃) of **1m**.

Figure S36. 13 C NMR (101 MHz, CDCl₃) of **1m**.

Figure S37. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1m**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

3-Methoxy-2-(4-methylphenyl)pyridine (1n). The general procedure was followed. 2-Bromo-3methoxypyridine (1.88 g, 10.0 mmol, 1.0 equiv.), 4-methylphenylboronic acid (1.36 g, 10.0 mol, 1.0 equiv.), K_3PO_4 (4.25 g, 20.0 mmol, 2.0 equiv.), $Pd(OAc)_2$ (0.0451 g, 0.201 mmol, 2.0 mol-%) and PPh_3 (0.158 g, 0.602 mmol, 6.0 mol-%) in *n*-PrOH (20 mL) and water (20 mL) were used. The crude product was purified by flash column chromatography (85 % hexanes/15 % EtOAc), furnishing **1n** as a yellow oil.

Yield: 1.47 g, 7.36 mmol, 74 %.

¹**H NMR** (600 MHz, CDCl₃): δ 8.31 (dd, ³*J*_{H,H} = 4.6 Hz, ⁴*J*_{H,H} = 1.3 Hz, 1H, **H**⁶), 7.83 (d, ³*J*_{H,H} = 8.2 Hz, 2H, **H**²), 7.26-7.28 (m, 3H, **H**⁴ + **H**^{3'}), 7.21 (dd, ³*J*_{H,H} = 8.3 Hz, ³*J*_{H,H} = 4.6 Hz, 1H, **H**⁵), 3.85 (s, 3H, OC**H**₃), 2.42 ppm (s, 3H, Ar-C**H**₃).

¹³**C NMR** (151 MHz, CDCl₃): δ 153.4 (**C**³), 148.2 (**C**²), 141.2 (**C**⁶), 138.1 (**C**⁴), 134.8 (**C**¹), 129.2 (**C**²), 128.6 (**C**³), 122.5 (**C**⁵), 118.3 (**C**⁴), 55.4 (OCH₃), 21.3 ppm (Ar-CH₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –63.9 ppm (N¹).

MS (ESI): m/z (rel. %): 200.107 (100) [M+H]⁺.

HRMS (ESI): Found 200.1069; calcd for $C_{13}H_{14}NO [M+H]^+$: 200.1070.

Figure S38. ¹H NMR (600 MHz, CDCl₃) of **1n**.

Figure S39. ^{13}C NMR (151 MHz, CDCl₃) of 1n.

Figure S40. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **1n**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(4-Nitrophenyl)pyridine (10). A suspension of 2-bromopyridine (0.795 g, 5.03 mmol, 1.0 equiv.), 4nitrophenylboronic acid (0.919 g, 5.51 mmol, 1.1 equiv.) and KF·2H₂O (1.60 g, 17.0 mmol, 3.4 equiv.) in THF (10 mL) was bubbled with Ar for 15 min. Pd₂dba₃ (0.121 g, 0.132 mmol, 2.6 mol-%) and HBF₄·P(*t*-Bu)₃ (0.0865 g, 0.298 mmol, 5.9 mol-%) were added under a flow of Ar, and the resulting suspension was heated at reflux temperature for 1 h under Ar. After cooling to rt, CH₂Cl₂ (50 mL in total) was added to the reaction mixture, and the solution was transferred to a round bottom flask, leaving insoluble inorganics behind. The solvent was removed under reduced pressure. The obtained residue was purified by flash column chromatography (1:2 CH₂Cl₂:95 % hexanes/5 % EtOAc, to 1:1 CH₂Cl₂:95 % hexanes/5 % EtOAc), yielding **10** as a pale yellow solid.

Yield: 0.636 g, 3.18 mmol, 63 %.

M.p. 131-132 °C (Lit.^[18]: 130-131 °C).

¹**H NMR (600 MHz, CDCl₃)**: δ 8.75 (d, ³*J*_{H,H} = 4.6 Hz, 1H, H⁶), 8.33 (d, ³*J*_{H,H} = 8.8 Hz, 1H, H^{3'}), 8.18 (d, ³*J*_{H,H} = 8.8 Hz, 1H, H^{2'}), 7.81-7.85 (m, 2H, H³ + H⁴), 7.34 ppm (ddd, ³*J*_{H,H} = 6.8 Hz, ³*J*_{H,H} = 4.8 Hz, ⁴*J*_{H,H} = 1.7 Hz, 1H, H⁵).

¹³C NMR (151 MHz, CDCl₃): δ 154.8 (C²), 150.1 (C⁶), 148.1 (C^{4'}), 145.2 (C^{1'}), 137.1 (C⁴), 127.7 (C^{2'}), 124.0 (C^{3'}), 123.5 (C⁵), 121.2 ppm (C³).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ -11.6 (NO₂), -71.0 ppm (N¹).

MS (ESI): *m/z* (rel. %): 201.066 (100) [M+H]⁺.

HRMS (ESI): Found 201.0658; calcd for $C_{11}H_9N_2O_2$ [M+H]⁺: 201.0659.

The NMR data are in accordance with those reported in the literature.^[19]

Figure S41. ¹H NMR (600 MHz, CDCl₃) of **10**.

Figure S42. ¹³C NMR (151 MHz, CDCl₃) of **10**.

Figure S43. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1o**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

3-Nitro-2-(4-methylphenyl)pyridine (1p). A suspension of 2-chloro-3-nitropyridine (4.03 g, 25.5 mmol, 1.0 equiv.), 4-methylphenylboronic acid (5.18 g, 38.1 mmol, 1.5 equiv.) and KF·2H₂O (11.4 g, 121 mmol, 4.7 equiv.) in THF (50 mL) was bubbled with Ar for 15 min. Pd_2dba_3 (1.19 g, 1.31 mmol, 5.1 mol-%) and HBF₄·P(*t*-Bu)₃ (0.913 g, 3.15 mmol, 12 mol-%) were added under a flow of Ar. The reaction mixture was heated at reflux temperature for 90 min under Ar. After cooling to rt, CH_2Cl_2 (100 mL) was added to the reaction mixture, and the suspension was filtered through Celite. The Celite was washed with additional CH_2Cl_2 (200 mL). The CH_2Cl_2/THF solution was washed with 2M NaOH (aq) (4x 100 mL), water (100 mL), brine (100 mL), and dried over Na_2SO_4 . The solvent was removed under reduced pressure. The obtained residue was purified by flash column chromatography, (1:2 $CH_2Cl_2:95$ % hexanes/5 % EtOAc), furnishing **14** as a pale yellow solid.

Yield: 3.67 g, 17.2 mmol, 67 %.

M.p. 63-64 °C.

¹**H NMR** (600 MHz, CDCl₃): δ 8.84 (dd, ³*J*_{H,H} = 4.6 Hz, ⁴*J*_{H,H} = 1.4 Hz, 1H, H⁶), 8.11 (dd, ³*J*_{H,H} = 8.1 Hz, ⁴*J*_{H,H} = 1.4 Hz, 1H, H⁴), 7.47 (d, ³*J*_{H,H} = 7.9 Hz, 2H, H^{2'}), 7.41 (dd, ³*J*_{H,H} = 8.1 Hz, ³*J*_{H,H} = 4.6 Hz, 1H, H⁵), 7.27 (d, ³*J*_{H,H} = 7.9 Hz, 2H, H^{3'}), 2.42 ppm (s, 3H, CH₃).

¹³**C NMR** (151 MHz, CDCl₃): δ 152.8 (**C**²), 152.1 (**C**⁶), 146.2 (**C**³), 140.1 (**C**^{4'}), 133.3 (**C**^{1'}), 132.1 (**C**⁴), 129.5 (**C**^{3'}), 128.0 (**C**^{2'}), 122.0 (**C**⁵), 21.4 ppm (**C**H₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –6.6 (NO₂), –59.4 ppm (N¹).

MS (ESI): m/z (rel. %): 215.082 (100) [M+H]⁺.

HRMS (ESI): Found 215.0815; calcd for C₁₂H₁₁N₂O₂ [M+H]⁺: 215.0815.

The NMR data are in accordance with those reported in the literature.^[20]

Figure S44. ¹H NMR (600 MHz, CDCl₃) of **1p**.

Figure S45. ^{13}C NMR (151 MHz, CDCl₃) of 1p.

Figure S46. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **1p**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(3,5-dichlorophenyl)pyridine (1q). The general procedure was followed. 2-Bromopyridine (3.95 g, 25.0 mmol, 1.0 equiv.), 3,5-dichlorophenylboronic acid (4.53 g, 23.8 mmol, 0.95 equiv.), K_3PO_4 (10.6 g, 49.9 mmol, 2.0 equiv.), Pd(OAc)₂ (0.112 g, 0.501 mmol, 2.0 mol-%) and PPh₃ (0.396 g, 1.51 mmol, 6.0 mol-%) in *n*-PrOH (50 mL) and water (50 mL) were used. The reaction mixture was refluxed for 75 min. The obtained crude product was purified by flash column chromatography (85 % hexanes/15 % EtOAc), furnishing **1q** as a colorless solid.

Yield: 5.20 g, 23.2 mmol, 98 %.

¹H NMR (600 MHz, CDCl₃): δ 8.69 (d, ³J_{H,H} = 4.8 Hz, 1H, H⁶), 7.89 (d, ⁴J_{H,H} = 1.9 Hz, 2H, H²), 7.76-7.78 (m, 1H, H⁴), 7.68 (d, ³J_{H,H} = 7.9 Hz, 1H, H³), 7.38-7.39 (m, 1H, H^{4'}), 7.28 ppm (ddd, ³J_{H,H} = 7.6 Hz, ³J_{H,H} = 4.8 Hz, ⁴J_{H,H} = 0.6 Hz, 1H, H⁵).

¹³C NMR (151 MHz, CDCl₃): δ 154.5 (C²), 149.9 (C⁶), 142.2 (C^{1′}), 137.0 (C⁴), 135.4 (C^{3′}), 128.7 (C^{4′}), 125.3 (C^{2′}), 123.2 (C⁵), 120.6 ppm (C³).

MS (ESI, MeCN): m/z (rel. %): 224.003 (100) [M+H]⁺.

HRMS (ESI, MeCN): Found 224.0028; calcd for C₁₁H₈Cl₂N [M+H]⁺: 224.0028.

The NMR data are in accordance with those reported in the literature.^[21]

Figure S47. ¹H NMR (600 MHz, CDCl₃) of **1q**.

Figure S48. ^{13}C NMR (151 MHz, CDCl₃) of 1q.

2-(2,2'',3,3'',4,4'',5,5'',6,6''-decafluoro-[1,1':3',1''-terphenyl]-5'-yl)pyridine (1r). The synthesis of **1r** was adapted from a literature procedure.^[22] K₂CO₃ (1.11 g, 8.00 mmol, 4.0 equiv.), Pd(OAc)₂ (0.0225 g, 0.100 mmol, 5.0 mol-%) and S-Phos (0.0821 g, 0.200 mmol, 10 mol-%) were added to a Schlenk flask, and flushed with Ar for 15 min. Pentafluorobenzene (1.00 g, 6.00 mmol, 3.0 equiv.) and *i*-PrOAc (4 mL) were added, followed by a solution of **1q** (0.448 g, 2.00 mmol, 1.0 equiv.) in *i*-PrOAc (2 mL). After flushing with Ar, the reaction flask was sealed and stirred at 80 °C for 14 h. After cooling to rt, insoluble material was separated from the reaction mixture by filtration. The solids were washed with additional *i*-PrOAc, and the washings were combined with the original filtrate. The solvent was removed under reduced pressure, and the obtained solid was purified by flash column chromatography (85 % hexanes/15 % EtOAc), followed by two-fold recrystallization from EtOH. **1r** was obtained as a colorless fluffy solid.

Yield: 0.356 g, 0.730 mmol, 37 %.

¹**H NMR** (600 MHz, CDCl₃): δ 8.72-8.73 (m, 1H, H⁶), 8.18 (s, 2H, H²), 7.78-7.83 (m, 2H, H⁴ + H³), 7.54 (s, 1H, H⁴), 7.31 ppm (ddd, ³J_{H,H} = 7.8 Hz, ³J_{H,H} = 4.8 Hz, ⁴J_{H,H} = 1.4 Hz, 1H, H⁵).

¹³**C NMR** (201 MHz, CDCl₃): δ 155.5 (**C**²), 150.0 (**C**⁶), 144.3 (d, ¹*J*_{C,F} = 248.5 Hz, Ar-**C**-F), 140.80 (d, ¹*J*_{C,F} = 254.8 Hz, Ar-**C**-F), 140.74 (**C**¹), 137.9 (d, ¹*J*_{C,F} = 251.3 Hz, Ar-**C**-F), 137.1 (**C**⁴), 132.0 (**C**⁴), 129.5 (**C**²), 127.6 (**C**³), 123.0 (**C**⁵), 120.6 (**C**³), 114.87-115.05 ppm (m, Ar-**C**-C-F).

¹⁹**F NMR (376 MHz, CDCl₃)**: δ –145.6 (dd, ${}^{3}J_{F,F}$ = 22.6 Hz, ${}^{4}J_{F,F}$ = 6.0 Hz, 4F, C₆**F**₅), –157.4 (dd, ${}^{3}J_{F,F}$ = 21.0 Hz, ${}^{3}J_{F,F}$ = 20.9 Hz, 2F, C₆**F**₅), –164.6 ppm (m, 4F, C₆**F**₅).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ -73.0 ppm (N¹).

MS (ESI): *m/z* (rel. %): 510.031 (100) [M+Na]⁺.

HRMS (ESI): Found 510.0311; calcd for C₂₃H₇F₁₀NNa [M+Na]⁺: 510.0311.

Elemental Analysis: Anal. calcd. For C₂₃H₇F₁₀N: C, 56.69; H, 1.45; N. 2.87. Found: C, 56.68; H, 1.44; N, 2.88.

Figure S49. ¹H NMR (600 MHz, CDCl₃) of 1r.

Figure S50. ¹³C NMR (201 MHz, CDCl₃) of 1r.

Figure S51. ¹⁹F NMR (376 MHz, CDCl₃) of **1r**.

2-(3,5-diisopropylphenyl)pyridine (1s). The general procedure was followed. 2-Bromopyridine (0.924 g, 5.85 mmol, 1.0 equiv.), 3,5-diisopropylphenylboronic acid (1.20 g, 5.84 mmol, 1.0 equiv.), K_3PO_4 (2.48 g, 11.7 mmol, 2.0 equiv.), Pd(OAc)₂ (0.0273 g, 0.122 mmol, 2.1 mol-%) and PPh₃ (0.0921 g, 0.352 mmol, 6.0 mol-%) were used. The crude product was purified twice by flash column chromatography (first 85 % hexanes/15 % EtOAc, then CH₂Cl₂), yielding **1s** as a colorless oil.

Yield: 0.847 g, 3.54 mmol, 61 %.

¹**H NMR** (600 MHz, CDCl₃): δ 8.70 (d, ³*J*_{H,H} = 4.8 Hz, 1H, H⁶), 7.72-7.75 (m, 2H, H³ + H⁴), 7.66 (s, 2H, H²), 7.21 (ddd, ³*J*_{H,H} = 6.1 Hz, ³*J*_{H,H} = 4.8 Hz, ⁴*J*_{H,H} = 2.5 Hz, 1H, H⁵), 7.15 (s, 1H, H⁴), 2.99 (sp, ³*J*_{H,H} = 7.0 Hz, 2H, CH(CH₃)₂), 1.31 ppm (d, ³*J*_{H,H} = 7.0 Hz, 12H, CH(CH₃)₂).

¹³**C NMR** (151 MHz, CDCl₃): δ 158.2 (**C**²), 149.6 (**C**⁶), 149.3 (**C**³'), 139.4 (**C**¹'), 136.6 (**C**⁴), 125.4 (**C**⁴'), 122.7 (**C**²'), 121.8 (**C**⁵), 120.8 (**C**³), 34.3 (**C**H(CH₃)₂), 24.1 ppm (CH(**C**H₃)₂).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ -73.6 ppm (N¹).

MS (ESI): *m/z* (rel. %): 240.175 (100) [M+H]⁺.

HRMS (ESI): Found 240.1746; calcd for C₁₇H₂₂N [M+H]⁺: 240.1747.

Elemental Analysis: Anal. calcd. For C₁₇H₂₁N: C, 85.30; H, 8.84; N. 5.85. Found: C, 85.27; H, 8.87; N, 5.85.

Figure S52. ¹H NMR (600 MHz, CDCl₃) of **1s**.

Figure S53. ¹³C NMR (151 MHz, CDCl₃) of **1s**.

Figure S54. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **1s**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2-(3,5-diethylphenyl)pyridine (1t). The general procedure was followed. 2-Bromopyridine (0.670 g, 4.26 mmol, 1.0 equiv.), 3,5-diethylphenylboronic acid (0.670 g, 4.26 mmol, 1.0 equiv.), K_3PO_4 (1.81 g, 8.52 mmol, 2.0 equiv.), Pd(OAc)₂ (0.0187 g, 0.0831 mmol, 2.0 mol-%) and PPh₃ (0.0664 g, 0.253 mmol, 6.0 mol-%) were used. The crude product was purified by flash column chromatography (85 % hexanes/15 % EtOAc), yielding **1t** as a colorless oil.

Yield: 0.438 g, 2.070 mmol, 49 %.

¹**H NMR** (600 MHz, CDCl₃): δ 8.69-8.71 (ddd, ${}^{3}J_{H,H} = 4.7$ Hz, ${}^{4}J_{H,H} = 1.3$ Hz, ${}^{5}J_{H,H} = 1.3$ Hz, 1H, H⁶), 7.72-7.74 (m, 2H, H³ + H⁴), 7.65 (d, ${}^{4}J_{H,H} = 1.2$ Hz, 2H, H²), 7.20-7.22 (m, 1H, H⁵), 7.11 (s, 1H, H⁴), 2.73 (q, ${}^{3}J_{H,H} = 7.6$ Hz, 4H, CH₂CH₃), 1.30 ppm (t, ${}^{3}J_{H,H} = 7.6$ Hz, 6H, CH₂CH₃).

¹³C NMR (151 MHz, CDCl₃): δ 158.0 (C²), 149.5 (C⁶), 144.7 (C³), 139.4 (C¹), 136.6 (C⁴), 128.3 (C⁴), 123.9 (C²), 121.8 (C⁵), 120.7 (C³), 28.6 (CH₂CH₃), 15.6 ppm (CH₂CH₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –73.6 ppm (N¹).

MS (ESI): *m/z* (rel. %): 212.143 (100) [M+H]⁺.

HRMS (ESI): Found 212.1433; calcd for C₁₅H₁₈N [M+H]⁺: 212.1434.

Elemental Analysis: Anal. calcd. For C₁₅H₁₇N: C, 85.26; H, 8.11; N. 6.63. Found: C, 85.19; H, 8.07; N, 6.59.

Figure S55. ¹H NMR (600 MHz, CDCl₃) of **1t**.

Figure S56. 13 C NMR (151 MHz, CDCl₃) of **1t**.

Figure S57. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD_2Cl_2) of **1t**. The chemical shifts have been calibrated using CH_3NO_2 as an external standard (blue star in the projection).

2-(3,5-diethylphenyl)pyridine (1u). The general procedure was followed. 2-bromopyridine (0.670 g, 4.26 mmol, 1.0 equiv.), 3-ethylphenyboronic acid (0.703 g, 4.690 mmol, 1.1 equiv.), K₃PO₄ (2.12 g, 10.0 mmol, 2.3 equiv.), Pd(OAc)₂ (0.0187 g, 0.0883 mmol, 2.0 mol-%) and PPh₃ (0.0664 g, 0.253 mmol, 5.9 mol-%) were used. The obtained crude product was purified by flash column chromatography (80 % hexanes/20 % EtOAc), furnishing **1u** as a colorless oil.

Yield: 0.684 g, 3.730 mmol, 88 %.

¹H NMR (600 MHz, CDCl₃): δ 8.69-8.70 (m, 1H, H⁶), 7.86 (s, 1H, H^{2'}), 7.77 (d, ³J_{H,H} = 7.8 Hz, 1H, H^{6'}), 7.72-7.76 (m, 2H, H³ + H⁴), 7.38-7.41 (m, 1H, H^{5'}), 7.26-7.27 (m, 1H, H^{4'}), 7.22 (ddd, ³J_{H,H} = 6.5 Hz, ³J_{H,H} = 4.8 Hz, ⁴J_{H,H} = 2.1 Hz, 1H, H⁵), 2.75 (q, ³J_{H,H} = 7.6 Hz, 2H, CH₂CH₃), 1.30 ppm (t, ³J_{H,H} = 7.6 Hz, 3H, CH₂CH₃).

¹³C NMR (151 MHz, CDCl₃): δ 157.7 (C²), 149.6 (C⁶), 144.8 (C³), 139.4 (C¹), 136.6 (C⁴), 128.7 (C⁵), 128.5 (C⁴), 126.5 (C⁶), 124.2 (C²), 121.9 (C⁵), 120.6 (C³), 29.0 (CH₂CH₃), 15.6 ppm (CH₂CH₃).

MS (ESI, MeCN): m/z (rel. %): 184.112 (100) [M+H]⁺.

HRMS (ESI, MeCN): Found 184.1120; calcd for C₁₃H₁₄N [M+H]⁺: 184.1121.

The compound is known,^[23] but spectral data have not been reported.

Figure S58. ¹H NMR (600 MHz, CDCl₃) of **1u**.

Figure S59. 13 C NMR (151 MHz, CDCl₃) of **1u**.

Synthesis and characterization of Au(III) complexes

2c-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.373 g, 0.999 mmol, 1.00 equiv.) and **1c** (0.193 g, 1.01 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (30 mL). The reaction mixture was heated at 120 °C for 30 min in a microwave. After cooling to room temperature, HOAc^F (30 mL) was added to dissolve partially precipitated product, and the resulting solution was filtered. Water (50 mL) was added to the filtrate, resulting in the precipitation of a solid. After cooling on an ice-water bath for 15 min, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing **2c-Au(OAc^F)**₂ as a colorless solid.

Yield: 0.527 g, 0.860 mmol, 85 %.

¹**H NMR** (800 MHz, CD₂Cl₂): δ 8.62 (dd, ³*J*_{H,H} = 6.0 Hz, ⁴*J*_{H,H} = 1.0 Hz, **H**⁶), 8.33 (ddd, ³*J*_{H,H} = 7.9 Hz, ³*J*_{H,H} = 7.8 Hz, ⁴*J*_{H,H} = 1.4 Hz, **H**⁴), 7.95 (d, ³*J*_{H,H} = 8.1 Hz, **H**³), 7.66 (ddd, ³*J*_{H,H} = 7.6 Hz, ³*J*_{H,H} = 6.0 Hz, ⁴*J*_{H,H} = 1.3 Hz, **H**⁵), 7.28 (dd, ³*J*_{H,F} = 7.8 Hz, ⁴*J*_{H,H} = 2.4 Hz, **H**⁶), 6.87 ppm (ddd, ³*J*_{H,F} = 9.1 Hz, ³*J*_{H,F} = 9.1 Hz, ⁴*J*_{H,H} = 2.5 Hz, **H**⁴).

¹³**C** NMR (201 MHz, CD_2CI_2): δ 164.1 (**C**²), 164.0 (dd, ¹*J*_{C,F} = 251.5 Hz, ³*J*_{C,F} = 12.0 Hz, **C**^{3'} or **C**^{5'}), 162.8 (dd, ¹*J*_{C,F} = 253.4 Hz, ³*J*_{C,F} = 12.1 Hz, **C**^{3'} or **C**^{5'}), 161.1 (q, ²*J*_{C,F} = 38.2 Hz, OCOCF₃), 161.0 (q, ²*J*_{C,F} = 39.5 Hz, OCOCF₃), 148.2 (**C**⁶), 145.4 (**C**⁴), 145.1 (dd, ³*J*_{C,F} = 9.9 Hz, ³*J*_{C,F} = 9.6 Hz, **C**^{1'}), 126.4 (**C**⁵), 122.9 (**C**³), 118.8 (dd, ²*J*_{C,F} = 25.3 Hz, ⁴*J*_{C,F} = 3.6 Hz, **C**^{2'}), 118.0 (q, ¹*J*_{C,F} = 288.6 Hz, OCOCF₃), 115.5 (q, ¹*J*_{C,F} = 287.8 Hz, OCOCF₃), 109.2-109.5 ppm (m, **C**^{4'} + **C**^{6'}).

¹⁹**F NMR** (188 MHz, CD₂Cl₂): δ –75.5 (d, ⁷*J*_{F,F} = 4.0 Hz, 3F, OCOC**F**₃ (*trans*-N)), –77.0 (s, 3F, OCOC**F**₃ (*cis*-N)), –102.46 - –102.53 (m, 1F, Ar**F**¹), –109.2 ppm (d, ⁴*J*_{F,F} = 10.0 Hz, 1F, Ar**F**²).

MS (ESI): m/z (rel. %): 499.998 (90) [M-OCOCF₃]⁺.

HRMS (ESI): Found: 499.9979; calcd for C₁₃H₆AuF₅NO₂ [M–OCOCF₃]⁺: 499.9979.

Elemental Analysis: Anal. calcd. For C₁₅H₆AuF₈NO₄: C, 29.38; H, 0.99; N. 2.28. Found: C, 29.37; H, 1.01; N, 2.27.

Figure S60. ¹H NMR (800 MHz, CD₂Cl₂) of **2c-Au(OAc^F)**₂.

Figure S61. ¹³C NMR (201 MHz, CD_2Cl_2) of **2c-Au(OAc^F)**₂. The quartets corresponding to the two **C**F₃ carbons of the trifluoroacetate ligands are indicated by purple and green stars in the inserts.

Figure S62. ¹⁹F NMR (376 MHz, CD₂Cl₂) of **2c-Au(OAc^F)**₂.

2d-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.375 g, 1.00 mmol, 1.00 equiv.) and **1d** (0.242 g, 1.02 mmol, 1.02 equiv.) in a 1:1 mixture of HOAc^F and water (30 mL). The reaction mixture was heated at 120 °C for 30 min in a microwave. After cooling to room temperature, HOAc^F (30 mL) was added to dissolve partially precipitated product, and the resulting solution was filtered. Water (50 mL) was added to the filtrate, resulting in the precipitation of a solid. After cooling on an ice-water bath for 15 min, the precipitate was filtered off, washed with water (3x5 mL) and pentane (5 mL), and dried under a stream of air for ca. 3 h. The obtained solid was twice recrystallized from a mixture of HOAc^F and water (1:2 and then 1:1), yielding **2d-Au(OAc^F)**₂ as a pale yellow solid.

Yield: 0.421 g, 0.640 mmol, 64 %.

¹**H NMR** (800 MHz, CD₂Cl₂): δ 8.78 (d, ³*J*_{H,H} = 6.2 Hz, 1H, **H**⁶), 8.10 (d, ⁴*J*_{H,H} = 1.1 Hz, 1H, **H**³), 7.71 (dd, ³*J*_{H,H} = 6.2 Hz, ⁴*J*_{H,H} = 1.7 Hz, 1H, **H**⁵), 7.51 (d, ³*J*_{H,H} = 7.8 Hz, 1H, **H**⁶'), 7.35 (d, ³*J*_{H,H} = 7.8 Hz, **H**⁵'), 6.93 (s, 1H, **H**³'), 2.47 ppm (s, 3H, Ar-C**H**₃).

¹³**C** NMR (201 MHz, CD₂Cl₂): δ 167.1 (**C**²), 161.4 (d (q expected), ²*J*_{C,F} = 37.8 Hz, OCOCF₃), 160.7 (q, ²*J*_{C,F} = 40.1 Hz, OCOCF₃), 149.7 (**C**⁶), 146.3 (**C**^{4'}), 145.5 (q, ²*J*_{C,F} = 36.3 Hz, **C**⁴), 142.9 (**C**^{2'}), 137.5 (**C**^{1'}), 131.8 (**C**^{5'}), 129.6 (**C**^{3'}), 126.7 (**C**^{6'}), 121.6 (q, ¹*J*_{C,F} = 276.4 Hz, pyr-**C**F₃), 121.0 (**C**⁵), 118.2 (d (q expected), ¹*J*_{C,F} = 288.9 Hz, OCOCF₃), 118.1 (**C**³), 115.9 (q, ¹*J*_{C,F} = 286.9 Hz, OCO**C**F₃), 22.6 ppm (Ar-**C**H₃).

¹⁹F NMR (188 MHz, CD₂Cl₂): δ –68.1 (3F, pyr-CF₃), -76.1 (3F, OCOCF₃), -77.1 ppm (3F, OCOCF₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –160.4 ppm (N¹).

MS (ESI): m/z (rel. %): 603.978 (40) [M-OCOCF₃+NaCl]⁺.

HRMS (ESI): Found: 603.9784; calcd for C₁₅H₉AuClF₆NNaO₂ [M–OCOCF₃+NaCl]⁺: 499.9979.

Elemental Analysis: Anal. calcd. For C₁₇H₉AuF₉NO₄: C, 30.97; H, 1.38; N. 2.12. Found: C, 30.81; H, 1.47; N, 2.01.

Figure S63. ¹H NMR (800 MHz, CD₂Cl₂) of **2d-Au(OAc^F)**₂.

Figure S64. ¹³C NMR (201 MHz, CD₂Cl₂) of **2d-Au(OAc^F)**₂. The quartets (or doublets) corresponding to the three **C**F₃ carbons of the trifluoroacetate ligands and the trifluoromethyl group in the pyridine ring are indicated by red, purple and green stars in the inserts. For the quartet labeled with purple stars, one of the lines was found to overlap with the resonance at δ 118.1. The quartets (or doublets) corresponding to the carbonyl carbons of the trifluoroacetate ligands and the C-**C**F₃ carbon of the pyridine ring are indicated by the same colors. The resonance labeled with a blue star is an unidentified impurity in the sample.

Figure S65. ¹⁹F NMR (188 MHz, CD₂Cl₂) of **2d-Au(OAc^F)**₂.

Figure S66. ¹H-¹⁵N HMBC (600 MHz, CD_2Cl_2) of **2d-Au(OAc^F)**₂. The chemical shifts have been calibrated using CH_3NO_2 as an external standard (blue star in the projection). The signal marked with a red star is an unidentified impurity in CH_3NO_2 .

2e-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.390 g, 1.04 mmol, 1.00 equiv.) and **1e** (0.230 g, 1.03 mmol, 1.00 equiv.) in a 1:1 mixture of HOAc^F and water (30 mL). The reaction mixture was heated at 120 °C for 30 min in a microwave. After cooling to room temperature, HOAc^F (30 mL) was added to dissolve partially precipitated product, and the resulting solution was filtered. Water (50 mL) was added to the filtrate, resulting in the precipitate was filtered off, washed with water (3x5 mL) and pentane (3x5 mL), and dried under a stream of air for ca. 3 h, yielding **2e-Au(OAc^F)**₂ as a white solid (0.182 g, 0.282 mmol, 27 %). A second crop of product (0.112 g, 0.173 mmol, 17 %) could be obtained from the filtrate, after addition of more water (50 mL), followed by filtration.

Yield: 0.293 g, 0.454 mmol, 44 %.

¹**H NMR** (600 MHz, CD₂Cl₂): δ 8.66 (dd, 1H, ³J_{H,H} = 6.0 Hz, ⁴J_{H,H} = 1.2 Hz, H⁶), 8.33 (ddd, 1H, ³J_{H,H} = 7.8, ³J_{H,H} = 7.8, ⁴J_{H,H} = 1.4 Hz, H⁴), 8.04 (dd, 1H, ³J_{H,H} = 8.1, ⁴J_{H,H} = 0.9 Hz, H³), 7.78 (dd, 1H, ³J_{H,H} = 8.1, ⁴J_{H,H} = 0.8 Hz, H⁵'), 7.72 (d, 1H, ³J_{H,H} = 8.0 Hz, H⁶'), 7.68 (ddd, 1H, ³J_{H,H} = 7.6, ³J_{H,H} = 6.1, ⁴J_{H,H} = 1.4 Hz, H⁵), 7.40 ppm (d, ⁴J_{H,H} = 0.8 Hz, H³').

¹³**C NMR** (151 MHz, CD₂Cl₂): δ 163.5 (**C**²), 161.3 (q, ²*J*_{C,F} = 38.2 Hz, OCOCF₃), 160.8 (q, ²*J*_{C,F} = 39.8 Hz, OCOCF₃), 148.7 (**C**⁶), 145.4 (**C**^{1'}), 145.3 (**C**⁴), 141.0 (**C**^{2'}), 133.1 (q, ²*J*_{C,F} = 33.1 Hz, **C**^{4'}), 127.8 (q, ³*J*_{C,F} = 3.8 Hz, **C**^{5'}), 126.6 (**C**⁵), 126.3 (**C**^{6'}), 125.4 (q, ³*J*_{C,F} = 4.0 Hz, **C**^{3'}), 123.0 (**C**³), 122.9 (q, ¹*J*_{C,F} = 271.8 Hz, Ar-**C**F₃), 118.0 (q, ¹*J*_{C,F} = 287.3 Hz, OCOCF₃), 115.8 ppm (q, ¹*J*_{C,F} = 286.3 Hz, OCOCF₃).

¹⁹F NMR (188 MHz, CD₂Cl₂): δ –66.0 (3F, Ar-CF₃), –76.2 (3F, OCOCF₃), –77.0 ppm (3F, OCOCF₃).

MS (ESI): m/z (rel. %): 532.004 (40) [M-OCOCF₃]⁺.

HRMS (ESI): Found 532.0041; calcd for C₁₄H₇AuF₆NO₂ [M–OCOCF₃]⁺: 532.0041.

Elemental Analysis: Anal. calcd. For C₁₆H₇AuF₉NO₄: C, 29.79; H, 1.09; N. 2.17. Found: C, 30.31; H, 1.51; N, 2.24.

Figure S67. ¹H NMR (600 MHz, CD₂Cl₂) of **2e-Au(OAc^F)**₂.

Figure S68. ¹³C NMR (151 MHz, CD_2Cl_2) of **2e-Au(OAc^F)**₂. The quartets corresponding to the three **C**F₃ carbons of the trifluoroacetate ligands and the trifluoromethyl group in the phenyl ring are indicated by red, purple and green stars in the inserts. The quartets corresponding to the carbonyl carbons of the trifluoroacetate ligands and the C-**C**F₃ carbon of the phenyl ring are indicated by the same colors.

Figure S69. ¹⁹F NMR (188 MHz, CD₂Cl₂) of **2e-Au(OAc^F)**₂.

1f-Au(OAc^F)₃

1f-Au(OAc^F)₃. A microwave vessel was charged with Au(OAc)₃ (0.383 g, 1.02 mmol, 1.00 equiv.) and **1f** (0.300 g, 1.03 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (15 mL). The reaction mixture was heated at 120 °C for 30 min in a microwave. After cooling to room temperature, the yellow solution was filtered to remove insoluble material, and the filtrate was kept at 4-8 °C for several days. During this time, colorless crystals appeared. After one week at 4-8 °C, the crystals were filtered off, washed with water (3x10 mL), and dried under a stream of air for ca. 2 h, furnishing **1f-Au(OAc^F)**₃ as colorless crystals.

Yield: 0.189 g, 0.228 mmol, 22 %.

¹**H NMR** (800 MHz, CD₂Cl₂): δ 8.98 (dd, 1H, ³*J*_{H,H} = 6.1, ⁴*J*_{H,H} = 1.0 Hz, H⁶), 8.46 (s, 2H, H^{2'}), 8.40 (ddd, 1H, ³*J*_{H,H} = 7.8, ³*J*_{H,H} = 7.8, ⁴*J*_{H,H} = 1.4 Hz, H⁴), 8.30 (s, 1H, H^{4'}), 7.91 (ddd, 1H, ³*J*_{H,H} = 7.7, ³*J*_{H,H} = 6.2, ⁴*J*_{H,H} = 1.6 Hz, H⁵), 7.88 ppm (dd, 1H, ³*J*_{H,H} = 7.8, ⁴*J*_{H,H} = 1.4 Hz, H³).

¹³**C** NMR (201 MHz, CD_2CI_2): δ 161.1 (q, ${}^{2}J_{C,F}$ = 41.0 Hz, OCOCF₃), 160.5 (q, ${}^{2}J_{C,F}$ = 40.7 Hz, OCOCF₃), 157.9 (C²), 151.6 (C⁶), 145.5 (C⁴), 136.8 (C^{1'}), 134.1 (q, ${}^{2}J_{C,F}$ = 34.5 Hz, C^{3'}), 130.5 (C³), 129.6 (C^{2'}), 128.5 (C⁵), 126.5 (C^{4'}), 123.1 (q, ${}^{1}J_{C,F}$ = 273.0 Hz, Ar-CF₃), 114.0 (q, ${}^{1}J_{C,F}$ = 287.8 Hz, OCOCF₃), 113.7 ppm (q, ${}^{1}J_{C,F}$ = 287.8 Hz, OCOCF₃).

¹⁹**F NMR** (188 MHz, CD₂Cl₂): δ –65.8 (6F, ArC**F**₃), –75.3 (6F, OCOC**F**₃), –75.5 ppm (3F, OCOC**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –186.6 ppm (N¹).

MS (ESI): m/z (rel. %): 849.959 (44) [M+Na]⁺.

HRMS (ESI): Found: 849.9595; calcd for C₁₉H₇AuF₁₅NNaO₆ [M+Na]⁺: 849.9592.

Elemental Analysis: Anal. calcd. For C₁₉H₇AuF₁₅NO₆: C, 27.59; H, 0.85; N. 1.69. Found: C, 27.39; H, 0.89; N, 1.73.

Figure S70. ¹H NMR (800 MHz, CD₂Cl₂) of **1f-Au(OAc^F)**₃.

Figure S71. ¹³C NMR (201 MHz, CD_2Cl_2) of **1f-Au(OAc^F)**₃. The three quartets corresponding to the five total **C**F₃ carbons are indicated by red (Ar-**C**F₃), green and purple (OCO**C**F₃) stars in the inserts.

Figure S72. ¹⁹F NMR (188 MHz, CD₂Cl₂) of **1f-Au(OAc^F)**₃.

Figure S73. ¹H-¹⁵N HMBC (600 MHz, CD_2Cl_2) of **1f-Au(OAc^F)**₃. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

The failure of obtaining cyclometalated **2f-Au(OAc^F)**₂ is best explained from an electronic perspective. Previously, we reported that the synthesis of pincer complex **3b-AuOAc^F** (derived from the very sterically encumbered ligand 1b) proceeds via its corresponding (N,C) cyclometalated bis(trifluoroacetate) complex **2b-Au(OAc^F)**₂.^[2] As the trifluoromethyl group is smaller than the *tert*-butyl group, ^[24, 25] the formation of **2f-Au(OAc^F)**₂ should be feasible from a steric point-of-view. It was also observed that the pentafluorophenyl-substituted ligand 1r gave a cyclometalated complex 2r-Au(OAc^F)₂ when reacted with Au(OAc)₃, although the effective steric bulk of a pentafluorophenyl substituent is significantly smaller than that of a trifluoromethyl substituent, and more comparable to a methyl group.^[25-27] To the best of our cyclometalated Au(III) knowledge, examples of complexes with а 2-(3,5no bis(trifluoromethyl)phenyl)pyridine ligand backbone have previously been reported. A cyclometalated square planar Pt(II) complex with a 2-(3,5-bis(trifluoromethyl)phenyl)pyridine ligand was described by Ionkin and co-workers.^[28] In addition, octahedral Ti(IV),^[29, 30] Zr(IV),^[30] Ir(III)^[8, 31] and Ru(II)^[32] complexes with 2-(3,5-bis(trifluoromethyl)phenyl)pyridyl ligands have all been reported in the literature. Bis[2,4,6tris(trifluoromethyl)phenyl]mercury has also been described, however the arylmercury compound was prepared by transmetalation from the corresponding aryllithium compound.^[33, 34] and not by electrophilic mercuration of the very electron poor aryl ring. If Au-C bond formation takes place by electrophilic C(sp²)-H bond activation, which is the dominant pathway for formation of cyclometalated Pd(II) and Pt(II) complexes,^[35-37] strongly electron-withdrawing substituent(s) in the phenyl ring of the ligand may have a negative effect on the reaction. When the related mono-trifluoromethyl-substituted ligand **1g** was reacted with Au(OAc)₃, a mixture of cyclometalated complexes **2g-p-Au(OAc^F)**₂ and **2g-o-Au(OAc^F)**₂ was isolated (see below). This suggests that the steric demands of the trifluoromethyl group is compatible with cyclometalation of Au(III). Furthermore, it hints that the electronic influence is the main factor for the failure of obtaining cyclometalated **2f-Au(OAc^F)**₂, as it would be anticipated that ligand **1f** is significantly more electron-deficient at the carbon binding to gold in the hypothetical cyclometalated complex, than the corresponding carbon(s) in ligand **1g**.

2g-p-Au(OAc^F)₂ and 2g-o-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.0750 g, 0.200 mmol, 1.00 equiv.) and **1g** (0.0450 g, 0.202 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (6 mL). The reaction mixture was heated at 120 °C for 60 min in a microwave. After cooling to room temperature, HOAc^F (6 mL) was added, and the resulting solution was filtered. Water (20 mL) was added to the filtrate, resulting in the precipitation of a solid. After cooling on an ice-water bath for 5 min, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing a pale gray solid, consisting mainly of **2g-p-Au(OAc^F)₂** and **2g-o-Au(OAc^F)₂**, as well as small amounts of other products. The ratio between **2g-p-Au(OAc^F)₂** and **2g-o-Au(OAc^F)₂** was found to vary with different batches, from approximately 2:1 (see ¹H NMR spectrum in Figure S74) to approximately 4:1 (see ¹H NMR spectrum in Figure S75), with **2g-p-Au(OAc^F)₂** consistently being the major product. This variation may be related to differences in the solubility of the two compounds. No attempts were made of further purifying the mixture.

Yield: 0.0660 g, 0.106 mmol, 53 %.

MS (ESI): m/z (rel. %): 426.076 (100) [M-20C0CF₃+OMe]⁺.

HRMS (ESI): Found: 426.0761; calcd for C₁₄H₁₅AuNO₂ [M–20COCF₃+OMe]⁺: 426.0763.

¹H, ¹³C and ¹⁹F NMR data for 2g-p-Au(OAc^F)₂

¹**H NMR** (800 MHz, CD_2CI_2): δ 8.66 (dd, ${}^{3}J_{H,H}$ = 6.0 Hz, ${}^{4}J_{H,H}$ = 1.0 Hz, 1H, H⁶), 8.32-8.34 (m, 1H, H⁴), 8.05 (dd, ${}^{3}J_{H,H}$ = 8.0 Hz, ${}^{4}J_{H,H}$ = 1.0 Hz, 1H, H³), 7.83 (d, ${}^{4}J_{H,H}$ = 1.6 Hz, 1H, H⁶), 7.66-7.68 (m, 1H, H⁵), 7.63 (dd, ${}^{3}J_{H,H}$ = 8.4 Hz, ${}^{4}J_{H,H}$ = 1.6 Hz, 1H, H⁴), 7.32 ppm (d, ${}^{3}J_{H,H}$ = 8.4 Hz, 1H, H³).

¹³**C** NMR (201 MHz, CD₂Cl₂): δ 163.7 (**C**²), 161.3 (q, ²*J*_{C,F} = 37.6 Hz, OCOCF₃), 160.8 (q, ²*J*_{C,F} = 39.6 Hz, OCOCF₃), 148.6 (**C**⁶), 145.3 (**C**⁴), 144.4 (**C**^{1'} or **C**^{2'}), 142.7 (**C**^{1'} or **C**^{2'}), 133.0 (q, ²*J*_{C,F} = 33.8 Hz, **C**^{5'}), 128.8 (**C**^{3'}), 129.00-129.04 (m, **C**^{4'}), 126.4 (**C**⁵), 122.70-122.76 (m, **C**^{6'}), 122.6 (**C**³), 123.6 (q, ¹*J*_{C,F} = 272.2 Hz, Ar-**C**F₃), 118.1 (q, ¹*J*_{C,F} = 289.3 Hz, OCOCF₃), 115.9 ppm (q, ¹*J*_{C,F} = 287.8 Hz, OCOCF₃).

¹⁹F NMR (376 MHz, CD₂Cl₂): δ –65.8 (s, 3F, Ar-CF₃), –76.0 (s, 3F, OCOCF₃), –77.05 ppm (s, 3F, OCOCF₃).

¹H, ¹³C and ¹⁹F NMR data for 2g-o-Au(OAc^F)₂

¹H NMR (800 MHz, CD₂Cl₂): δ 8.58 (dd, ³J_{H,H} = 6.1 Hz, ⁴J_{H,H} = 1.1 Hz, 1H, H⁶), 8.29-8.31 (m, 1H, H⁴), 8.00 (dd, ³J_{H,H} = 8.2 Hz, ⁴J_{H,H} = 1.3 Hz, 1H, H³), 7.82-7.83* (m, 1H, H⁶), 7.70 (dd, ³J_{H,H} = 7.8 Hz, ⁴J_{H,H} = 1.4 Hz, 1H, H⁴), 7.63-7.65 (m, 1H, H^{5'}), 7.59-7.61 ppm (m, 1H, H⁵).

*This resonance partially overlaps with the resonance corresponding to $H^{6'}$ in **2g-p-Au(OAc^F)**₂.

¹³C NMR (201 MHz, CD_2Cl_2):* δ 164.9 (C²), 148.1 (C⁶), 145.2 (C⁴), 131.2 (³ $J_{C,F}$ = 6.0 Hz, C^{4'}), 130.7 (C^{5'}), 129.4 (**C**^{6'}), 125.9 (**C**⁵), 122.8 ppm (**C**³).

*Most of the quaternary carbons could not be detected and/or identified in an unambiguous manner.

¹⁹**F NMR** (376 MHz, CD₂Cl₂): δ –60.5 (q, ${}^{8}J_{F,F}$ = 2.6 Hz, Ar-C**F**₃), –76.1 (q, ${}^{8}J_{F,F}$ = 2.6 Hz, 3F, OCOC**F**₃), –77.09 ppm (s, 3F, OCOC**F**₃).

Figure S74. ¹H NMR (500 MHz, CD₂Cl₂) of a mixture of **2g-p-Au(OAc^F)**₂ and **2g-o-Au(OAc^F)**₂. The spectrum is integrated with respect to 2g-p-Au(OAc^F)₂.

Figure S75. ¹H NMR (800 MHz, CD₂Cl₂) of a mixture of $2g-p-Au(OAc^{F})_{2}$ and $2g-o-Au(OAc^{F})_{2}$. The spectrum is integrated with respect to $2g-p-Au(OAc^{F})_{2}$. Due to the low purity of the sample, impurities and residual solvents are not indicated.

Figure S76. ¹³C NMR (201 MHz, CD₂Cl₂) of a mixture of **2g-p-Au(OAc^F)**₂ and **2g-o-Au(OAc^F)**₂.

Figure S77. ¹⁹F NMR (376 MHz, CD_2Cl_2) of a mixture of **2g-p-Au(OAc^F)**₂ and **2g-o-Au(OAc^F)**₂. The spectrum is integrated with respect to **2g-p-Au(OAc^F)**₂ and the inserts show the three resonances corresponding to this compound, which are all singlets.

Figure S78. ¹⁹F NMR (376 MHz, CD_2Cl_2) of a mixture of **2g-p-Au(OAc^F)**₂ and **2g-o-Au(OAc^F)**₂. The spectrum is integrated with respect to **2g-o-Au(OAc^F)**₂ and the inserts show the three resonances corresponding to this compound. The resonances corresponding to the aromatic CF₃ group and the trifluoroacetate ligand *trans* to nitrogen appear as quartets, whereas the resonance corresponding to the trifluoroacetate ligand *cis* to nitrogen appears as a singlet.

¹⁹F NMR was used to decide the presence of **2g-o-Au(OAc^F)**² in an unambiguous manner, and ultimately show that an *ortho*-trifluoromethyl group is compatible with cyclometalation. The resonances corresponding to the aromatic trifluoromethyl group and the trifluoromethyl group of the trifluoroacetate ligand *trans* to nitrogen were both observed as a quartets with ⁸J_{F,F} = 2.4 Hz (Figure S78). This observation indicates that the two CF₃ groups must be in relatively close spatial proximity to each other, ^[38] and the corresponding resonances of the major product **2g-p-Au(OAc^F)**² were both observed as singlets (Figure S77). Similar long-range ¹⁹F-¹⁹F couplings were observed between one of the fluorine substituents on the aromatic ring and the trifluoroacetate ligand *trans* to nitrogen in complex **2c-Au(OAc^F)**² (Figure S62). Interestingly, this type of coupling was not observed for complex **2r-Au(OAc^F)**² (Figure S114).

2h-Au(OAc^F)₂. A microwave vessel was charged with $Au(OAc)_3$ (0.383 g, 1.02 mmol, 1.00 equiv.) and **1h** (0.194 g, 1.06 mmol, 1.04 equiv.) in a mixture of $HOAc^F$ (15 mL) and water (15 mL). The reaction mixture was heated at 120 °C for 30 min in a microwave. After cooling to room temperature, $HOAc^F$ (20 mL) was added to dissolve partially precipitated product, and the resulting solution was filtered to remove insoluble material. Water (50 mL) was added to the filtrate, resulting in the precipitation of a yellow solid. After cooling on an ice-water bath, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 1 h. **2h-Au(OAc^F)**₂ was obtained as a pale yellow solid.

Yield: 0.586 g, 0.968 mmol, 95 %.

¹**H NMR** (600 MHz, CD₂Cl₂): δ 8.52 (dd, ³*J*_{H,H} = 6.1 Hz, ⁴*J*_{H,H} = 0.8 Hz, 1H, **H**⁶), 8.19-8.22 (m, 1H, **H**⁴), 7.92 (d, ³*J*_{H,H} = 7.9 Hz, 1H, **H**³), 7.47-7.50 (m, 1H, **H**⁵), 7.24 (s, 1H, **H**⁴'), 6.87 (s, 1H, **H**⁶'), 2.44 (s, 3H, *o*-C**H**₃), 2.40 ppm (s, 3H, *p*-C**H**₃).

¹³**C NMR** (151 MHz, CD_2CI_2): δ 165.9 (**C**²), 161.2 (q, ² $J_{C,F}$ = 37.9 Hz, OCOCF₃), 160.7 (q, ² $J_{C,F}$ = 39.4 Hz, OCOCF₃), 147.7 (**C**⁶), 144.5 (**C**⁴), 142.4 (**C**^{1'}), 141.9 (**C**^{2'}), 140.7 (**C**^{3'}), 140.4 (**C**^{5'}), 137.4 (**C**^{6'}), 124.9 (**C**^{4'}), 124.8 (**C**⁵), 122.1 (**C**³), 118.3 (q, ¹ $J_{C,F}$ = 289.6 Hz, **C**F₃), 115.8 (q, ¹ $J_{C,F}$ = 288.7 Hz, **C**F₃), 21.0 (*o*-**C**H₃), 20.7 ppm (*p*-**C**H₃).

¹⁹**F NMR** (188 MHz, CD₂Cl₂): δ –76.0 (3F, OCOC**F**₃), –77.3 ppm (3F, OCOC**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –167.1 ppm (N¹).

MS (ESI): *m/z* (rel. %): 437.092 (37) [M-2OCOCF₃+MeCN+OH]⁺, 492.048 (36) [M-OCOCF₃]⁺.

HRMS (ESI): Found 492.0480; calcd for C₁₅H₁₂AuF₃NO₂ [M–OCOCF₃]⁺: 492.0480.

Elemental Analysis: Anal. calcd. For C₁₇H₁₂AuF₆NO₄: C, 33.74; H, 2.00; N. 2.31. Found: C, 33.71; H, 2.05; N, 2.29.

Figure S79. ¹H NMR (600 MHz, CD_2Cl_2) of **2h-Au(OAc^F)**₂. The resonance indicated by a red star origins from an unidentified impurity.

Figure S80. ¹³C NMR (151 MHz, CD₂Cl₂) of **2h-Au(OAc^F)**₂. The quartets corresponding to the two **C**F₃ carbons of the trifluoroacetate ligands are indicated by purple and green stars in the insert to the right. The resonances indicated by a red star origin from an unidentified impurity.

Figure S81. ¹⁹F NMR (188 MHz, CD₂Cl₂) of **2h-Au(OAc^F)**₂.

Figure S82. 1 H- 15 N HMBC (600 MHz, CD₂Cl₂) of **2h-Au(OAc^F)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S83. SHMBC (800 MHz, CD₂Cl₂) of **2h-Au(OAc^F)**₂.

2i-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.0750 g, 0.200 mmol, 1.00 equiv.) and **1i** (0.0370 g, 0.202 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (6 mL). The reaction mixture was heated at 120 °C for 45 min in a microwave. After cooling to room temperature, HOAc^F (1 mL) was added, and the resulting solution was filtered. Water (8 mL) was added to the filtrate, resulting in the precipitation of a fine solid. After cooling on an ice-water bath for 15 min, and then overnight at 4-8 °C, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing **2i-Au(OAc^F)**₂ as a pale yellow solid.

Yield: 0.0630 g, 0.104 mmol, 52 %.

¹**H NMR** (600 MHz, CD₂Cl₂): δ 8.00 (dd, ³*J*_{H,H} = 7.9 Hz, ³*J*_{H,H} = 7.9 Hz, 1H), 7.70 (d, ³*J*_{H,H} = 7.4 Hz, 1H), 7.35 (d, ³*J*_{H,H} = 7.9 Hz, 1H), 7.26-7.27 (m, 2H), 6.82 (s, 1H), 2.82 (s, 3H), 2.41 ppm (s, 3H).

¹³**C NMR** (151 MHz, CD₂Cl₂): δ 165.1, 163.0, 160.4 (q, ²*J*_{C,F} = 39.5 Hz, O**C**OCF₃), 143.8, 143.7, 142.9, 139.5, 131.6, 128.7, 126.9, 125.9, 119.1, 116.1 (q, ¹*J*_{C,F} = 288.0 Hz, OCO**C**F₃), 58.0 (O**C**H₃), 22.3 ppm (Ar-**C**H₃).

Two of the expected resonances, corresponding to the two carbons in one of the trifluoroacetate ligands, could not be observed.

¹⁹F NMR (376 MHz, CD₂Cl₂): δ –76.3 (s, 3F, OCOCF₃), 77.5 ppm (s, 3F, OCOCF₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –161.7 ppm (N¹).

MS (APPI): *m/z* (rel. %): 492.048 (100) [M–OCOCF₃]⁺.

HRMS (APPI): Found: 492.0480; calcd for C₁₅H₁₂AuF₃NO₂ [M–OCOCF₃]⁺: 492.0484.

Figure S84. ¹H NMR (600 MHz, CD₂Cl₂) of **2i-Au(OAc^F)**₂.

Figure S85. ¹³C NMR (151 MHz, CD₂Cl₂) of **2i-Au(OAc^F)**₂. Two of the expected resonances were not observed.

Figure S86. ¹⁹F NMR (376 MHz, CD₂Cl₂) of **2i-Au(OAc^F)**₂.

Figure S87. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **2i-Au(OAc^F)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Attempted synthesis of 2j-Au(OAc^F)₂. Several attempts of synthesizing 2j-Au(OAc^F)₂ were made using different reaction times and temperatures. A cyclometalated complex could not be isolated, and a representative ¹H NMR spectrum of a crude product is given below (Figure S89). However, we were able to obtain crystals suitable for single-crystal X-ray diffraction analysis. The analysis showed an unusual dinuclear M₂L₃-type complex (2j₃Au₂(OAc^F)₂, Figure S88), but we have no reason to believe that this is the main reaction product, as no other characterization gave any meaningful insights. See Figure S146 and Figure S147 for the ORTEP and Table S7 for crystal and refinement data for 2j₃Au₂(OAc^F)₂.

Figure S88. M₂L₃-type complex (**2j**₃Au₂(**OAc**^F)₂ characterized by single-crystal X-ray diffraction analysis.

Figure S89. ¹H NMR (600 MHz, CD₂Cl₂) of a crude product from the attempted synthesis of **2j-Au(OAc^F)**₂.

2k-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.0750 g, 0.200 mmol, 1.00 equiv.) and **1k** (0.0370 g, 0.202 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (6 mL). The reaction mixture was heated at 100 °C for 30 min in a microwave. After cooling to room temperature, HOAc^F (1 mL) was added, and the resulting solution was filtered. Water (8 mL) was added to the filtrate, resulting in the precipitation of a fine solid. After cooling on an ice-water bath for 15 min, and then overnight at 4-8 °C, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing **2k-Au(OAc^F)**₂ as a pale yellow solid.

Yield: 0.0480 g, 0.0790 mmol, 40 %.

¹**H NMR** (800 MHz, CD_2CI_2): δ 8.46 (dd, ${}^{3}J_{H,H} = 6.1$ Hz, ${}^{4}J_{H,H} = 1.0$ Hz, 1H, H⁶), 8.15 (ddd, ${}^{3}J_{H,H} = 8.2$ Hz, ${}^{3}J_{H,H} = 7.5$ Hz, ${}^{4}J_{H,H} = 1.4$ Hz, 1H, H⁴), 7.78 (dd, ${}^{3}J_{H,H} = 8.2$ Hz, ${}^{4}J_{H,H} = 0.7$ Hz, 1H, H³), 7.49 (d, ${}^{3}J_{H,H} = 8.6$ Hz, 1H, H⁶), 7.40-7.42 (m. 1H, H⁵), 7.00 (dd, ${}^{3}J_{H,H} = 8.6$ Hz, ${}^{4}J_{H,H} = 2.4$ Hz, 1H, H⁵), 6.57 (d, ${}^{4}J_{H,H} = 2.4$ Hz, 1H, H³), 3.87 ppm (s, 3H, OCH₃).

¹³**C** NMR (201 MHz, CD₂Cl₂): δ 165.3 (**C**²), 161.5 (**C**^{4'}), 161.3 (q, ²J_{C,F} = 37.7 Hz, OCOCF₃), 160.7 (q, ²J_{C,F} = 39.4 Hz, OCOCF₃), 147.6 (**C**⁶), 144.5 (**C**⁴), 144.0 (**C**^{2'}), 133.5 (**C**^{1'}), 127.5 (**C**^{6'}), 123.8 (**C**⁵), 121.4 (**C**³), 118.7 (q, ¹J_{C,F} = 289.9 Hz, OCOCF₃), 116.5 (**C**^{5'}), 116.1 (q, ¹J_{C,F} = 288.0 Hz, OCOCF₃), 113.5 (**C**^{3'}), 56.4 ppm (OCH₃).

¹⁹**F NMR** (188 MHz, CD₂Cl₂): δ –76.2 (s, 3F, OCOC**F**₃), –77.1 ppm (s, 3F, OCOC**F**₃).

MS (ESI): *m/z* (rel. %): 412.061 (90) [M–20COCF₃+OMe]⁺, 466.069 (100) [M–20COCF₃+20Me+Na]⁺, 470.019 (33) [M–20COCF₃+³⁵Cl+OMe+Na]⁺, 472.016 (10) [M–20COCF₃+³⁷Cl+OMe+Na]⁺, 548.036 (11) [M– 0COCF₃+OMe+Na]⁺.

HRMS (ESI): Found: 412.0605; calcd for C₁₃H₁₃AuNO₂ [M-2OCOCF₃+OMe]⁺: 412.0606.

HRMS (ESI): Found: 466.0687; calcd for C₁₄H₁₆AuNNaO₃ [M-2OCOCF₃+2OMe+Na]⁺: 466.0688.

Elemental Analysis: Anal. calcd. For C₁₆H₁₀AuF₆NO₅: C, 31.65; H, 1.66; N, 2.31. Found: C, 31.51; H, 1.61; N, 2.24.

Figure S90. ¹H NMR (800 MHz, CD₂Cl₂) of **2k-Au(OAc^F)**₂.

Figure S91. ¹³C NMR (201 MHz, CD_2Cl_2) of **2k-Au(OAc^F)**₂. The quartets corresponding to the two **C**F₃ carbons of the trifluoroacetate ligands are indicated by purple and green stars in the insert to the right. The quartets corresponding to the two carbonyl carbons of the trifluoroacetate ligands are indicated by purple and green stars in the insert to the right. The quartets corresponding to the two carbonyl carbons of the trifluoroacetate ligands are indicated by purple and green stars in the insert to the left. Traces of (an) unidentified impurity/impurities are indicated by red stars.

Figure S92. ¹⁹F NMR (188 MHz, CD₂Cl₂) of **2k-Au(OAc^F)**₂.

2I-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.385 g, 1.03 mmol, 1.00 equiv.) and **1I** (0.206 g, 1.03 mmol, 1.00 equiv.) in a 1:1 mixture of HOAc^F and water (30 mL). The reaction mixture was heated at 120 °C for 30 min in a microwave. After cooling to room temperature, the resulting solution was filtered. Water (50 mL) was added to the filtrate, resulting in the precipitation of a solid. After cooling on an ice-water bath for 15 min, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing **2I-Au(OAc^F)**₂ as a pale yellow solid.

Yield: 0.286 g, 0.461 mmol, 45 %.

¹**H NMR** (600 MHz, CD₂Cl₂): δ 8.20 (d, ³J_{H,H} = 7.0 Hz, 1H, H⁶), 7.42 (d, ³J_{H,H} = 7.9 Hz, 1H, H^{6'}), 7.32 (d, ⁴J_{H,H} = 2.8 Hz, 1H, H³), 7.23 (d, ³J_{H,H} = 7.8 Hz, 1H, H^{5'}), 6.89 (dd, ³J_{H,H} = 7.1 Hz, ⁴J_{H,H} = 2.9 Hz, 1H, H⁵), 6.76 (s, 1H, H^{3'}), 4.08 (s, 3H, OCH₃), 2.39 ppm (s, 3H, Ar-CH₃).

¹³**C** NMR (151 MHz, CD_2CI_2): δ 171.2 (**C**⁴), 165.9 (**C**²), 161.1 (q, ²*J*_{C,F} = 37.7 Hz, OCOCF₃), 160.6 (q, ²*J*_{C,F} = 38.6 Hz, OCOCF₃), 148.4 (**C**⁶), 144.1 (**C**^{4'}), 141.7 (**C**^{2'}), 138.5 (**C**^{1'}), 131.2 (**C**^{5'}), 128.7 (**C**^{3'}), 125.6 (**C**^{6'}), 118.1 (q, ¹*J*_{C,F} = 289.6 Hz, OCOCF₃), 116.0 (q, ¹*J*_{C,F} = 288.4 Hz, OCOCF₃), 110.4 (**C**⁵), 107.0 (**C**³), 57.6 (OCH₃), 22.2 ppm (Ar-CH₃).

¹⁹**F NMR** (188 MHz, CD₂Cl₂): δ –76.2 (s, 3F, OCOC**F**₃), –77.1 ppm (s, 3F, OCOC**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –187.1 ppm (N¹).

MS (ESI): *m*/*z* (rel. %): 508.043 (73) [M–OCOCF₃]⁺.

HRMS (ESI): Found 508.0429; calcd for C₁₅H₁₂AuF₃NO₃ [M–OCOCF₃]⁺: 508.0429.

Elemental Analysis: Anal. calcd. For C₁₇H₁₂AuF₆NO₅: C, 32.87; H, 1.95; N. 2.25. Found: C, 32.73; H, 1.91; N, 2.18.

Figure S93. ¹H NMR (600 MHz, CD₂Cl₂) of **2I-Au(OAc^F)**₂.

Figure S94. ¹³C NMR (151 MHz, CD_2Cl_2) of **2I-Au(OAc^F)**₂. The quartets corresponding to the two **C**F₃ carbons of the trifluoroacetate ligands are indicated by purple and green stars in the lower insert. The quartets corresponding to the two carbonyl carbons of the trifluoroacetate ligands were found to be partially overlapping (see upper insert).

Figure S95. ¹⁹F NMR (188 MHz, CD₂Cl₂) of **2I-Au(OAc^F)**₂.

Figure S96. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **2I-Au(OAc^F)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2m-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.0750 g, 0.200 mmol, 1.00 equiv.) and **1m** (0.0400 g, 0.202 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (6 mL). The reaction mixture was heated at 100 °C for 60 min in a microwave. After cooling to room temperature, HOAc^F (1 mL) was added, and the resulting solution was filtered. Water (8 mL) was added to the filtrate, resulting in the precipitation of a solid. After cooling on an ice-water bath for 10 min, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing **2m-Au(OAc^F)**₂ as a pale yellow solid.

Yield: 0.0660 g, 0.106 mmol, 53 %.

¹**H NMR** (800 MHz, CD₂Cl₂): δ 8.09 (dd, ³*J*_{H,H} = 8.2 Hz, ³*J*_{H,H} = 7.8 Hz, 1H, H⁴), 7.42 (dd, ³*J*_{H,H} = 7.7 Hz, ⁴*J*_{H,H} = 0.9 Hz, 1H, H³), 7.35 (d, ³*J*_{H,H} = 7.9 Hz, 1H, H⁶), 7.23-7.25 (m, 1H, H⁵), 6.82 (d, ⁴*J*_{H,H} = 0.6 Hz, 1H, H³), 6.81 (dd, ³*J*_{H,H} = 8.5 Hz, ⁴*J*_{H,H} = 0.8 Hz, 1H, H⁵), 4.01 (s, 3H, OCH₃), 2.40 ppm (s, 3H, Ar-CH₃).

¹³**C** NMR (201 MHz, CD₂Cl₂): δ 165.1 (**C**⁶), 163.7 (**C**²), 161.1 (q, ²J_{C,F} = 36.6 Hz, OCOCF₃), 160.4 (q, ²J_{C,F} = 39.6 Hz, OCOCF₃), 146.6 (**C**⁴), 143.8 (**C**^{4'}), 141.7 (**C**^{2'}), 139.5 (**C**^{1'}), 131.3 (**C**^{5'}), 128.7 (**C**^{3'}), 125.9 (**C**^{6'}), 118.7 (q, ¹J_{C,F} = 289.6 Hz, OCOCF₃), 116.1 (q, ¹J_{C,F} = 288.1 Hz, OCOCF₃), 113.3 (**C**³), 106.9 (**C**⁵), 58.0 (OCH₃), 22.3 ppm (Ar-CH₃).

¹⁹**F NMR** (376 MHz, CD₂Cl₂): δ –76.2 (s, 3F, OCOC**F**₃), –76.5 ppm (broadened s, 3F, OCOC**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –187.7 ppm (N¹).

MS (ESI): m/z (rel. %): 426.076 (100) [M-20C0CF₃+OMe]⁺.

HRMS (ESI): Found: 426.0761; calcd for C₁₄H₁₅AuNO₂ [M–20COCF₃+OMe]⁺: 426.0763.

Elemental Analysis: Anal. calcd. For C₁₇H₁₂AuF₆NO₅: C, 32.87; H, 1.95; N. 2.25. Found: C, 32.84; H, 1.97; N, 2.26.

Figure S97. ¹H NMR (800 MHz, CD₂Cl₂) of **2m-Au(OAc^F)**₂.

Figure S98. ¹³C NMR (201 MHz, CD₂Cl₂) of **2m-Au(OAc^F)**₂. The quartets corresponding to the two **C**F₃ carbons of the trifluoroacetate ligands are indicated by purple and green stars in the bottom insert. Traces of (an) unidentified impurity/impurities are indicated by red stars.

Figure S99. ¹⁹F NMR (376 MHz, CD₂Cl₂) of **2m-Au(OAc^F)**₂.

Figure S100. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **2m-Au(OAc^F)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2n-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.187 g, 0.500 mmol, 1.00 equiv.) and **1n** (0.100 g, 0.505 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (15 mL). The reaction mixture was heated at 100 °C for 30 min in a microwave. After cooling to room temperature, HOAc^F (1.5 mL) was added to dissolve partially precipitated product, and the resulting solution was filtered. Water (15 mL) was added to the filtrate, resulting in the precipitation of a solid. After cooling on an ice-water bath for 5 min, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing **2n-Au(OAc^F)**₂ as a yellow solid.

Yield: 0.185 g, 0.299 mmol, 60 %.

¹**H NMR** (800 MHz, CD_2CI_2): δ 8.22 (dd, ${}^{3}J_{H,H}$ = 5.9 Hz, ${}^{4}J_{H,H}$ = 1.0 Hz, 1H, H⁶), 8.07 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H, H⁶), 7.74 (dd, ${}^{3}J_{H,H}$ = 8.6 Hz, ${}^{4}J_{H,H}$ = 0.6 Hz, 1H, H⁴), 7.46 (dd, ${}^{3}J_{H,H}$ = 8.6 Hz, ${}^{3}J_{H,H}$ = 5.9 Hz, 1H, H⁵), 7.23-7.24 (m, 1H, H⁵), 6.82-6.83 (m, 1H, H^{3'}), 4.12 (s, 3H, OCH₃), 2.40 ppm (s, 3H, Ar-CH₃).

¹³**C** NMR (201 MHz, CD_2CI_2): δ 161.2 (q, ² $J_{C,F}$ = 37.7 Hz, OCOCF₃), 160.6 (q, ² $J_{C,F}$ = 39.2 Hz, OCOCF₃), 155.2 (C³), 154.2 (C²), 143.2 (C⁴), 142.3 (C¹ or C²), 139.7 (C⁶), 139.3 (C¹ or C²), 131.2 (C⁵), 130.8 (C⁶), 128.4 (C³), 126.1 (C⁴), 124.3 (C⁵), 118.3 (q, ¹ $J_{C,F}$ = 289.4, OCOCF₃), 116.2 (q, ¹ $J_{C,F}$ = 288.1, OCOCF₃), 57.5 (OCH₃), 22.2 ppm (Ar-CH₃).

¹⁹**F NMR** (188 MHz, CD₂Cl₂): δ –76.3 (s, 3F, OCOC**F**₃), –77.2 ppm (s, 3F, OCOC**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –164.9 ppm (N¹).

MS (ESI): m/z (rel. %): 508.043 (100) [M-OCOCF₃]⁺.

HRMS (ESI): Found: 508.0430; calcd for C₁₅H₁₂AuF₃NO₃ [M–OCOCF₃]⁺: 508.0429.

Elemental Analysis: Anal. calcd. For C₁₇H₁₂AuF₆NO₅: C, 32.87; H, 1.95; N. 2.25. Found: C, 32.81; H, 1.91; N, 2.23.

Figure S101. ¹H NMR (800 MHz, CD₂Cl₂) of **2n-Au(OAc^F)**₂.

Figure S102. ¹³C NMR (201 MHz, CD_2Cl_2) of **2n-Au(OAc^F)**₂. The quartets corresponding to the two **C**F₃ carbons of the trifluoroacetate ligands are indicated by purple and green stars in the insert to the right. The quartets corresponding to the two carbonyl carbons of the trifluoroacetate ligands were found to partially overlap (see insert to the left).

Figure S103. ¹⁹F NMR (188 MHz, CD₂Cl₂) of **2n-Au(OAc^F)**₂.

Figure S104. ${}^{1}H{}^{-15}N$ HMBC (600 MHz, CD₂Cl₂) of **2n-Au(OAc^F)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2o-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.187 g, 0.500 mmol, 1.00 equiv.) and **1o** (0.101 g, 0.505 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (15 mL). The reaction mixture was heated at 120 °C for 30 min in a microwave. After cooling to room temperature, HOAc^F (5 mL) was added to dissolve partially precipitated product, and the resulting solution was filtered. Water (20 mL) was added to the filtrate, resulting in the precipitation of a solid. After cooling on an ice-water bath for 15 min, and then overnight at 4-8 °C, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing **2o-Au(OAc^F)**₂ as a pale yellow solid.

Yield: 0.0840 g, 0.135 mmol, 27 %.

¹**H** NMR (800 MHz, CD₂Cl₂): δ 8.70 (ddd, ³*J*_{H,H} = 6.0, ⁴*J*_{H,H} = 1.2, ⁴*J*_{H,H} = 0.6 Hz, 1H, H⁶), 8.35-8.40 (m, 2H, H⁴ + H⁵), 8.07 (dd, ³*J*_{H,H} = 8.0, ⁴*J*_{H,H} = 1.5 Hz, 1H, H³), 7.96 (d, ⁴*J*_{H,H} = 2.1 Hz, 1H, H³), 7.81 (d, ³*J*_{H,H} = 8.5 Hz, 1H, H⁶), 7.74 ppm (ddd, 1H, ³*J*_{H,H} = 7.6 Hz, ³*J*_{H,H} = 6.1 Hz, ³*J*_{H,H} = 1.3 Hz, H⁵).

¹³**C** NMR (201 MHz, CD_2Cl_2):* δ 162.7 (**C**²), 161.5 (q, ${}^2J_{C,F}$ = 38.2 Hz, OCOCF₃), 161.0 (q, ${}^2J_{C,F}$ = 39.7 Hz, OCOCF₃), 149.1 (**C**⁶), 148.1 (Ar-**C**), 147.7 (Ar-**C**), 145.7 (**C**⁴), 140.5 (Ar-**C**), 127.5 (**C**⁵), 126.8 (**C**^{6'}), 125.8 (**C**^{5'}), 123.8 (**C**³), 123.7 (**C**^{3'}), 118.2 (q, ${}^1J_{C,F}$ = 288.6 Hz, OCOCF₃), 116.0 ppm (q, ${}^1J_{C,F}$ = 287.9 Hz, OCOCF₃).

*The quaternary carbons of the aryl ring could not be assigned unambiguously.

¹⁹**F NMR** (376 MHz, CD₂Cl₂): δ –76.0 (s, 3F, C**F**₃), –77.0 ppm (s, 3F, C**F**₃).

MS (ESI, MeCN): m/z (rel. %): 488.946 (17) [M-20COCF₃+2Cl+Na]⁺.

HRMS (ESI, MeCN): Found: 488.9449; calcd for C₁₁H₇AuCl₂N₂NaO₂ [M–2OCOCF₃+2Cl+Na]⁺: 488.9442.

Elemental Analysis: Anal. calcd. For C₁₅H₇AuF₆N₂O₆: C, 28.96; H, 1.13; N. 4.50. Found: C, 28.91; H, 1.11; N, 4.45.

Figure S105. ¹H NMR (800 MHz, CD₂Cl₂) of **2o-Au(OAc^F)**₂.

Figure S106. ¹³C NMR (201 MHz, CD_2Cl_2) of **20-Au(OAc^F)**₂. The quartets corresponding to the two **C**F₃ carbons of the trifluoroacetate ligands are indicated by purple and green stars in the insert to the left. The quartets corresponding to the two carbonyl carbons of the trifluoroacetate ligands are indicated by purple and green stars in the insert to the right. Traces of (an) unidentified impurity/impurities are indicated by blue stars.

Figure S107. ¹⁹F NMR (376 MHz, CD₂Cl₂) of **2o-Au(OAc^F)**₂.

2p-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.187 g, 0.500 mmol, 1.00 equiv.) and **1p** (0.119 g, 0.555 mmol, 1.10 equiv.) in a 1:1 mixture of HOAc^F and water (15 mL). The reaction mixture was heated at 120 °C for 30 min in a microwave. After cooling to room temperature, HOAc^F (20 mL) was added to dissolve partially precipitated product, and the resulting solution was filtered to remove insoluble material. Water (25 mL) was added to the filtrate, resulting in the precipitation of a yellow solid. After cooling on an ice-water bath, the precipitate was filtered off, washed with water (2x5 mL), and dried under a stream of air for ca. 1 h. **2p-Au(OAc^F)**₂ was obtained as a pale yellow solid.

Yield: 0.207 g, 0.326 mmol, 65 %.

¹**H NMR** (600 MHz, CD₂Cl₂): δ 8.86 (dd, ³*J*_{H,H} = 6.0 Hz, ⁴*J*_{H,H} = 1.3 Hz, 1H, H⁶), 8.35 (dd, ³*J*_{H,H} = 8.2 Hz, ⁴*J*_{H,H} = 1.3 Hz, 1H, H⁴), 7.70 (dd, ³*J*_{H,H} = 8.2 Hz, 6.0 Hz, ³*J*_{H,H} = 1H, H⁵), 7.27 (d, ³*J*_{H,H} = 8.2 Hz, 1H, H⁵'), 7.12 (d, 1H, ³*J*_{H,H} = 8.2 Hz, H⁶'), 6.96 (s, 1H, H³'), 2.46 ppm (s, 3H, Ar-CH₃).

¹³**C** NMR (201 MHz, CD_2CI_2): δ 161.5 (q, ² $J_{C,F}$ = 38.3 Hz, OCOCF₃), 160.9 (q, ² $J_{C,F}$ = 39.6 Hz, OCOCF₃), 157.7 (C²), 151.2 (C⁶), 147.6 (C⁴), 145.3 (C³), 142.8 (C²), 139.0 (C⁴), 134.6 (C¹), 132.1 (C⁵), 129.8 (C³), 128.4 (C⁶), 124.9 (C⁵), 118.2 (d (q expected), ¹ $J_{C,F}$ = 288.8 Hz, OCOCF₃), 116.1 (q, ¹ $J_{C,F}$ = 287.9 Hz, OCOCF₃), 22.7 ppm (Ar-CH₃).

¹⁹**F NMR** (188 MHz, CD₂Cl₂): δ –76.1 (s, 3F, OCOC**F**₃), –77.1 ppm (s, 3F, OCOC**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –163.9 ppm (N¹). The resonance corresponding to the nitrogen in the nitro group was not detected.

MS (ESI): *m*/*z* (rel. %): 580.976 (23) [M–OCOCF₃+Na³⁵Cl]⁺, 591.005 (53) [M–OCOCF₃+NaHCO₂]⁺.

HRMS (ESI): Found: 580.9761/582.9733; calcd for C₁₄H₉AuClF₃N₂NaO₄ [M–OCOCF₃+Na^{35/37}Cl]⁺: 580.9766/582.9737.

HRMS (ESI): Found: 591.0048; calcd for C₁₅H₁₀AuF₃N₂NaO₆ [M–OCOCF₃+NaHCO₂]⁺: 591.0049.
Elemental Analysis: Anal. calcd. For C₁₆H₉AuF₆N₂O₆: C, 30.21; H, 1.43; N. 4.40. Found: C, 30.16; H, 1.42; N, 4.40.

Figure S108. ¹H NMR (600 MHz, CD₂Cl₂) of **2p-Au(OAc^F)**₂.

Figure S109. ¹³C NMR (201 MHz, CD_2Cl_2) of **2p-Au(OAc^F)**₂. For one of the expected quartets corresponding to one of the **C**F₃ carbons of the trifluoroacetate ligands, only a doublet could be detected (marked with green stars in the insert to the right). The other quartet (marked with purple stars in the insert to the right) does not show the expected 1:3:3:1 relationship between the individual peaks. Traces of (an) unidentified impurity/impurities are indicated by blue stars.

Figure S110. ¹⁹F NMR (376 MHz, CD₂Cl₂) of **2p-Au(OAc^F)**₂.

Figure S111. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **2p-Au (OAc^F)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection). The resonance corresponding to the nitrogen in the NO₂ group was not detected.

2r-Au(OAc^F)₂. A microwave vessel was charged with Au(OAc)₃ (0.0750 g, 0.200 mmol, 1.00 equiv.) and **1r** (0.0980 g, 0.202 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (6 mL). The reaction mixture was heated at 120 °C for 60 min in a microwave. After cooling to room temperature, HOAc^F (2 mL) was added, and the resulting solution was filtered. Water (20 mL) was added to the filtrate, resulting in the precipitation of a solid. After cooling on an ice-water bath for 15 min, and then overnight at 4-8 °C, the precipitate was filtered off, washed with water (3x5 mL) and Et₂O (5 mL), and dried under a stream of air for ca. 3 h, furnishing **2r-Au(OAc^F)**₂ as a colorless solid.

Yield: 0.0740 g, 0.0810 mmol, 41 %.

¹**H NMR** (800 MHz, CD_2Cl_2): δ 8.61 (dd, ${}^{3}J_{H,H} = 6.1$ Hz, ${}^{4}J_{H,H} = 1.0$ Hz, 1H, H⁶), 8.34 (ddd, ${}^{3}J_{H,H} = 8.1$ Hz, ${}^{3}J_{H,H} = 7.7$ Hz, ${}^{4}J_{H,H} = 1.4$ Hz, 1H, H⁴), 8.05 (dd, ${}^{3}J_{H,H} = 8.2$ Hz, ${}^{4}J_{H,H} = 1.2$ Hz, 1H, H³), 7.80 (s, 1H, H⁶), 7.65 (ddd, ${}^{3}J_{H,H} = 7.6$ Hz, ${}^{3}J_{H,H} = 6.1$ Hz, ${}^{4}J_{H,H} = 1.4$ Hz, 1H, H⁵), 7.27 ppm (s, 1H, H⁴).

¹³**C** NMR (201 MHz, CD₂Cl₂): δ 164.3 (**C**²), 161.2 (q, ²*J*_{C,F} = 38.4 Hz, OCOCF₃), 160.4 (q, ²*J*_{C,F} = 39.6 Hz, OCOCF₃), 148.4 (**C**⁶), 145.4 (**C**⁴), 144.6 (m, 2x Ar-**C**-F), 142.2 (d, ¹*J*_{C,F} = 254.8 Hz, Ar-**C**-F), 141.9 (d, ¹*J*_{C,F} = 256.2 Hz, Ar-**C**-F), 141.1 (**C**^{3'} + **C**^{5'}), 138.6 (d, ¹*J*_{C,F} = 252.5 Hz, Ar-**C**-F), 137.6 (**C**^{4'}), 137.2 (d, ¹*J*_{C,F} = 251.1 Hz, Ar-**C**-F), 130.8 (**C**^{1'} or **C**^{2'}), 129.4 (**C**^{1'} or **C**^{2'}), 128.3 (**C**^{6'}), 126.3 (**C**⁵), 122.8 (**C**³), 117.9 (q, ¹*J*_{C,F} = 288.4 Hz, OCO**C**F₃), 115.1 (q, ¹*J*_{C,F} = 288.1 Hz, OCO**C**F₃), 113.0 ppm (m, 2x Ar-**C**-C-F).

¹⁹**F NMR** (470 MHz, CD₂Cl₂): δ –75.6 (s, 3F, OCOCF₃), –77.1 (s, 3F, OCOCF₃), –143.8 (dd, ³*J*_{F,F} = 22.1 Hz, ⁴*J*_{F,F} = 7.5 Hz, 2F, C₆F₅), –145.2 (dd, ³*J*_{F,F} = 23.1 Hz, ⁴*J*_{F,F} = 7.5 Hz, 2F, C₆F₅), –155.0 (dd, ³*J*_{F,F} = 21.3 Hz, ³*J*_{F,F} = 20.3 Hz, 1F, C₆F₅), –156.3 (dd, ³*J*_{F,F} = 20.8 Hz, ³*J*_{F,F} = 20.2 Hz, 1F, C₆F₅), –163.6 (m, 2F, C₆F₅), –164.7 ppm (m, 2F, C₆F₅).

¹⁵N{¹H} NMR (800 MHz, CD₂Cl₂): δ –167.7 ppm (N¹).

MS (ESI): *m/z* (rel. %): 714.019 (15) [M–20C0CF₃+0Me]⁺, 768.027 (70) [M–20C0CF₃+20Me+Na]⁺, 800.053 (100) [M–20C0CF₃+20Me+MeOH+Na]⁺.

HRMS (ESI): Found: 714.0188; calcd for C₂₄H₉AuF₁₀NO [M–2OCOCF₃+OMe]⁺: 714.0185.

HRMS (ESI): Found: 768.0269; calcd for C₂₅H₁₂AuF₁₀NNaO₂ [M–2OCOCF₃+2OMe+Na]⁺: 768.0266.

HRMS (ESI): Found: 800.0532; calcd for C₂₆H₁₆AuF₁₀NNaO₃ [M–2OCOCF₃+2OMe+MeOH+Na]⁺: 800.0528.

Elemental Analysis: Anal. calcd. For C₂₆H₆AuF₁₆NO₄: C, 35.66; H, 0.67; N, 1.54. Found: C, 35.64; H, 0.67; N, 1.54.

Figure S112. ¹H NMR (800 MHz, CD₂Cl₂) of **2r-Au(OAc^F)**₂.

Figure S113. ¹³C NMR (201 MHz, CD₂Cl₂) of **2r-Au(OAc^F)**₂.

Figure S114. ¹⁹F NMR (470 MHz, CD₂Cl₂) of **2r-Au(OAc^F)**₂.

Figure S115. ${}^{1}H{}^{-15}N$ HMBC (800 MHz, CD₂Cl₂) of **2r-Au(OAc^F)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

3s-AuOAc^F. A microwave vessel was charged with $Au(OAc)_3$ (0.0750 g, 0.200 mmol, 1.00 equiv.) and **1s** (0.0480 g, 0.202 mmol, 1.01 equiv.) in a 1:1 mixture of $HOAc^F$ and water (6 mL). The reaction mixture was heated at 80 °C for 3.5 h in a microwave. The reaction mixture was kept at 4-8 °C overnight. Addition of $HOAc^F$ (4 mL), followed by water (6 mL), furnishing a white precipitate. The precipitate was collected by filtration, and washed with water (3 x 3 mL). The title compound was obtained as a white solid.

Yield: 0.0410 g, 0.0750 mmol, 38 %.

¹**H NMR** (600 MHz, CD₂Cl₂): δ 8.48 (ddd, ³*J*_{H,H} = 5.4 Hz, ⁴*J*_{H,H} = 1.4 Hz, ⁵*J*_{H,H} = 0.8 Hz, 1H, **H**⁶), 7.99-8.03 (m, 1H, **H**⁴), 7.94 (d, ³*J*_{H,H} = 8.1 Hz, 1H, **H**³), 7.50 (ddd, ³*J*_{H,H} = 7.5 Hz, ³*J*_{H,H} = 5.4 Hz, ⁴*J*_{H,H} = 1.3 Hz, 1H, **H**⁵), 7.35 (s, 1H, **H**⁶'), 6.92 (s, 1H, **H**⁴'), 3.50 (sx, ³*J*_{H,H} = 6.8 Hz, 1H, Ar-C**H**(CH₂Au)CH₃), 3.38 (dd, ²*J*_{H,H} = 10.4 Hz, ³*J*_{H,H} = 7.3 Hz, 1H, Ar-CH(CH₂Au)CH₃), 2.97 (dd, ²*J*_{H,H} = 10.4 Hz, ³*J*_{H,H} = 5.6 Hz, 1H, Ar-CH(CH₂Au)CH₃), 2.94 (sp, ³*J*_{H,H} = 6.9 Hz, 1H, Ar-CH(CH₃)₂), 1.287 ppm (d, ³*J*_{H,H} = 6.9 Hz, 3H, Ar-CH(CH₃)₂).

¹³**C** NMR (151 MHz, CD_2CI_2): δ 162.2 (**C**²), 161.5 (q, ²*J*_{C,F} = 36.5 Hz, OCOCF₃), 161.2 (**C**³'), 149.8 (**C**⁵'), 148.1 (**C**⁶), 146.3 (**C**¹'), 141.5 (**C**⁴), 139.7 (**C**²'), 126.1 (**C**⁴'), 125.1 (**C**⁵), 121.1 (**C**⁶'), 120.8 (**C**³), 118.5 (q, ¹*J*_{C,F} = 290.3 Hz, OCOCF₃), 46.7 (Ar-CH(CH₂Au)CH₃), 41.4 (Ar-CH(CH₂Au)CH₃), 35.2 (Ar-CH(CH₃)₂), 24.5 (Ar-CH(CH₃)₂), 24.3 (Ar-CH(**C**H₃)₂), 23.0 ppm (Ar-CH(CH₂Au)**C**H₃).

¹⁹**F NMR** (376 MHz, CD₂Cl₂): δ –76.9 ppm (s, 3F, OCOC**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –111.7 ppm (N¹).

MS (ESI): *m/z* (rel. %): 434.118 (49) [M–OCOCF₃]⁺, 452.128 (100) [M–OCOCF₃+H₂O]⁺, 475.144 (82) [M–OCOCF₃+MeCN]⁺.

HRMS (ESI): Found: 434.1176; calcd for C₁₇H₁₉AuN [M–OCOCF₃]⁺: 434.1178.

Elemental Analysis: Anal. calcd. For C₁₇H₁₅AuF₃NO₂: C, 41.70; H, 3.50; N, 2.56. Found: C, 41.61; H, 3.48; N, 2.53.

Figure S116. ¹H NMR (600 MHz, CD₂Cl₂) of **3s-AuOAc^F**.

Figure S117. ¹³C NMR (151 MHz, CD₂Cl₂) of **3s-AuOAc^F**.

Figure S118. ¹⁹F NMR (376 MHz, CD₂Cl₂) of **3s-AuOAc^F**.

Figure S119. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **3s-AuOAc^F**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

3t-AuOAc^F. A microwave vessel was charged with $Au(OAc)_3$ (0.0750 g, 0.200 mmol, 1.00 equiv.) and **1t** (0.0440 g, 0.202 mmol, 1.04 equiv.) in a 1:1 mixture of $HOAc^F$ and water (6 mL). The reaction mixture was heated at 80 °C for 3 h in a microwave. The reaction mixture was kept at 4-8 °C overnight. Addition of $HOAc^F$ (2 mL), followed by water (3 mL), furnishing a white precipitate. The precipitate was collected by filtration, and washed with water (3 x 3 mL) and pentane (5 mL). The title compound was obtained as a white solid.

Yield: 0.0680 g, 0.131 mmol, 65 %.

¹**H NMR** (600 MHz, CD₂Cl₂): δ 8.45-8.47 (m, 1H, H⁶), 7.99-8.01 (m, 1H, H⁴), 7.90 (d, ³J_{H,H} = 8.0 Hz, 1H, H³), 7.47 (ddd, ³J_{H,H} = 7.6, ³J_{H,H} = 5.4, ⁴J_{H,H} = 1.3 Hz, 1H, H⁵), 7.31 (s, 1H, H^{6'}), 6.99 (s, 1H, H^{4'}), 3.27–3.30 (m, 2H, Ar-CH₂CH₂Au), 3.18–3.20 (m, 2H, Ar-CH₂CH₂Au), 2.65 (q, ³J_{H,H} = 7.6 Hz, 2H, Ar-CH₂CH₃), 1.25 ppm (t, ³J_{H,H} = 7.6 Hz, 3H, Ar-CH₂CH₃).

¹³**C** NMR (151 MHz, CD_2Cl_2): δ 162.5 (**C**²), 161.5 (d (q expected), ²*J*_{C,F} = 36.3 Hz, OCOCF₃), 158.3 (**C**³), 148.2 (**C**⁵), 148.0 (**C**⁶), 145.0 (**C**¹), 141.5 (**C**⁴), 139.4 (**C**²), 126.9 (**C**⁴), 125.0 (**C**⁵), 122.0 (**C**⁶), 120.9 (**C**³), 118.5 (d (q expected), ¹*J*_{C,F} = 290.5 Hz, OCOCF₃), 40.3 (Ar-CH₂CH₂Au), 32.2 (Ar-CH₂CH₂Au), 29.7 (Ar-CH₂CH₃), 16.2 ppm (Ar-CH₂CH₃).

¹⁹**F NMR** (376 MHz, CD₂Cl₂): δ –76.9 ppm (s, 3F, OCOC**F**₃).

¹⁵N{¹H} NMR (600 MHz, CD₂Cl₂): δ –110.7 ppm (N¹).

MS (ESI): *m/z* (rel. %): 406.087 (63) [M–OCOCF₃]⁺, 424.097 (100) [M–OCOCF₃+H₂O]⁺, 447.113 (54) [M– OCOCF₃+MeCN]⁺.

HRMS (ESI): Found: 406.0867; calcd for C₁₅H₁₅AuN [M–OCOCF₃]⁺: 406.0865.

Elemental Analysis: Anal. calcd. For C₁₇H₁₅AuF₃NO₂: C, 39.32; H, 2.91; N, 2.70. Found: C, 39.27; H, 2.87; N, 2.69.

Figure S120. ¹H NMR (600 MHz, CD₂Cl₂) of **3t-AuOAc^F**.

Figure S121. ¹³C NMR (151 MHz, CD_2Cl_2) of **3t-AuOAc^F**. The doublet (quartet expected) corresponding to the **C**F₃ carbon of the trifluoroacetate ligand is indicated by purple stars in the insert to the right. The doublet (quartet expected) corresponding to the carbonyl carbon of the trifluoroacetate ligand is indicated by purple stars in the insert to the left.

Figure S122. ¹⁹F NMR (376 MHz, CD₂Cl₂) of **3t-AuOAc^F**.

Figure S123. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **3t-AuOAc**^F, showing the region between 5.0 ppm and 8.5 ppm. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S124. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **3t-AuOAc**^F, showing the region between 3.0 ppm and 6.0 ppm. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

2u-*p*-Au(OAc^F)₂ and 3u-AuOAc^F. A microwave vessel was charged with Au(OAc)₃ (0.0750 g, 0.200 mmol, 1.00 equiv.) and 1u (0.0370 g, 0.202 mmol, 1.01 equiv.) in a 1:1 mixture of HOAc^F and water (6 mL). The reaction mixture was heated at 80 °C for 3 h in a microwave. After cooling to room temperature, water (2 mL) was added to the strongly yellow solution, furnishing a white precipitate The precipitate was collected by filtration and washed with water (3 x 3 mL). The title compounds were obtained as a white solid (0.0630 g). No attempts were made to separate the two complexes. The ratio between 2u-*p*-Au(OAc^F)₂ and 3u-AuOAc^F was determined to be approximately 9:5 in favor of 2u-*p*-Au(OAc^F)₂, based on integration of the ¹H NMR spectrum, resulting in an overall yield of 56 % (0.0403 mmol 3u-AuOAc^F, 20 %; 0.0717 mmol 2u-*p*-Au(OAc^F)₂, 36 %).

Analytical data for 3u-AuOAc^F

¹**H NMR** (600 MHz, CD₂Cl₂): δ 8.48 (d, ³*J*_{H,H} = 5.0 Hz, 1H, H⁶), 8.02 (m, 1H, H⁴), 7.92 (d, ³*J*_{H,H} = 8.0 Hz, 1H, H³), 7.52–7.50 (m, 1H, H⁵), 7.47 (d, ³*J*_{H,H} = 7.7 Hz, 1H, H^{6'}), 7.25 (m, 1H, H^{5'}), 7.14 (d, ³*J*_{H,H} = 8.2 Hz, 1H, H^{4'}), 3.32 (dd, ³*J*_{H,H} = 6.4 Hz, ³*J*_{H,H} = 6.4 Hz, 2H, Ar-CH₂CH₂Au), 3.24 ppm (dd, 2H, ³*J*_{H,H} = 6.6 Hz, ³*J*_{H,H} = 6.6 Hz, Ar-CH₂CH₂Au).

¹³**C** NMR (201 MHz, CD_2CI_2): δ 162.4 (**C**²), 161.6 (q, ²*J*_{C,F} = 36.4 Hz, OCOCF₃), 158.7 (**C**³), 151.1 (**C**²), 148.0 (**C**⁶), 141.7 (**C**⁴), 139.6 (**C**¹), 128.5 (**C**⁵), 127.2 (**C**⁴), 125.2 (**C**⁵), 122.3 (**C**⁶), 121.0 (**C**³), 118.5 (q, ¹*J*_{C,F} = 290.1 Hz, OCOCF₃), 40.5 (Ar-CH₂CH₂Au), 32.5 ppm (Ar-CH₂CH₂Au).

¹⁹**F NMR** (376 MHz, CD₂Cl₂): δ –76.9 ppm (s, 3F, OCOC**F**₃).

MS (ESI): m/z (rel. %): 436/438 (48/16) [M–OCOCF₃+ Na^{35/37}Cl]⁺.

HRMS (ESI): Found: 436.0138/438.0109; calcd for C₁₃H₁₁AuClNNa [M–OCOCF₃+Na^{35/37}Cl]⁺: 436.0143/438.0114.

Analytical data for 2u-p-Au(OAc^F)₂

¹**H NMR** (600 MHz, CD_2Cl_2): δ 8.56 (d, ${}^{3}J_{H,H}$ = 5.9 Hz, 1H, H⁶), 8.22 (m, 1H, H⁴), 7.95 (d, ${}^{3}J_{H,H}$ = 8.1 Hz, 1H, H³), 7.53–7.51 (m, 1H, H⁵), 7.38 (d, ${}^{3}J_{H,H}$ = 1.9 Hz, 1H, H⁶), 7.16 (dd, ${}^{3}J_{H,H}$ = 8.4 Hz, ${}^{4}J_{H,H}$ = 2.0 Hz, 1H, H⁴), 6.98 (d, ${}^{3}J_{H,H}$ = 8.3 Hz, 1H, H³), 2.74 (q, ${}^{3}J_{H,H}$ = 7.6 Hz, 2H, CH₂), 1.29 ppm (t, ${}^{3}J_{H,H}$ = 7.6 Hz, 3H, CH₃).

¹³**C** NMR (201 MHz, CD_2CI_2): δ 165.4 (**C**²), 161.5 (q, ² $J_{C,F}$ = 37.8 Hz, OCOCF₃), 160.9 (q, ² $J_{C,F}$ = 39.2 Hz, OCOCF₃), 148.3 (**C**⁶), 147.7 (**C**⁵), 144.9 (**C**⁴), 141.6 (**C**¹), 140.6 (**C**²), 132.4 (**C**⁴), 128.8 (**C**³), 125.9 (**C**⁶), 125.3 (**C**⁵), 122.1 (**C**³), 118.5 (q, ¹ $J_{C,F}$ = 289.0 Hz, OCOCF₃), 116.2 (q, ¹ $J_{C,F}$ = 287.9 Hz, OCOCF₃), 29.0 (**C**H₂), 15.7 ppm (**C**H₃).

¹⁹**F NMR** (376 MHz, CD₂Cl₂): δ –76.1 (s, 3F, OCOC**F**₃), –77.1 ppm (s, 3F, OCOC**F**₃).

MS (ESI): *m/z* (rel. %): 482 (20) [M–2(OCOCF₃)+³⁵Cl+CO₂H]⁺.

HRMS (ESI): Found: 482.0192/484.0163; calcd for C₁₃H₁₁AuClNNa [M–2(OCOCF₃)+^{35/37}Cl+CO₂H]⁺: 482.0198/484.0169.

Figure S125. ¹H NMR (600 MHz, CD₂Cl₂) of a mixture of **3u-AuOAc^F** and **2u-p-Au(OAc^F)**₂. Resonances arising from **3u-AuOAc^F** are marked with red circles, resonances arising from **2u-p-Au(OAc^F)**₂ are marked with blue circles and overlapping resonances are marked with purple circles.

Figure S126. ¹³C NMR (201 MHz, CD₂Cl₂) of a mixture of **3u-AuOAc^F** and **2u-p-Au(OAc^F)**₂.

Figure S127. ¹⁹F NMR (376 MHz, CD₂Cl₂) of a mixture of **3u-AuOAc^F** and **2u-***p***-Au(OAc^F)₂**. The resonance arising from **3u-AuOAc^F** is marked with a red circle and the resonances arising from **2u-***p***-Au(OAc^F)₂** are marked with blue circles.

¹H-¹⁵N HMBC spectra of previously reported Au(III) complexes

For δ^{15} N of each compound, see Table S1. The spectra are presented in Figure S128—Figure S136.

Table S1. Overview of $\delta^{15}N$ for a selection of the complexes studied herein, as well as relevant previosuly reported Au(III) complexes.^[1-5, 39] $\delta^{15}N_{\text{ligand}}$ are given as well, together with the coordination shifts ($\Delta\delta^{15}N$) and Au-N bond lengths from the corresponding crystal structure, if available. The data were collected through ¹H-¹⁵N HMBC experiments (600 or 800 MHz). All measurements were done in CD₂Cl₂. Unless otherwise noted, the data (NMR and X-ray diffraction) were collected in this work.

Complex	$\delta^{15}N$	$\delta^{15} N_{\text{ligand}}$	$\Delta \delta^{15} N$	Au-N [Å]	Ligand <i>trans</i> to pyridine-N	Ligand <i>cis</i> to pyridine-N
1f-Au(OAc [⊧])₃	-186.5	-72.2	-114.0	n/a		
2d-Au(OAc ^F)₂	-160.4	-64.9	-95.5	2.013(4)	[OAc ^F] ⁻	
2h-Au(OAc [⊧])₂	-167.1	-72.6	-94.5	1.9996(19)		
2i-Au(OAc ^F)₂	-161.7	-73.5	-88.2	2.034(3)		
2I-Au(OAc ^F)₂	-187.1	-94.2	-92.9	1.999(4)		
2m-Au(OAc ^F) ₂	-187.7	-121.5	-66.1	2.0426(17)		
2n-Au(OAc ^F)₂	-164.9	-63.9	-101.0	1.9974(19)		
2p-Au(OAc ^F)₂	-163.9	-59.4	-104.5	2.008(3)		
2r-Au(OAc ^F)₂	-167.7	-73.0	-94.0	1.999(12)		
2a-Au(OAc ^F) ₂	-165.6	-74.9	-90.7	1.991(6) ^[1]	[OAc ^F]⁻	[OAc ^F]⁻
2a-Au(OAc)₂	-164.4	-74.9	-89.5	n/a	[OAc]⁻	[OAc]⁻
2a-Au(CH ₂ =CHCH ₂)Br	-122.6	-74.9	-47.7	2.11(3) ^[5]	$CH_2=CHCH_2^-$	Br⁻
2a-Au(C₀H₅)Br	-127.9	-74.9	-53.0	2.121(3) ^[40]	$C_6H_5^-$	Br⁻
2a-Au(CH₃)Br	-121.6	-74.9	-46.7	2.1280(17) ^[40]	CH₃⁻	Br⁻
2a-Au(CH₃)₂	-131.0	-74.9	-56.1	2.130(3) ^[1]	CH₃⁻	CH₃⁻
[2a-Au(C,N)]⁺[OAc ^F] ⁻	-129.0 ^[39]	-74.9	-54.1	2.126(2) ^[39]	$-OCH_2CH_2^-$	-OC(CH₃)=NH
3b-AuOAc ^F	-111.6	-72.4	-39.2	2.135(3) ^[2]	ArC(CH ₃) ₂ CH ₂ [−]	[OAc ^F]⁻
3s-AuOAc [⊧]	-111.7	-73.6	-38.1	2.144(3)	ArCH(CH ₃)CH ₂ [−]	[OAc ^F]⁻
3t-AuOAc [⊧]	-110.7	-73.6	-37.1	2.15(2)	$ArCH_2CH_2^-$	[OAc ^F]⁻

Figure S128. ¹H-¹⁵N HMBC (600 MHz, CD_2Cl_2) of **1a**. The chemical shifts have been calibrated using CH_3NO_2 as an external standard (blue star in the projection).

Figure S129. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **1b**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S130. $^{1}H^{-15}N$ HMBC (600 MHz, CD₂Cl₂) of **2a-Au(OAc^F)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S131. ${}^{1}H{}^{-15}N$ HMBC (600 MHz, CD₂Cl₂) of **2a-Au(OAc)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S132. $^{1}H^{-15}N$ HMBC (600 MHz, CD₂Cl₂) of **2a-Au(CH₃)**₂. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S133. ${}^{1}H{}^{-15}N$ HMBC (600 MHz, CD₂Cl₂) of **2a-Au(CH₃)Br**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S134. ¹H-¹⁵N HMBC (600 MHz, CD_2Cl_2) of **2a-Au(C₆H₅)Br**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S135. ${}^{1}H{}^{15}N$ HMBC (600 MHz, CD₂Cl₂) of **2a-Au(CH₂=CHCH₂)Br**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Figure S136. ¹H-¹⁵N HMBC (600 MHz, CD₂Cl₂) of **3b-AuOAc^F**. The chemical shifts have been calibrated using CH₃NO₂ as an external standard (blue star in the projection).

Crystallographic methods

Single-crystal diffraction data were acquired on a Bruker D8 Venture equipped with a Photon 100 CMOS area detector, and using Mo K α radiation (λ = 0.71073 Å) or Cu K α radiation (λ = 1.5406 Å) from an Incoatec iµS microsource. Data reduction was performed with the Bruker Apex3 Suite, the structures were solved with ShelXT^[41] and refined with ShelXL.^[42] Olex2 was used as user interface.^[43] The cif files were edited with enClFer v. 1.4.^[44] Full details of the data collection, structure solution and refinement for each compound are contained in the cif files, available from https://www.ccdc.cam.ac.uk/ (CCDC numbers: 2115512 (2c-Au(OAc^F)₂), 2122527 (2d-Au(OAc^F)₂), 2085151 (2e-Au(OAc^F)₂), 2086346 (2h-Au(OAc^F)₂), 2126159 (2i-Au(OAc^F)₂), 2126283 (2j₃Au₂(OAc^F)₂), 2122284 (2l-Au(OAc^F)₂), 2111917 (2m-Au(OAc^F)₂), 2126097 (3s-AuOAc^F) and 2114274 (3t-AuOAc^F)). The data are summarized in Table S2–Table S15. For comments on level A and/or level B alerts in the cifs of 2j₃Au₂(OAc^F)₂ and 3t-AuOAc^F, see the text below Figure S147 and Figure S162, respectively.

Figure S137. ORTEP plot of **2c-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity.

Figure S138. ORTEP plot of **2d-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Only one of the two molecules in the asymmetric unit is shown. Hydrogen atoms, disorder in the trifluoroacetate ligand *trans* to C7, and an associated CH_2Cl_2 molecule (solvent of crystallization) have been omitted for clarity.

Figure S139. ORTEP plot of **2d-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Both molecules in the asymmetric unit are shown. Hydrogen atoms and disorder in the trifluoroacetate ligand *trans* to C7 have been omitted for clarity.

Figure S140. ORTEP plot of **2d-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Both molecules in the asymmetric unit are shown. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Au1-O3, 2.008(4); Au1-O1, 2.114(4); Au1-N1, 2.013(4); Au1-C7, 1.995(5); Au2-O7, 2.009(4); Au2-O5, 2.113(4); Au2-N2, 2.008(4); Au2-C24, 2.001(5); O3-Au1-O1, 88.41(17); O3-Au1-N1, 174.92(17); N1-Au1-O1, 94.74(17); C7-Au1-O3, 94.73(18); C7-Au1-O1, 176.60(19); C7-Au1-N1, 82.03(19); O7-Au2-O5; 88.84(16); N2-Au2-O7; 174.47(18); N2-Au2-O5; 94.42(17); C24-Au2-O7; 94.57(19); C24-Au2-O5, 176.39(19); C24-Au2-N2, 82.1(2).

Figure S141. ORTEP plot of **2e-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity.

Figure S142. ORTEP plot of **2h-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity.

Figure S143. ORTEP plot of **2i-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Only one of the two molecules in the asymmetric unit is shown. Hydrogen atoms and an associated CH_2Cl_2 molecule (solvent of crystallization) have been omitted for clarity.

Figure S144. ORTEP plot of **2i-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Only one of the two molecules in the asymmetric unit is shown. Hydrogen atoms and an associated CH_2Cl_2 molecule (solvent of crystallization) have been omitted for clarity.

Figure S145. ORTEP plot of **2i-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Both molecules in the asymmetric unit are shown. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Au1-O1, 2.113(2); Au1-O3, 2.011(2); Au1-N1, 2.034(3); Au1-C7, 1.994(3); Au2-O5, 2.112(3); Au2-O7, 2.010(3); Au2-N2, 2.033(3); Au2-C24, 1.992(3); O3-Au1-O1, 82.24(10); O3-Au1-N1, 173.84(11); N1-Au1-O1, 103.80(11); C7-Au1-O1, 172.37(12); C7-Au1-O3, 92.46(12); C7-Au1-N1, 81.65(13); O7-Au2-O5, 82.01(11); O7-Au2-N2, 173.39(11); N2-Au2-O5, 104.53(11); C24-Au2-O5, 172.55(12); C24-Au2-O7, 91.75(13); C24-Au2-N2, 81.65(13).

Figure S146. ORTEP plot of **2j₃Au₂(OAc^F)₂**. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Au1–O7, 2.116(17); Au1–N1, 2.112(19); Au1–C7, 2.01(2); Au1–C16, 2.07(2); Au2–O1, 2.145(17); Au2–N2, 2.104(18); Au2–C20, 2.05(2); Au2–C35, 2.03(3); N1–Au1–O7, 90.9(7); C7–Au1–O7, 172.6(9); C7–Au1–N1 82.2(8); C7–Au1–C16, 98.0(10); C16–Au1–O7, 89.0(8); C16–Au1–N1, 178.4(9); N2–Au2–O1, 93.3(7); C20–Au2–O1, 88.3(8); C20–Au2–N2, 178.2(8); C35–Au2–O1, 174.6(9); C35–Au2–N2, 81.5(9); C35–Au2–C20, 96.9(10).

Figure S147. ORTEP plot of $2j_3Au_2(OAc^F)_2$. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity. Disordered fluorine atoms in the trifluoroacetate ligand bonded to Au2 and solvent molecules (CH₂Cl₂ and (H)OAc^F) are shown.

A low $(\sin\theta/\lambda)_{max}$ value (0.530) was found for the chosen crystal of $2j_3Au_2(OAc^F)_2$. The crystal was a weak scatterer with a relatively complex structure, these data were the best possible. Compared to other structures with better resolution, the geometry of the main moiety seems to be reasonable.

Figure S148. ORTEP plot of **2I-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms and disorder in the trifluoroacetate ligand *trans* to N1 have been omitted for clarity.

Figure S149. ORTEP plot of **2I-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity. The disorder in the trifluoroacetate ligand *trans* to N is shown.

Figure S150. ORTEP plot of **2m-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms and an associated CH_2Cl_2 molecule (solvent of crystallization) have been omitted for clarity.

Figure S151. ORTEP plot of **2m-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms and an associated CH_2Cl_2 molecule (solvent of crystallization) have been omitted for clarity.

Figure S152. ORTEP plot of **2m-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity.

Figure S153. ORTEP plot of **2n-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity.

Figure S154. ORTEP plot of **2o-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity.

Figure S155. ORTEP plot of **2p-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms and a disordered CH_2CI_2 molecule (solvent of crystallization) have been omitted for clarity.

Figure S156. ORTEP plot of **2p-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity.

Figure S157. ORTEP plot of **2r-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity.

A low $(\sin\theta/\lambda)_{max}$ value (0.500) was found for the chosen crystal of **2r-Au(OAc^F)**₂. The crystal was a twinned weak scatterer with a relatively complex structure, these data were the best possible. Compared to other structures with better resolution, the geometry of the main moiety seems to be reasonable.

Figure S158. ORTEP plot of **3s-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Only one of the two molecules in the asymmetric unit is shown. Hydrogen atoms and disorder in one of the isopropyl groups have been omitted for clarity.

Figure S159. ORTEP plot of **3s-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Only one of the two molecules in the asymmetric unit is shown. Hydrogen atoms have been omitted for clarity.

Figure S160. ORTEP plot of **3s-Au(OAc^F)**₂. Ellipsoids are shown at 50 % probability level. Both molecules in the asymmetric unit are shown. The gold atoms in the two molecules are separated by 3.2322(3) Å. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Au1-O1, 2.108(3); Au1-N1, 2.144(3); Au1-C7, 1.954(3); Au1-C13, 2.055(4); Au1-Au2, 3.2322(3); Au2-O3, 2.114(3); Au2-N2, 2.144(3); Au2-C26, 1.953(4); Au2-C32, 2.050(4); O1-Au1-N1, 98.52(11); O1-Au1-Au2, 87.75(7); N1-Au1-Au2, 85.46(8); C7-Au1-O1, 177.53(13); C7-Au1-N1, 80.59(13); C7-Au1-C13, 81.33(15); C7-Au1-Au2, 89.88(10); C13-Au1-O1, 99.67(14); C13-Au1-N1, 161.67(14); C13-Au1-Au2, 97.48(11); O3-Au2-Au1, 79.99(7); O3-Au2-N2, 99.16(12); N2-Au2-Au1, 83.29(8); C26-Au2-Au1, 98.65(11); C26-Au2-O3, 178.64(13); C26-Au2-N2, 80.54(14); C26-Au2-C32, 81.70(16); C32-Au2-Au1, 102.77(12); C32-Au2-O3, 98.67(14); C32-Au2-N2, 161.92(14).

Figure S161. ORTEP plot of **3t-AuOAc^F**. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity. Only one of the four molecules in the asymmetric unit is shown.

Figure S162. ORTEP plot of **3t-AuOAc**^F. Ellipsoids are shown at 50 % probability level. Hydrogen atoms have been omitted for clarity. All four molecules in the asymmetric unit are shown. Selected bond lengths (Å) and angles (°): Au1—O1, 2.076(18); Au1—N1, 2.15(2); Au1—C7, 1.94(2); Au1—C13, 2.04(3); Au2—O3, 2.129(18); Au2—N2, 2.14(2); Au2—C24, 1.96(2); Au2—C30, 2.06(3); Au3—O5, 2.078(17); Au3—N3, 2.128(18); Au3—C41, 1.95(2); Au3—C47, 2.079(19); Au4—O7, 2.115(17); Au4—N4, 2.159(18); Au4—C58, 1.94(2); Au4—C64, 2.029(19); O1—Au1—N1, 93.2(8); C7—Au1—O1, 173.2(10); C7—Au1—N1, 80.0(10); C7—Au1—C13, 83.0(11); C13—Au1—O1, 103.7(9); C13—Au1—N1, 163.0(9); O3—Au2—N2, 91.7(8); C24—Au2—O3, 172.5(10); C24—Au2—N2, 80.8(10); C24—Au2—C30, 82.9(11); C30—Au2—O3, 104.6(9); C30—Au2—N2, 163.7(9); O5—Au3—N3, 93.3(6); O5—Au3—C47, 107.9(6); C41—Au3—O5, 172.5(7); C41—Au3—N3, 79.6(7); C41—Au3—C47, 79.2(7); C47—Au3—N3, 158.8(6); O7—Au4—N4, 91.1(6); C58—Au4—O7, 172.0(7); C58—Au4—N4, 81.2(6); C58—Au4—C64, 86.4(7); C64—Au4—O7, 101.3(6); C64—Au4—N4, 167.6(6).

Several issues in the structure of **3t-AuOAc**^F were encountered (see cif for full details). The structure is complex and contains significant disorder, which could not be well modelled despite several different strategies being tested. Significant restraint of the thermal parameters was required to get the refinement

to this stage, which unfortunately led to some positional oscillation in atoms, which would have had highly anisotropic thermal parameters if allowed to refine freely. The overall geometry of the structure seems reasonable compared to other similar complexes. The disorder in the structure may be due to weak intermolecular interactions, which allow each molecule to have a slightly different position/orientation; and molecular flexibility, which allows every molecule to have a slightly different shape/configuration. The reported crystal structure therefore represents an average of the possible orientations and configurations of the molecules in this system, represented by the four independent molecules in the asymmetric unit. We were also able to solve the crystal structure with a smaller unit cell containing one molecule in the asymmetric unit, but the signs of disorder in the resulting model were so excessive that it could not be refined. Table S2. Crystal and refinement data for **2c-Au(OAc^F)**₂.

	F N Au Au F Ac ^F O OAc ^F
	2c-Au(OAc ^F) ₂
Crystal data	
Identification code, CCDC number	IL_MA_48, 2115512
Chemical formula	$C_{15}H_6AuF_8NO_4$
Mr	613.17
Crystal system, space group	Triclinic, P ⁻ 1
Temperature (K)	100
a, b, c (Å)	9.0823 (9), 9.6035 (9), 9.6741 (9)
α, β, γ (°)	99.749 (2), 103.932 (2), 94.850 (2)
$V(Å^3)$	800.19 (13)
Ζ	2
Radiation type	Μο Κα
μ (mm ⁻¹)	9.31
Crystal size (mm)	0.4 imes 0.14 imes 0.05
Data collection	·
Diffractometer	Bruker D8 Venture, Bruker SMART APEX2 area detector
Absorption correction	Multi-scan
	SADABS2016/2 (Bruker, 2016/2) was used for absorption
	correction. wR2(int) was 0.1222 before and 0.0611 after
	correction. The Ratio of minimum to maximum transmission is
	0.6453. The $\lambda/2$ correction factor is Not present.
No. of measured, independent and	23774, 4025, 3665
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.055
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.670
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.052, 1.04
No. of reflections	4025
No. of parameters	262
No. of restraints	0
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0171P)^2 + 1.8796P]$
0	where $P = (F_0^2 + 2F_c^2)/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ \AA}^{-3})$	1.86, -0.93

Table S3. Crystal and refinement data for **2d-Au(OAc^F)**₂.

F	$Au = 0.5 CH_2CI_2$
	2d-Au(OAc') ₂
Crystal data	
Identification code, CCDC number	IL_4cf3, 2122527
Chemical formula	$C_{17}H_9AuF_9NO_4 \cdot 0.5CH_2Cl_2$
M _r	701.68
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	
<i>a</i> , <i>b</i> , <i>c</i> (A)	8.3096 (4), 24.4047 (13), 10.1744 (5)
β(°)	101.993 (1)
$V(A^3)$	2018.26 (18)
Ζ	4
Radiation type	Μο Κα
μ (mm ⁻¹)	7.53
Crystal size (mm)	0.45 imes 0.12 imes 0.08
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan SADABS2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1009 before and 0.0594 after correction. The Ratio of minimum to maximum transmission is 0.5983. The $\lambda/2$ correction factor is Not present.
T_{\min}, T_{\max}	0.446, 0.746
No. of measured, independent and	43389, 12387, 11761
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.031
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.717
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.046, 1.02
No. of reflections	12387
No. of parameters	601
No. of restraints	1
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0103P)^2 + 0.7666P]$ where $P = (F_o^2 + 2F_c^2)/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	1.03, -1.05

Table S4. Crystal and refinement data for **2e-Au(OAc^F)**₂.

$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
Identification code, CCDC number	ILMA64, 2085151
Chemical formula	$C_{16}H_7AuF_9NO_4$
M _r	645.19
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	7.9194 (7), 22.7352 (19), 9.8659 (8)
β(°)	100.171 (2)
$V(Å^3)$	1748.4 (3)
Z	4
Radiation type	Μο Κα
μ (mm ⁻¹)	8.53
Crystal size (mm)	$1.3 \times 0.1 \times 0.1$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan
	SADABS2016/2 (Bruker, 2016/2) was used for absorption
	correction. wR2(int) was 0.1160 before and 0.0465 after
	correction. The Ratio of minimum to maximum transmission is
	0.4099. The $\lambda/2$ correction factor is Not present.
T_{\min}, T_{\max}	0.330, 0.746
No. of measured, independent and	39659, 6415, 5833
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.031
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.774
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.050, 1.12
No. of reflections	6415
No. of parameters	280
No. of restraints	0
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.0154P)^2 + 4.6906P]$
where $P = (F_o^2 + 2F_c^2)/3$	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ A}^{-3})$	1.62, -1.46

Table S5. Crystal and refinement data for **2h-Au(OAc^F)**₂.

	2n-Au(OAC ⁻) ₂
Crystal data	
Identification code, CCDC number	IL_dimethyl, 2086346
	$C_{17}H_{12}AuF_6NO_4$
Mr Crustal system space group	003.24 Moncolinia <i>D</i> 2 /a
Terrer erecture (K)	Monoclinic, $P2_1/c$
$a = b = a(\dot{A})$	100
(a, b, c)	10.349 (3), 19.440 (3), 9.020 (3)
$\frac{\mathbf{p}(\mathbf{r})}{\mathbf{v}(\mathbf{A}^3)}$	104.223 (8)
V (A')	1/39.0 (9)
Z Radiation type	4 Mo Ka
(mm ⁻¹)	MO Kα 8 45
$\frac{\mu(\text{IIIII})}{Crustel size (mm)}$	0.52 × 0.4 × 0.28
Data collection	$0.32 \times 0.4 \times 0.28$
Diffractometer	Bruker D8 Venture
Absorption correction	Multi scan
Absorption correction	SADABS2016/2 (Bruker 2016/2) was used for absorption
	correction. wR2(int) was 0.1203 before and 0.0499 after
	correction. The Ratio of minimum to maximum transmission is
	0.5557. The $\lambda/2$ correction factor is Not present.
T_{\min}, T_{\max}	0.415, 0.746
No. of measured, independent and	46689, 5371, 5078
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.037
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.715
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.039, 1.19
No. of reflections	5371
No. of parameters	264
No. of restraints	0
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0097P)^2 + 2.6789P]$
	where $P = (F_o^2 + 2F_c^2)/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.98, -1.41

Table S6. Crystal and refinement data for **2i-Au(OAc^F)**₂.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2i-Au(OAc ^F) ₂	
Crystal data	
Identification code, CCDC number	IL183_freezer, 2126159
Chemical formula	$2(C_{17}H_{12}AuF_6NO_4)\cdot CH_2Cl_2$
Mr	1295.41
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (A)	12.9432 (7), 24.5659 (13), 12.8760 (7)
β(°)	93.769 (1)
$V(A^3)$	4085.2 (4)
Z	4
Radiation type	Μο Κα
μ (mm ⁻¹)	7.41
Crystal size (mm)	$0.46 \times 0.1 \times 0.07$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan <i>SADABS2016</i> /2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1138 before and 0.0561 after correction. The Ratio of minimum to maximum transmission is 0.6481. The $\lambda/2$ correction factor is Not present.
T_{\min}, T_{\max}	0.484, 0.746
No. of measured, independent and	183078, 12987, 10781
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.054
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.735
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.063, 1.07
No. of reflections	12987
No. of parameters	554
No. of restraints	0
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0204P)^{2} + 15.8963P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	1.30, -1.98

Table S7. Crystal and refinement data for $2j_3Au_2(OAc^F)_2$.

MeO	
ОМе	
	MeO
AC U	Au-N
	MeO.
2	
	CF_3CO_2H
	CF_3CO_2 OMe
2j ₃	Au ₂ (OAc ^F) ₂
Crystal data	
Identification code, CCDC number	test_1ang, 2126283
Chemical formula	$C_{43}H_{35}Au_2F_6N_3O_{10} \cdot 2(CH_2Cl_2) \cdot CF_3CO_2H \cdot CF_3CO_2$
M _r	1658.57
Crystal system, space group	Triclinic, P^-1
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.978 (2), 14.129 (3), 16.804 (4)
α, β, γ (°)	86.730 (5), 82.867 (5), 76.625 (4)
$V(A^3)$	2744.0 (10)
Z	2
Radiation type	Μο Κα
(mm ⁻¹)	5.64
Crystal size (mm)	$0.4 \times 0.34 \times 0.09$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan
	SADABS2016/2 (Bruker 2016/2) was used for absorption
	correction, wR2(int) was 0.1365 before and 0.0949 after
	correction. The Ratio of minimum to maximum transmission is
	0.5506. The $\lambda/2$ correction factor is Not present.
Tmin. Tmax	0.410, 0.745
No. of measured, independent and	47330, 6777, 5268
observed $[I > 2\sigma(I)]$ reflections	
Rint	0.080
$\theta_{max}(\circ)$	22.1
$(\sin \theta/\lambda) = (\dot{A}^{-1})$	0.530
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{R[F^2 > 2\sigma(F^2)]}{R[F^2 > S} = \frac{R[F^2 > 2\sigma(F^2)]}{R[F^2 > S}$	0.091 0.233 1.29
$N_{1} > 20(1)$, $M(1)$, S	6777
No of parameters	413
No. of restraints	20
H_atom treatment	H atoms treated by a mixture of independent and constrained
	refinement
Itermement Weighting scheme $w = 1/[-2](E^2) + 222.7055 D]$	
$W = 1/[G^{-}(F_{0}^{-}) + 252./055F]$ where $P = (F^{2} \pm 2F^{2})/3$	
A_{2} A_{2} $(a^{\lambda} - 3)$	$\frac{1}{3} \frac{1}{28} - 404$
$ \Delta \rho \max, \Delta \rho \min (\nabla \Lambda)$	J.20, T.UT

Table S8. Crystal and refinement data for **2I-Au(OAc^F)**₂.

MeO	
	Ac ^F O OAc ^F
2I-Au(OAc ^F) ₂	
Crystal data	
Identification code, CCDC number	IL_dime, 2122284
Chemical formula	$C_{17}H_{12}AuF_6NO_5$
$M_{ m r}$	621.24
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	8.8236 (8), 9.7870 (9), 21.7712 (19)
β (°)	101.618 (2)
$V(\text{\AA}^3)$	1841.6 (3)
Ζ	4
Radiation type	Μο Κα
$\mu (mm^{-1})$	8.08
Crystal size (mm)	$0.44 \times 0.29 \times 0.12$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan
	SADABS2016/2 (Bruker, 2016/2) was used for absorption
	correction. wR2(int) was 0.1055 before and 0.0545 after
	correction. The Ratio of minimum to maximum transmission is
	0.4769. The $\lambda/2$ correction factor is Not present.
T_{\min}, T_{\max}	0.356, 0.746
No. of measured, independent and	47169, 5624, 5229
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.044
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.715
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.077, 1.43
No. of reflections	5624
No. of parameters	301
No. of restraints	31
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + 11.9551P]$
	where $P = (F_0^2 + 2F_c^2)/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{Å}^{-3})$	1.72, -2.79

Table S9. Crystal and refinement data for $2m-Au(OAc^{F})_{2}$.

MeO All CH ₂ Cl ₂	
	-FO OAcF
2	$m - Au(OAc^{F})$
Crystal data	
Identification code, CCDC number	II 161 freezer 2111017
Chemical formula	Curther AuE/NOs/ChaCla
M.	706.17
Crystal system space group	Triclinic P^-1
Temperature (K)	100
a h c (Å)	9 3498 (6) 10 7363 (7) 10 9287 (7)
$\alpha, \beta, \gamma(\circ)$	91 934 (1) 93 962 (1) 98 824 (1)
$V(A^3)$	1080 38 (12)
7	2
Radiation type	Ξ Μο Κα
u (mm ⁻¹)	7.14
Γ (mm)	$0.23 \times 0.13 \times 0.05$
Data collection	0.23 × 0.13 × 0.05
Diffractometer Bruker D8 Venture	
Absorption correction	Multi-scan
F	SADABS2016/2 (Bruker,2016/2) was used for absorption
	correction. wR2(int) was 0.0868 before and 0.0465 after
	correction. The Ratio of minimum to maximum transmission is
	0.7323. The $\lambda/2$ correction factor is Not present.
T_{\min}, T_{\max}	0.546, 0.746
No. of measured, independent and	55997, 6630, 6201
observed $[I > 2\sigma(I)]$ reflections	
$R_{\rm int}$	0.035
$(\sin \theta/\lambda)_{\text{max}}$ (Å ⁻¹)	0.716
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.039, 1.06
No. of reflections	6630
No. of parameters	300
No. of restraints	0
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.0164P)^2 + 1.1797P]$
where $P = (F_0^2 + 2F_c^2)/3$	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.97, -0.78

Table S10. Crystal and refinement data for **2n-Au(OAc^F)**₂.

OMe N Au Ac ^F O OAc ^F	
	2n-Au(OAc ^F) ₂
Crystal data	
Identification code, CCDC number	IL_155_shorter, 2105655
Chemical formula	$C_{17}H_{12}AuF_6NO_5$
M _r	621.24
Crystal system, space group	Triclinic, P ⁻ 1
Temperature (K)	100
a, b, c (Å)	9.207 (1), 9.8687 (10), 11.0143 (12)
α, β, γ (°)	81.490 (2), 67.125 (2), 83.432 (2)
$V(Å^3)$	910.14 (17)
Z	2
Radiation type	Μο Κα
μ (mm ⁻¹)	8.17
Crystal size (mm)	$0.71 \times 0.35 \times 0.16$
Data collection	
Diffractometer Bruker D8 Venture	
Absorption correction	Multi-scan SADABS2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1210 before and 0.0621 after correction. The Ratio of minimum to maximum transmission is 0.3667. The $\lambda/2$ correction factor is Not present.
T_{\min}, T_{\max}	0.274, 0.746
No. of measured, independent and	41502, 5610, 5215
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.049
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.717
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.042, 1.04
No. of reflections	5610
No. of parameters	273
No. of restraints	0
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0172P)^{2} + 0.6464P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ \AA}^{-3})$	1.40, -1.28
Table S11. Crystal and refinement data for **2o-Au(OAc^F)**₂.

Au			
	2o-Au(OAc ^r) ₂		
Crystal data			
Identification code, CCDC number	IL_MA_98, 2086931		
Chemical formula	$C_{15}H_7AuF_6N_2O_6$		
M _r	622.19		
Crystal system, space group	Triclinic, <i>P</i> ⁻ 1		
Temperature (K)	100		
<i>a</i> , <i>b</i> , <i>c</i> (A)	7.3280 (5), 10.7406 (7), 11.6341 (7)		
α, β, γ (°)	89.684 (1), 77.095 (1), 81.102 (1)		
$V(Å^3)$	881.42 (10)		
Ζ	2		
Radiation type	Μο Κα		
μ (mm ⁻¹)	8.45		
Crystal size (mm)	0.43 imes 0.37 imes 0.1		
Data collection			
Diffractometer	Bruker D8 Venture		
Absorption correction	Multi-scan		
	SADABS2016/2 (Bruker, 2016/2) was used for absorption		
	correction. wR2(int) was 0.1213 before and 0.0471 after		
	correction. The Ratio of minimum to maximum transmission is		
	0.4931. The $\lambda/2$ correction factor is Not present.		
T_{\min}, T_{\max}	0.368, 0.746		
No. of measured, independent and	38944, 5421, 5278		
observed $[I > 2\sigma(I)]$ reflections			
R _{int}	0.034		
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.716		
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.016, 0.041, 1.17		
No. of reflections	5421		
No. of parameters	271		
No. of restraints	0		
H-atom treatment	H-atom parameters constrained		
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.0168P)^2 + 1.1321P]$		
	where $P = (F_o^2 + 2F_c^2)/3$		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	1.26, -1.62		

Table S12. Crystal and refinement data for **2p-Au(OAc^F)**₂.

$2 \xrightarrow{NO_2} \\ NO_2 \\ Au \\ Au \\ Ac^FO \\ OAc^F \\ OAc^F$		
	2p-Au(OAc ^F) ₂	
Crystal data		
Identification code, CCDC number	IL_MA_75, 2126114	
Chemical formula	$2(C_{16}H_9AuF_6N_2O_6)\cdot CH_2Cl_2$	
M _r	1357.36	
Crystal system, space group	Monoclinic, $P2_1/c$	
Temperature (K)	100	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.8990 (4), 13.1289 (6), 18.9100 (9)	
β (°)	101.648 (1)	
$V(Å^3)$	1920.68 (16)	
Ζ	2	
Radiation type	Μο Κα	
μ (mm ⁻¹)	7.90	
Crystal size (mm)	0.22 imes 0.12 imes 0.05	
Data collection		
Diffractometer	Bruker D8 Venture	
Absorption correction	Multi-scan SADABS2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0932 before and 0.0448 after correction. The Ratio of minimum to maximum transmission is 0.6732. The $\lambda/2$ correction factor is Not present.	
T_{\min}, T_{\max}	0.502, 0.746	
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	36782, 4839, 4326	
R _{int}	0.033	
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.670	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.049, 1.09	
No. of reflections	4839	
No. of parameters	307	
No. of restraints	2	
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0161P)^2 + 6.3832P]$ where $P = (F_o^2 + 2F_c^2)/3$	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.76, -1.13	

Table S13. Crystal and refinement data for **2r-Au(OAc^F)**₂.

$ \begin{array}{c} $			
Crystal data			
Identification code, CCDC number	IL_134, 2130186		
Chemical formula	$C_{27}H_6AuF_{16}NO_4$		
M _r	909.29		
Crystal system, space group	Triclinic, P ⁻ 1		
Temperature (K)	100		
a, b, c (Å)	8.0544 (3), 12.1925 (6), 15.7587 (7)		
α, β, γ (°)	86.998 (4), 82.480 (3), 73.200 (3)		
$V(Å^3)$	1468.59 (11)		
Ζ	2		
Radiation type	Cu <i>K</i> α		
μ (mm ⁻¹)	10.72		
Crystal size (mm)	0.14 imes 0.03 imes 0.03		
Data collection			
Diffractometer	Bruker D8 Venture		
Absorption correction	$\begin{array}{l} \mbox{Multi-scan} \\ \mbox{TWINABS-2012/1 (Bruker,2012) was used for absorption} \\ \mbox{correction. For component 1: wR2(int) was 0.1038 before and} \\ \mbox{0.0560 after correction.} \\ \mbox{For component 2: wR2(int) was 0.1055 before and 0.0544 after} \\ \mbox{correction. The Ratio of minimum to maximum transmission is} \\ \mbox{0.71.} \\ \mbox{Final HKLF 4 output contains 12412 reflections, } R_{int} = 0.0767 \\ \mbox{(9567 with I > 3sig(I), R_{int} = 0.0683)} \end{array}$		
T_{\min}, T_{\max}	0.714, 0.725		
No. of measured, independent and	7414, 7414, 6056		
observed $[I > 2\sigma(I)]$ reflections			
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.500		
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.062, 0.143, 1.07		
No. of reflections	7414		
No. of parameters	443		
No. of restraints	36		
H-atom treatment	H-atom parameters constrained		
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0563P)^2 + 13.002P]$ where $P = (F_o^2 + 2F_c^2)/3$		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	1.70, -0.97		

Table S14. Crystal and refinement data for **3s-AuOAc^F**.

	3s-AuOAc ^F		
Crystal data			
Identification code, CCDC number	IL_60_tol, 2126097		
Chemical formula	$C_{19}H_{18.5}AuF_{3}NO_{2}$		
M _r	546.81		
Crystal system, space group	Triclinic, P ⁻ 1		
Temperature (K)	100		
a, b, c (Å)	9.0910 (5), 14.2888 (8), 16.1720 (9)		
α, β, γ (°)	65.308 (1), 78.665 (1), 82.526 (1)		
$V(\text{\AA}^3)$	1868.71 (18)		
Ζ	4		
Radiation type	Μο Κα		
$\mu (mm^{-1})$	7.91		
Crystal size (mm)	$0.19 \times 0.13 \times 0.04$		
Data collection			
Diffractometer	Bruker D8 Venture		
Absorption correction	Multi-scan		
	SADABS2016/2 (Bruker,2016/2) was used for absorption		
	correction. wR2(int) was 0.1158 before and 0.0491 after		
	correction. The Ratio of minimum to maximum transmission is		
	0.7113. The $\lambda/2$ correction factor is Not present.		
T_{\min}, T_{\max}	0.530, 0.745		
No. of measured, independent and	57959, 7703, 6644		
observed $[I > 2\sigma(I)]$ reflections			
R _{int}	0.038		
$(\sin \theta / \lambda)_{\text{max}} (A^{-1})$	0.627		
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.049, 1.03		
No. of reflections	7703		
No. of parameters	476		
No. of restraints	20		
H-atom treatment	H-atom parameters constrained		
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.0142P)^2 + 5.004P]$		
<u> </u>	where $P = (F_0^2 + 2F_c^2)/3$		
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	1.31, -0.84		

Table S15. Crystal and refinement data for **3t-AuOAc^F**.

Ac ^F O			
	3t-AuOAc ^F		
Crystal data			
Identification code, CCDC number	IL_63_tol, 2114274		
Chemical formula	$0.25(C_{17}H_{15}AuF_{2.706}NO_2) \cdot 0.75(C_{17}H_{15}AuF_3NO_2)$		
M _r	517.91		
Crystal system, space group	Monoclinic, Cc		
Temperature (K)	100		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	26.1042 (19), 13.5893 (10), 19.3988 (14)		
β (°)	112.368 (2)		
$V(\text{\AA}^3)$	6363.7 (8)		
Ζ	16		
Radiation type	Μο Κα		
μ (mm ⁻¹)	9.29		
Crystal size (mm)	$0.22 \times 0.18 \times 0.15$		
Data collection	· · · · · · · · · · · · · · · · · · ·		
Diffractometer	Bruker D8 Venture		
Absorption correction	Multi-scan		
	SADABS2016/2 (Bruker,2016/2) was used for absorption		
	correction. wR2(int) was 0.0992 before and 0.0444 after		
	correction. The Ratio of minimum to maximum transmission is		
	0.8177. The $\lambda/2$ correction factor is Not present.		
T_{\min}, T_{\max}	0.610, 0.746		
No. of measured, independent and	84078, 19420, 13543		
observed $[I > 2\sigma(I)]$ reflections			
R _{int}	0.037		
$(\sin \theta / \lambda)_{\text{max}} (\check{A}^{-1})$	0.716		
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.079, 1.02		
No. of reflections	19420		
No. of parameters	367		
No. of restraints	5		
H-atom treatment	H-atom parameters constrained		
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0286P)^2 + 73.1986P]$		
	where $P = (F_o^2 + 2F_c^2)/3$		
$(\Delta/\sigma)_{\rm max}$	1.312		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	2.68, -1.56		
Absolute structure	Refined as an inversion twin.		
Absolute structure parameter	0.482 (19)		

Computational details

Calculations were carried out at the DFT level as implemented in the Gaussian16 software package.^[45] The hybrid PBE0+GD3 functional^[46, 47] including Grimme's model for dispersion forces was used to optimize all geometries. This methodology was selected based on previous studies which have proven its solid performance in the modelling of Au(III) complexes.^[39, 48-51] C, H, F, N and O were described with the all-electron triple- ζ 6-311+G** basis set,^[52, 53] whereas Au was described with the Stuttgart-Köln basis set including a small-core quasi-relativistic pseudopotential.^[54, 55] NBO7 calculations were performed in order to analyze the natural charges.^[56] Geometries were fully optimized without any constraint. Vibrational frequencies were computed at the same level of theory to classify all stationary points as either saddle points (transition states, with a single imaginary frequency) or energy minima (reactants, intermediates and products, with only real frequencies). The Gibbs free energy used in the discussion includes both the thermochemistry and the refined energy. All optimizations were carried out in solvent (CH₂Cl₂ or HOAc^F) using the SMD solvation model.^[57] HOAc^F was defined as eps = 8.55, epsinf = 2.26 and rsolv = 13.7. In the bimolecular steps, the energies were corrected for the 1 M standard state.

Formal Charge Analysis calculations

In order to assess the electronic properties of the (N,C) ligands depicted in Scheme 1, main text, in a systematic manner, and possibly explain some of the experimental observations, natural charge analysis of the protonated bidentate (N,C) ligands was performed (Table S16). Protonated ligands were used to model the *N*-coordinated Au(III) adducts that initially form during cyclometalation. The natural charge of the carbon (C2') within each ligand that would bind Au(III) under experimental conditions was calculated and compared to those of the 2-phenylpyridinium cation (**ppy-H**⁺, Figure S163).

ppy-H⁺

Figure S163. The phenylpyridinium cation.

From the analysis, the natural charge of C2' varies only to a minor extent for the 4'-substituted ligands compared to **ppy-H**⁺ ($\Delta \le 0.020$). A broader range was found for the ligands containing electron-donating or electron-withdrawing groups in the 3' and/or 5' positions. For ligand **1h-H**⁺, bearing methyl groups in *ortho* and *para* positions relative to C2', a small negative change in the natural charge was found ($\Delta = -$ 0.008), consistent with the mild electron-donating ability of alkyl groups. For ligand **1c-H**⁺, having fluorine groups in the same positions, a much larger change was observed ($\Delta = -0.084$), in line with fluorine being an activating, *ortho/para* directing group in electrophilic aromatic substitutions. An even more negative natural charge was found for C2' in 3',5'-dimethoxy-substituted ligand **1j-H**⁺ ($\Delta = -0.120$). While **1c** and **1h** furnished cyclometalated Au(III) complexes in high yields, ligand **1j** yielded a mixture of a unidentifiable species. The larger negative Δ found for **1j** compared to **1c** and **1h** may suggest that **1j** is too electron rich to give a clean reaction under the experimental conditions for cyclometalation. This once again illustrates the resemblance of cyclometalation reactions of electron poor late transition metals and electrophilic aromatic substitution reactions.^[58, 59]

For the ligands containing electron-withdrawing groups in the *ortho/para* positions relative to C2', the lowest natural charges of C2' were found for ligands $\mathbf{1r}$ - \mathbf{H}^+ (R = 3',5'-di(pentafluorophenyl), Δ = 0.041) and $\mathbf{1f}$ - \mathbf{H}^+ (R = 3',5'-di(trifluoromethyl), Δ = 0.061). These findings are in accordance with literature reports on the less powerful electron-withdrawing properties of the pentafluorophenyl group relative to the trifluoromethyl group,^[60] and also agrees with the experimental findings. As discussed above, ligand $\mathbf{1r}$

223

furnished the (N,C) complex **2r-Au(OAc^F)**₂ upon reaction with Au(OAc)₃, whereas ligand **1f** failed to yield any cyclometalated complex. For ligand **1g-H**⁺, two static isomers were modelled: the *ortho* isomer **1g-o-H**⁺ (R = 3'-trifluoromethyl) and the *para* isomer **1g-p-H**⁺ (R = 5'-trifluoromethyl). We found that the *ortho* isomer had a significantly lower natural charge at C2' than the *para* isomer, which is consistent with the *para* isomer **1g-p-Au(OAc^F)**₂ always being the main isomer obtained experimentally.

Protonated ligand	Charge of C2'	ΔC2'
рру-Н⁺	-0.19526	0
1a-H⁺	-0.18608	0.009
1c-H*	-0.27967	-0.084
1d-H⁺	-0.18099	0.014
1e-H⁺	-0.17479	0.020
1f-H⁺	-0.13399	0.061
1g- <i>p</i> -H ⁺	-0.17066	0.025
1g- <i>о</i> -Н ⁺	-0.15729	0.038
1h-H⁺	-0.20283	-0.008
1i-H⁺	-0.19340	0.002
1j-H⁺	-0.31507	-0.120
1k-H⁺	-0.17786	0.017
1I-H⁺	-0.18894	0.006
1m-H⁺	-0.18651	0.000
1n-H⁺	-0.18888	0.006
10-H ⁺	-0.18412	0.011
1p-H⁺	-0.17743	0.018
1r-H*	-0.15380	0.041

Table S16. Absolute and relative formal charges at C2' in protonated ligands.

Color code: green shade: *para*-substituted on phenyl; red shade: di-substituted on phenyl; blue shade: pyridine-substituted; yellow shade: mono-substituted on phenyl. Red name: electron-donating substituent on phenyl; blue name: electron-withdrawing substituent on phenyl; black name: methyl in *para* position on phenyl.

DFT calculations on the formation of 2s-Au(OAc^F)₂

Table S17. Gibbs energies in CH_2Cl_2 (SMD), calculated for the $C(sp^2)$ -H activation step furnishing **2s-Au(OAc^F)_2** from **1s-H**⁺ (and $[Au(OAc^F)_4]^-$). The latter is set as the reference energy.

Structure	Gibbs energy [kcal mol ⁻¹]
1s-H⁺ and $[Au(OAc^{F})_{4}]^{-}$	0.0
1s-Au(OAc ^F) ₃	-6.5
TSA	[15.0]
2s-Au(OAc ^F) ₂	-22.9

DFT calculations on the formation of 3u-AuOAc^F

DFT calculations on the formation of **3u-AuOAc^F** were performed for both cyclometalation steps. Due to the unsymmetrically substituted phenyl ring in ligand **1u**, two possible bis(trifluoroacetate) complexes can be obtained in the initial $C(sp^2)$ -H activation reaction, as already discussed for ligand **1g** (see the discussion related to the characterization of 2g-p-Au(OAc^F)₂ and 2g-o-Au(OAc^F)₂). Since a potential preference is of interest, this step was investigated thoroughly. The protonated ligand $1u-H^+$ and the $[Au(OAc^F)_4]^-$ anion were used as the energy reference (Figure S164). The energy difference for the two stable conformations of the free ligand is only 0.6 kcal mol⁻¹, hence both reaction pathways are considered possible. Formation of the N-coordinated complexes 1u-o-Au(OAc^F)₃ and 1u-p-Au(OAc^F)₃ are both exergonic processes. For the following C(sp²)-H activation step, the energy barrier is 19.7 kcal mol⁻¹ when ethyl is *ortho* to the newly formed Au-C bond, and 22.5 kcal mol⁻¹ when ethyl is *para* to the Au-C bond. This energy barrier found for the complex bearing the ethyl group *ortho* to the carbon that undergoes C-H activation is 2 kcal mol^{-1} lower than seen in the same step for the more sterically crowded isopropyl analog **3s-AuOAc^F** (ΔG^{\dagger} = 21.6 kcal mol⁻¹). The bis(trifluoroacetate) complex (2u-o-Au(OAc^F)₂) that may undergo C(sp³)–H activation has a similar thermodynamic energy difference compared to its energy reference as that seen for 3s- $Au(OAc^{F})_{2}$, meaning the ortho-substituted 2u-o- $Au(OAc^{F})_{2}$ is a relatively stable species. The energy barrier (Table S18) for the dissociation step (25.9 kcal mol⁻¹) furnishing the agostic intermediate [2u-o-Au-OAc^F]⁺[OAc^F]⁻ is similar to that observed in the formation of both 3s-Au-OAc^F and 3t-Au-OAc^F (22.1 and 25.0 kcal mol⁻¹, respectively). The proton abstraction by [OAc^F]⁻ is barrier-free. Overall, the **3u-AuOAc^F** pincer complex is more thermodynamically stable than 2u-p-Au(OAc^F)₂, albeit only with a relatively small

margin ($\Delta G = -2.7 \text{ kcal mol}^{-1}$). This correlates well with the experimental observations, where a mixture of **3u-AuOAc**^F and **2u-***p***-Au(OAc**^F)₂ was obtained.

Figure S164. Free energy profile in kcal mol⁻¹ for the C(sp²)-H activation reaction furnishing **2u-o-Au(OAc^F)**₂ and **2u-p-Au(OAc^F)**₂. The energies of all minima and transition states in brackets are computed in CH₂Cl₂ (SMD).

Table S18. Gibbs energies in CH₂Cl₂ (SMD), calculated for the C(sp³)-H activation step furnishing **3u- AuOAc^F** from its bis(trifluoroacetate) precursor **2u-o-Au(OAc^F)**₂. The latter is set as the reference energy.

Structure	Gibbs energy [kcal mol ⁻¹]
2u-o-Au(OAc ^F) ₂	0.0
TS1	[25.9]
[2u- <i>o</i> -Au-OAc ^F]⁺[OAc ^F] [−]	22.9
TS2	[23.9]
3u-AuOAc ^F	-7.8

ppy-H⁺

С	2.73802100	-1.13178700	-0.37697200
С	0.71871300	0.06866500	0.01087700
С	1.46448100	1.18148400	0.38487700
С	2.84899200	1.12245400	0.37319100
С	3.50069500	-0.04939100	-0.00775200
Н	3.14701300	-2.08027500	-0.70023000
Н	0.86701300	-1.84709800	-0.67066000
Н	0.94665000	2.07623700	0.70626900
Н	3.42539000	1.99103400	0.67323200
Н	4.58033900	-0.12308200	-0.02189300
С	-0.74758000	0.02652100	0.00746100
С	-1.46925300	1.16576500	-0.36544200
С	-1.43310600	-1.13430900	0.38380900
С	-2.85658200	1.13713600	-0.37279500
Н	-0.94347200	2.06456300	-0.67081300
С	-2.82112400	-1.15378900	0.37792000
Н	-0.89108600	-2.01375200	0.71989800
С	-3.53436900	-0.02112400	-0.00276600
Н	-3.41023900	2.02056200	-0.67308200
Н	-3.34656900	-2.05290400	0.68225500
Ν	1.39873200	-1.03792700	-0.35897400
Н	-4.61947700	-0.03955600	-0.00660500

1a-H⁺

С	3.20180600	-1.13951000	-0.36720200
С	1.18262400	0.06758800	0.00988400
С	1.93258200	1.18342300	0.37108800

С	3.31614900	1.12214100	0.35836600
С	3.96651000	-0.05517200	-0.01047800
Н	3.60878200	-2.09227600	-0.68034700
Н	1.32989900	-1.85459600	-0.65447000
Н	1.41708000	2.08221300	0.68465200
Н	3.89420900	1.99288200	0.64891400
Н	5.04601500	-0.13063900	-0.02426100
С	-0.28079700	0.02872300	0.00998200
С	-1.00671400	1.17109800	-0.34934400
С	-0.97550600	-1.12801900	0.37770100
С	-2.39076500	1.14503500	-0.35345500
Н	-0.48374400	2.07393000	-0.64796200
С	-2.36293500	-1.13995300	0.37546700
Н	-0.44181300	-2.01430100	0.70955000
С	-3.09503900	-0.00972000	0.00582300
Н	-2.93936300	2.03593000	-0.64504400
Н	-2.88799900	-2.04065900	0.67885200
Ν	1.86214400	-1.04324400	-0.35003700
С	-4.59212600	-0.02557100	-0.01600900
Н	-5.00180900	0.83957300	0.51410600
Н	-4.96117000	0.02395000	-1.04655800
Н	-4.98983000	-0.93366900	0.44189100

1c-H⁺

С	3.30170500	-1.05808100	-0.54448300
С	1.28603700	0.06771300	0.02537700
С	2.02807900	1.11402800	0.55672800
С	3.41400200	1.05978900	0.53230700
С	4.06455600	-0.04025900	-0.02021800
н	3.71068900	-1.94696400	-1.00717600

Н	1.43444700	-1.72913300	-0.93275000
Н	1.51242300	1.95345500	1.00540800
Н	5.14422700	-0.10972800	-0.04884100
С	-0.18334400	0.02607600	0.01864700
С	-0.89338200	1.21500500	-0.16231700
С	-0.85979000	-1.18400000	0.19550400
С	-2.27313300	1.15791900	-0.17312600
Н	-0.39236900	2.16358400	-0.31498500
С	-2.24119100	-1.16925300	0.17638200
Н	-0.34457300	-2.12060000	0.38091100
С	-2.98348400	-0.01738300	-0.00780300
Ν	1.96333800	-0.97091300	-0.50786400
Н	3.98969600	1.87588700	0.95521400
Н	-4.06695300	-0.03445500	-0.01887800
F	-2.95939000	2.29414100	-0.36012800
F	-2.89519600	-2.32580600	0.35503500

1d-H⁺

С	-1.43962900	2.39645100	-0.32185300
С	0.14526400	0.62760700	-0.11161900
С	-0.90787900	-0.28132300	0.00981200
С	-2.21035500	0.17426500	-0.03848900
С	-2.49654800	1.53064800	-0.20103500
Н	-1.54918200	3.46359900	-0.46492600
Н	0.56787200	2.59899300	-0.41070700
Н	-0.68967300	-1.32935400	0.16650600
Н	-3.51174800	1.90456200	-0.23824800
С	1.55679200	0.25652300	-0.05224000
С	1.97293000	-0.99324500	-0.52657100
С	2.51151900	1.13007900	0.48581800

С	3.31030300	-1.34925000	-0.47434600
Н	1.25494000	-1.67965700	-0.96293400
С	3.84428000	0.75846200	0.54033100
Н	2.21713500	2.08935600	0.90292300
С	4.27027400	-0.48314900	0.05734400
Ν	-0.18280800	1.92525400	-0.27915000
Н	4.56844500	1.43882400	0.97810100
Н	3.61799100	-2.31767400	-0.85695800
С	-3.36150700	-0.79010800	0.12900700
F	-2.97145300	-2.06376500	0.05516500
F	-4.29300500	-0.59361400	-0.81224300
F	-3.95411500	-0.61628400	1.31958800
С	5.71732200	-0.86303100	0.08978000
Н	6.22128000	-0.43575200	0.96041700
Н	5.84535300	-1.94785600	0.10463900
н	6.22779100	-0.48242400	-0.80299400

1e-H⁺

С	-4.24230800	1.14486900	-0.39415900
С	-2.23950400	-0.07111400	0.01233200
С	-2.99304500	-1.17449000	0.39103800
С	-4.37822600	-1.10299300	0.37357400
С	-5.01625000	0.07087000	-0.01964400
Н	-4.64213100	2.09381200	-0.72728300
Н	-2.36418100	1.84346500	-0.68031900
Н	-2.48418000	-2.07169800	0.72007000
Н	-6.09507400	0.15440700	-0.04015200
С	-0.77063100	-0.04193000	0.01647900
С	-0.05895900	-1.18445400	-0.35911700
С	-0.07972600	1.10944800	0.40647900

С	1.32683700	-1.17370300	-0.35503300
н	-0.58837800	-2.07721800	-0.67364500
С	1.30605900	1.11971700	0.41371800
Н	-0.61396700	1.99299900	0.74214900
С	2.00389900	-0.02231700	0.03381300
Н	1.87627000	-2.05929400	-0.65332100
Н	1.83948200	2.00956500	0.72867500
Ν	-2.90491600	1.04025300	-0.36768200
С	3.50349400	0.00960700	-0.00225900
Н	-4.96357000	-1.96419600	0.67729700
F	4.04441600	-1.20739900	0.15634800
F	4.01719900	0.79948500	0.95400600
F	3.96064100	0.48517100	-1.17958000

1f-H⁺

С	-4.39158700	-0.88703500	0.69862900
С	-2.36577500	0.11870700	-0.03241200
С	-3.09463700	1.08246400	-0.71406500
С	-4.48167900	1.04969000	-0.67984900
С	-5.14333200	0.05217500	0.03008700
Н	-4.81074700	-1.69337900	1.28651600
Н	-2.53192700	-1.51525500	1.18201800
Н	-2.57043900	1.83738600	-1.28595400
Н	-6.22371600	0.00118400	0.06990400
С	-0.89656800	0.05620500	-0.02149700
С	-0.15507300	1.23911400	0.01195700
С	-0.23543300	-1.17085700	-0.05718700
С	1.22958600	1.18156200	0.01933500
Н	-0.65734100	2.19963800	0.04827400
С	1.15334900	-1.20703400	-0.04237300

Н	-0.79519200	-2.09859100	-0.12865900
С	1.89771000	-0.03769200	-0.00198500
N	-3.05275400	-0.82284200	0.64825100
н	-5.04845600	1.80136800	-1.21847900
Н	2.98056200	-0.07282700	0.00708200
С	1.83366700	-2.54483600	-0.11041300
С	2.01790300	2.45770100	0.10804400
F	1.35152400	-3.39050000	0.81799500
F	1.64017200	-3.13686300	-1.30385100
F	3.15426100	-2.45936400	0.07763200
F	3.22632200	2.34346600	-0.45833400
F	1.38839700	3.47850700	-0.49340300
F	2.21907500	2.82690700	1.38795200

1g-*p*-H⁺

С	-4.19408700	0.40324500	0.59576600
С	-1.93062900	0.05456400	-0.05074500
С	-2.28061500	-1.18500200	-0.57209500
С	-3.59534800	-1.62072800	-0.49892800
С	-4.57055000	-0.81789900	0.08754000
Н	-4.87247200	1.09402100	1.07958900
Н	-2.66962700	1.68422100	0.93447500
Н	-1.52263300	-1.78982400	-1.05365900
Н	-3.86341300	-2.58682900	-0.91261300
Н	-5.60440600	-1.13136100	0.15342300
С	-0.56946900	0.60745100	-0.09453100
С	0.52149200	-0.24871900	0.06430000
С	-0.35025700	1.97225200	-0.31072000
С	1.80980800	0.26491600	0.00912700
н	0.36644100	-1.30518900	0.25312000

С	0.94267800	2.47185800	-0.36673000
Н	-1.18627200	2.64688300	-0.46852300
С	2.02970900	1.62147300	-0.20922300
Н	1.10525200	3.52890300	-0.54522900
Ν	-2.91147700	0.79050500	0.51430800
Н	3.04006800	2.01189300	-0.25588900
С	2.97506000	-0.67264900	0.13407600
F	2.71397600	-1.70079000	0.95840500
F	4.07519700	-0.06267400	0.59772200
F	3.30645500	-1.21329500	-1.05744500

1g-*o*-H⁺

С	3.47200900	-1.57757900	-0.53665500
С	1.95771000	0.17921500	-0.00924100
С	2.99179800	0.88000900	0.59819500
С	4.26747300	0.33638800	0.63082400
С	4.51545200	-0.91025000	0.06148800
Н	3.56471800	-2.54257200	-1.01801600
Н	1.51094400	-1.52440700	-1.03677600
Н	2.78071000	1.83620300	1.06033400
Н	5.07133800	0.88257200	1.11226000
Н	5.50074500	-1.35796100	0.07543500
С	0.57267800	0.66335900	-0.08460900
С	-0.49906000	-0.21690700	0.07397400
С	0.32639000	2.02251200	-0.30257600
Н	-0.33276400	-1.26744000	0.28916800
С	-0.97640900	2.49288000	-0.37133600
Н	1.15607800	2.70816800	-0.43799900
С	-2.04601100	1.61881800	-0.21930600
Н	-1.16142200	3.54649300	-0.54846600

Ν	2.25130200	-1.02032800	-0.55420800
Н	-3.06444800	1.98713100	-0.27029100
С	-1.79845600	0.26897700	0.00799700
С	-2.94372800	-0.69129600	0.14041700
F	-3.27097200	-1.23976100	-1.04921400
F	-4.05312500	-0.10442000	0.61021600
F	-2.65635800	-1.71389100	0.96330700

1h-H⁺

С	3.33433600	-1.04704700	-0.56121200
С	1.31426700	0.07113800	0.02736700
С	2.06414600	1.10825500	0.57472800
С	3.44794800	1.05304500	0.54730300
С	4.09894900	-0.03996100	-0.02343100
Н	3.74079500	-1.92976300	-1.03786600
Н	1.46331500	-1.70730500	-0.95781500
Н	1.55044500	1.93936600	1.04040700
Н	5.17853500	-0.10950700	-0.05396600
С	-0.15153800	0.02796700	0.02071100
С	-0.87055500	1.21874400	-0.12438000
С	-0.83188900	-1.18550000	0.15732500
С	-2.26155700	1.20539400	-0.14965300
Н	-0.34338400	2.15951300	-0.24839700
С	-2.22512500	-1.21986500	0.14602600
Н	-0.28639300	-2.11312700	0.31185300
С	-2.91841500	-0.02000100	-0.01358500
Ν	1.99482400	-0.95780700	-0.52231800
Н	4.02541600	1.86099300	0.98354300
Н	-4.00582200	-0.03875200	-0.03050700
С	-2.96300000	-2.51141200	0.33955000

Н	-2.34871000	-3.37004000	0.05754400
Н	-3.24653200	-2.63734800	1.39071100
Н	-3.88263700	-2.53335300	-0.25098400
С	-3.04438200	2.47093300	-0.33761400
Н	-2.39211800	3.34707200	-0.34279500
Н	-3.59332700	2.45052600	-1.28504300
Н	-3.78245300	2.59623900	0.46073700

$1i-H^+$

С	-0.83459900	0.40748700	-0.06785900
С	-2.83473100	1.70069800	-0.33324900
С	-3.60793800	0.56651100	-0.10800700
Н	-1.18601500	-1.54351700	0.38549400
Н	-3.31905600	2.65008700	-0.53632000
Н	-4.68974500	0.60850100	-0.12416400
С	0.61570800	0.20107500	-0.04620700
С	1.45831200	1.19813000	0.45643900
С	1.18263800	-0.98375700	-0.53086400
С	2.83033300	1.00352200	0.48617300
н	1.03746000	2.11848200	0.84813900
С	2.55659800	-1.16416000	-0.50245800
н	0.55699000	-1.75582500	-0.97078900
С	3.40491000	-0.17961700	0.01263600
н	3.46964900	1.78300800	0.89001400
Н	2.98113100	-2.08187200	-0.89851800
Ν	-1.63471200	-0.65939200	0.15843300
С	4.88511000	-0.39766700	0.07636500
н	5.43018500	0.54901800	0.05111900
Н	5.15354000	-0.90759300	1.00927900
н	5.23138800	-1.02468600	-0.74916800

С	-1.45011300	1.62660700	-0.31761300
Н	-0.84058700	2.49694100	-0.52423200
С	-2.98453900	-0.64133300	0.14489800
С	-3.68746000	-1.92305400	0.40972300
Н	-3.43027700	-2.66180000	-0.35616100
Н	-3.39070100	-2.32966300	1.38170300
Н	-4.76635100	-1.77198700	0.40471300

1j-H⁺

С	-3.62400300	0.94812400	-0.66348900
С	-1.60530600	-0.10008000	0.04145000
С	-2.35128000	-1.08771400	0.67505900
С	-3.73573900	-1.04382500	0.63081700
С	-4.38729200	-0.01164500	-0.04228300
Н	-4.03173600	1.78101400	-1.22174900
Н	-1.74952100	1.57769000	-1.10424000
н	-1.83551800	-1.86903200	1.21810300
н	-4.31267200	-1.81285600	1.13312200
н	-5.46697700	0.04767700	-0.08805700
С	-0.13835600	-0.04082300	0.03860600
С	0.58198800	-1.23362100	-0.03508300
С	0.50028800	1.20033300	0.10247200
С	1.97742700	-1.17246300	-0.06585600
н	0.06078000	-2.17963400	-0.10170200
С	1.89671400	1.23850100	0.08290000
н	-0.07719800	2.10918500	0.21568900
С	2.62761700	0.05717600	-0.00569000
Ν	-2.28491900	0.87151000	-0.60452000
Н	3.71115300	0.09561700	-0.02683000
0	2.77517100	-2.25232300	-0.16209200

0	2.62064700	2.37147700	0.15197300
С	2.17067200	-3.53465000	-0.24387900
Н	1.58301300	-3.75631600	0.65364000
Н	1.53762900	-3.62092100	-1.13382900
Н	2.99273000	-4.24622200	-0.31816400
С	1.93376100	3.61222900	0.21634700
Н	1.30391900	3.76556500	-0.66719700
Н	1.32590800	3.68592400	1.12480000
Н	2.70744500	4.37925700	0.24078300

1k-H⁺

С	3.67527200	-1.02229100	-0.36678300
С	1.58626400	0.06723300	0.01152800
С	2.27710400	1.23123400	0.34892300
С	3.66008700	1.25246400	0.31948500
С	4.37794400	0.10944100	-0.03636600
Н	4.13401400	-1.95591200	-0.66623000
Н	1.84832200	-1.84996400	-0.62892300
Н	1.71713100	2.10466600	0.65750200
Н	5.46001600	0.09764400	-0.05851800
С	0.13198800	-0.06076500	0.02686200
С	-0.66917700	1.04880300	-0.25990800
С	-0.49762600	-1.27991600	0.33256900
С	-2.05195800	0.95979300	-0.25361300
Н	-0.21189300	1.99744300	-0.52095800
С	-1.87256600	-1.37674000	0.35072500
Н	0.08363500	-2.15918600	0.59858800
С	-2.66494300	-0.25856000	0.05608300
Н	-2.63989300	1.83580700	-0.49748700
н	-2.36080400	-2.31087100	0.60645700

Ν	2.33163400	-1.00457300	-0.33950900
н	4.18799600	2.16075800	0.58986300
0	-3.99007200	-0.45048400	0.09893200
С	-4.84699500	0.65423700	-0.16460800
н	-4.70197800	1.03396600	-1.18135900
н	-5.86226200	0.27233600	-0.06326700
Н	-4.68751000	1.45959400	0.56006200

1I-H⁺

С	-2.16520500	1.92568400	-0.36677500
С	-0.40746400	0.35431700	-0.08265300
С	-1.33944000	-0.64175500	0.11117900
С	-2.70909400	-0.35084200	0.06549600
С	-3.12695400	0.97018300	-0.17658000
Н	-2.40074400	2.96276200	-0.56955200
Н	-0.18640000	2.34813100	-0.50662000
н	-1.01831000	-1.65254700	0.32790900
н	-4.16925100	1.25298100	-0.22126200
С	1.04184900	0.13436800	-0.03502000
С	1.58452800	-1.07004100	-0.49539200
С	1.90133300	1.10867600	0.48232800
С	2.95264000	-1.28343700	-0.44826600
Н	0.93584700	-1.83421000	-0.91062200
С	3.26917000	0.88288900	0.52834600
н	1.50598100	2.03472500	0.88912800
С	3.82089900	-0.31170600	0.05944300
Н	3.35785300	-2.22095400	-0.81765800
н	3.92010000	1.64432000	0.94767100
Ν	-0.86082500	1.61216800	-0.31969100
С	5.30094000	-0.53985600	0.07723200

Н	5.53919400	-1.58663000	0.28362100
Н	5.73560700	-0.29306000	-0.89862600
Н	5.79318800	0.08571700	0.82553900
0	-3.52587400	-1.36634800	0.27313000
С	-4.94004300	-1.14044800	0.26444700
Н	-5.26751600	-0.78049300	-0.71465100
Н	-5.38930600	-2.11092600	0.46722700
Н	-5.22243500	-0.43238700	1.04797600

1m-H⁺

С	-2.64211800	-0.30125300	0.06013100
С	-0.41233500	0.56522400	-0.08113000
С	-2.30236200	2.02064500	-0.30872800
С	-3.18154700	0.96206800	-0.14172100
Н	-0.95111400	-1.38201200	0.27816500
Н	-2.70280000	3.01541600	-0.47335300
Н	-4.25230600	1.10843700	-0.16493800
С	1.01456600	0.23889600	-0.04523500
С	1.93445300	1.18278300	0.42884500
С	1.48818000	-1.00205700	-0.48487600
С	3.28601300	0.88537700	0.46463000
Н	1.58831700	2.14398300	0.79431200
С	2.84510000	-1.28730900	-0.44830800
н	0.80778400	-1.74399900	-0.89396700
С	3.76784500	-0.35400200	0.02890500
н	3.98395900	1.62590800	0.84447200
н	3.19577500	-2.24979500	-0.80823200
Ν	-1.30097300	-0.44625700	0.08714700
С	5.23034400	-0.66911100	0.09053200
н	5.82960600	0.16379100	-0.28861800

Н	5.54005900	-0.84394800	1.12729000
Н	5.47187900	-1.56407700	-0.48702600
С	-0.92394700	1.83505200	-0.28542800
Н	-0.24875400	2.66350500	-0.45158000
0	-3.28262900	-1.43244900	0.24953100
С	-4.71951400	-1.41707200	0.24892800
Н	-5.01444600	-2.44859100	0.42918000
Н	-5.09399200	-0.77604500	1.05069700
Н	-5.09419200	-1.08464300	-0.72193700

1n-H⁺

С	2.59810100	-2.11963200	-0.25595800
С	0.85060100	-0.49526800	-0.09495900
С	1.81751900	0.52121200	0.05102300
С	3.16842100	0.17806200	0.03824900
С	3.55856400	-1.14775300	-0.11615500
Н	2.80146300	-3.17349800	-0.38860200
Н	0.61122800	-2.48258500	-0.37620100
Н	3.92548600	0.94286500	0.16053300
Н	4.60630800	-1.41938000	-0.12777300
С	-0.60057200	-0.29310900	-0.05766200
С	-1.20541300	0.77917300	-0.72324500
С	-1.40918600	-1.20401600	0.63326800
С	-2.58393000	0.91979900	-0.70410600
Н	-0.60003100	1.49104900	-1.27111000
С	-2.78605700	-1.04582100	0.65402600
Н	-0.95885000	-2.02646900	1.18173200
С	-3.39902400	0.01772500	-0.01338500
Н	-3.03982600	1.74773700	-1.23911700
н	-3.39570600	-1.75630200	1.20439600

Ν	1.30703900	-1.75281000	-0.24225000
С	-4.88409300	0.20443800	0.03642800
Н	-5.15943000	0.83198000	0.89242600
Н	-5.25412700	0.69982500	-0.86468000
Н	-5.40264000	-0.75071400	0.15072400
0	1.34907000	1.75591800	0.22558900
С	2.28114700	2.82038500	0.41493500
Н	2.89616100	2.64838300	1.30366300
Н	2.91653000	2.94460400	-0.46727100
Н	1.67514100	3.71368000	0.55757300

10-H⁺

С	-3.85514000	-1.11418800	0.45968600
С	-1.85023100	0.07063100	-0.01573500
С	-2.59828000	1.15050300	-0.46358800
С	-3.98440700	1.08174400	-0.44829600
С	-4.62530700	-0.06395700	0.01435700
Н	-4.25850800	-2.03906400	0.85097700
Н	-1.98026500	-1.79738900	0.79568400
Н	-2.08725600	2.02670300	-0.84270000
Н	-5.70437600	-0.14452700	0.03518400
С	-0.38055400	0.03709100	-0.01378000
С	0.33138600	1.19608300	0.30982700
С	0.30611600	-1.13687100	-0.33992400
С	1.71580000	1.18430000	0.31804700
Н	-0.19846700	2.10332500	0.57749900
С	1.69091600	-1.15847200	-0.33488000
Н	-0.23019000	-2.03376600	-0.63359200
С	2.37136300	0.00404800	-0.00331000
н	2.27895400	2.07239600	0.57591600

Н	2.23455800	-2.05830000	-0.59385500
Ν	-2.51812000	-1.01396500	0.43146000
Н	-4.56696100	1.92321700	-0.80738000
Ν	3.84149500	-0.01484900	0.00364800
0	4.41952800	1.01614100	0.28597800
0	4.39533400	-1.06068700	-0.27321700

1p-H⁺

С	1.20026100	0.58624300	-0.84689100
С	2.57649800	0.72133500	-0.85234400
С	3.39162000	-0.12045700	-0.08559100
С	2.78143700	-1.11933500	0.67564000
С	1.40328600	-1.27507700	0.68108200
С	0.60111000	-0.41588600	-0.07524400
Н	0.59582500	1.23933700	-1.46912200
Н	3.03187900	1.49343100	-1.46514400
Н	3.39402000	-1.77992400	1.28127000
Н	0.95297100	-2.04122900	1.30519600
С	-0.85115800	-0.58950600	-0.07125700
С	-1.81957000	0.40676200	0.04351000
С	-3.17400600	0.12791900	-0.01582100
С	-2.63498700	-2.17334800	-0.23897000
С	-3.59226700	-1.19012600	-0.14639000
Н	-3.89485800	0.93403800	0.07006600
Н	-2.85811000	-3.22695600	-0.35009400
Н	-4.64249200	-1.44815400	-0.17593300
Ν	-1.33525300	-1.84239900	-0.21272200
Ν	-1.43186900	1.80071300	0.31005600
0	-2.00967300	2.65478900	-0.32762900
0	-0.60272700	1.99395000	1.16956900

С	4.87674400	0.06532700	-0.07614800
Н	5.26813500	0.15212600	-1.09410200
н	5.14064900	0.98944300	0.45041800
Н	5.38221600	-0.76368000	0.42348400
Н	-0.65499400	-2.58964900	-0.34236400

1r-H⁺

С	-0.03112800	3.63038900	-0.49947300
С	-0.23515300	6.38839200	-0.80498600
Н	-1.62359700	3.88688900	0.74952600
Н	-0.33930600	7.46078200	-0.90817300
С	-0.02137100	2.17568200	-0.29026300
С	1.19737000	1.50148100	-0.20774800
С	-1.21836800	1.46423700	-0.19477100
С	1.22153600	0.12365100	-0.01428600
Н	2.12914800	2.05058200	-0.28155900
С	-1.19842000	0.08351300	-0.01321600
Н	-2.17138700	1.97112100	-0.30746000
Ν	-0.98018600	4.36218200	0.12160700
С	0.87018100	4.30631600	-1.31190100
Н	1.63082900	3.74486500	-1.83890400
С	-1.10954500	5.69203200	-0.00339300
Н	-1.91380100	6.14952400	0.55815000
С	0.76848600	5.68137300	-1.46230800
Н	1.46993600	6.20305600	-2.10441600
С	0.02284400	-0.58153800	0.08243100
Н	0.04135700	-1.65286900	0.25114100
С	2.51245900	-0.59084000	0.09839100
С	3.47643000	-0.22071000	1.03152500
С	2.81844900	-1.67057100	-0.72484600

С	4.68362700	-0.88822400	1.14805400
С	4.02013300	-2.35146400	-0.62979200
С	4.95634500	-1.95883100	0.31258600
С	-2.46478600	-0.67750600	0.06647300
С	-2.71369700	-1.76354300	-0.76832900
С	-3.46378500	-0.34614000	0.97696700
С	-3.89278300	-2.48633400	-0.70505400
С	-4.64892600	-1.05619100	1.06234000
С	-4.86435500	-2.13171500	0.21639900
F	1.95168900	-2.06440000	-1.65764100
F	4.28483200	-3.36976700	-1.44048900
F	6.10933900	-2.60397900	0.41289100
F	5.57490200	-0.51537500	2.05992000
F	3.24424100	0.79252200	1.86725100
F	-3.28863700	0.67342400	1.81990000
F	-5.57413100	-0.71887700	1.95403200
F	-5.99610300	-2.81682800	0.28672000
F	-4.10144500	-3.50889400	-1.52637100
F	-1.81303400	-2.12226800	-1.68269600

1s-H⁺

G: -714.73013

Ν	-2.72709900	-1.20119900	0.55392400
С	-0.65522700	-0.09689600	-0.03470800
С	0.10656800	-1.27115800	-0.09328100
С	1.76958900	3.41926900	-1.07307300
С	1.68964900	3.30547300	1.44289300
С	2.10793700	0.03965300	0.01553900
С	2.06561800	2.56424800	0.15964700
С	1.37354600	1.22185200	0.07016800

С	2.32088600	-2.47973200	-0.14519900
С	-4.05709300	-1.38165100	0.60002000
С	-4.31608500	0.64450000	-0.61665400
С	-2.93954900	0.79422600	-0.65159400
С	-4.88955500	-0.45941400	0.01329300
С	-0.01859500	1.14170400	0.04061300
С	1.49473900	-1.21459400	-0.06979700
С	-2.11992300	-0.15637100	-0.04933400
Н	-4.40200600	-2.26509700	1.12166500
Н	-5.96148500	-0.60330400	0.04993000
Н	-4.94846300	1.38552600	-1.09353800
Н	-2.48434800	1.63131500	-1.16520900
Н	-0.60912700	2.04991800	0.10461400
Н	2.31726400	4.36571800	-1.02240900
Н	2.06133800	2.90542100	-1.99414900
Н	0.70164000	3.65386200	-1.14010300
Н	0.62136800	3.54717800	1.46113200
Н	1.91680600	2.70721500	2.33061500
Н	2.24475800	4.24615600	1.51518000
Н	3.19333500	0.09848900	0.03639100
Н	3.14343000	2.36745400	0.18576700
С	3.16560700	-2.66589400	1.11562400
Н	3.89981900	-1.86012300	1.22030800
Н	2.54355400	-2.67491600	2.01605400
Н	3.71370400	-3.61238800	1.07047500
С	3.19625400	-2.49968900	-1.39867700
Н	2.59511300	-2.39360400	-2.30694000
Н	3.92847900	-1.68537700	-1.38132900
Н	3.74774900	-3.44310600	-1.46301900
н	1.61875500	-3.31945900	-0.20895100

Н	-0.37555700	-2.24061100	-0.19486300
н	-2.14262200	-1.88502700	1.02802900

[AuOAc^F₄]⁻

G: -2239.234711

Au	0.02447800 -0.53983700 -0.54376100
F	4.97376200 -1.08577000 1.02387600
F	4.54632600 -1.44800800 -1.06055000
F	4.53540200 0.57184800 -0.28726000
0	2.01535000 -0.43983700 -0.68523500
0	2.34512000 -1.25706500 1.39674500
С	2.71233700 -0.83530200 0.33166700
С	4.22158100 -0.69721700 -0.00106200
0	-0.01994900 1.28485600 0.27091600
С	-0.08554700 2.29704500 -0.53381600
0	-0.11132100 2.32013600 -1.73641200
С	-0.14946600 3.60607600 0.29603800
F	0.87495000 3.69174000 1.15141300
F	-1.28289700 3.65443400 1.00841300
F	-0.11570500 4.67421500 -0.49503500
0	-1.97100900 -0.54862900 -0.64582000
С	-2.63035800 -0.97734200 0.38247900
0	-2.22544000 -1.38606200 1.43883600
С	-4.14994500 -0.90098100 0.07811300
F	-4.46090600 -1.64469500 -0.99029600
F	-4.86586900 -1.34177000 1.10807800
F	-4.52345300 0.35849500 -0.17724900
0	0.08182200 -2.45135600 -1.12294800
С	0.00060800 -2.68625300 -2.39381900
С	0.07673800 -4.21646900 -2.63694500

F	-0.92279200 -4.85027900 -2.01235100
F	1.22985700 -4.71554700 -2.17590300
F	-0.00394700 -4.49834700 -3.93370100
0	-0.11395600 -1.91346700 -3.30863900

1s-Au(OAc^F)₃

G: -2427.535229

Au	-0.88679700 -0.0	05602000 -0.6464320	0
F	3.57341600 -2.85	649300 -0.75067400)
F	2.21079200 -3.06	6984400 -2.41162100)
F	3.33302600 -1.23	3957600 -2.15967800)
0	0.80305300 -0.8	5910200 -1.35398700	0
0	1.38770800 -2.00	0935300 0.50630100)
Ν	-0.28887200 1.67	7499900 -1.50566700	C
С	1.71322700 1.77	915000 -0.08660700)
С	3.08368600 1.58	220300 -0.28282600)
С	3.29221400 0.87	679400 1.99859100	
С	1.52506700 -1.65	5755100 -0.63340900)
С	1.93273400 1.07	365900 2.21897300	
С	-1.08749100 2.14	1432800 -2.48284800)
С	0.48366400 3.86	5105200 -2.97269400)
С	2.68806400 -2.20)937000 -1.50252200)
С	1.28531300 3.37	635700 -1.95485500)
С	-0.73247500 3.24	4161800 -3.23536100)
С	1.14660200 1.53	900700 1.16305400	I
С	3.88706000 1.12	889900 0.75728200	I
С	0.88713900 2.27	275800 -1.20219900)
Н	-2.01537700 1.63	1198700 -2.65360500	C
Н	-1.40056100 3.58	3869000 -4.01359000	C
н	0.09419900 1.74	1589100 1.33391700)

0	-1.57979900	-1.68887700	0.28951200
С	-1.55254000	-2.84439400	-0.28636200
0	-1.19716500	-3.14530400	-1.39630600
С	-2.09027700	-3.91474600	0.70070300
F	-3.35423500	-3.64430600	1.05315100
F	-1.35458800	-3.95338500	1.81676600
F	-2.06834000	-5.12544100	0.15073900
Н	3.51962300	1.75931900	-1.26176400
0	-2.69221800	0.74086000	-0.28811000
С	-2.92402800	1.54576900	0.69800200
0	-2.18838300	1.96542700	1.55253700
С	-4.41288600	1.98415300	0.64444500
F	-5.23304200	0.93004000	0.64012600
F	-4.72358800	2.74782300	1.68594700
F	-4.64566600	2.69054200	-0.47150800
Н	0.79756000	4.72508500	-3.54829200
Н	2.22105200	3.85933800	-1.70104900
Н	3.90552000	0.51435800	2.81959200
С	5.37317500	0.93537000	0.54797500
Н	5.56568100	1.07496300	-0.52246800
С	1.30774800	0.79264200	3.56710300
Н	2.09920800	0.38701900	4.20816900
С	6.16609300	1.99722900	1.31286800
Н	6.00441400	1.90167700	2.39212500
Н	7.23873100	1.88659200	1.12250000
Н	5.86938200	3.00807500	1.01599600
С	5.83487800	-0.46986400	0.93080100
Н	5.70571500	-0.65345100	2.00241700
Н	5.27565600	-1.23703700	0.38832900
н	6.89762400	-0.59500800	0.69959600

С	0.78298300	2.07554300	4.21352300
Н	1.57467300	2.82428100	4.31745200
Н	-0.02301000	2.51294000	3.61476200
Н	0.38045500	1.86420800	5.20961600
С	0.19840200	-0.25518600	3.45738600
Н	-0.64433400	0.12717700	2.87180900
Н	0.55717500	-1.16854300	2.97536600
Н	-0.17993700	-0.51298600	4.45199500

1s-Au-TSA

G: -2427.500884

Au	-0.68907100	0.43351700	0.03238200
F	3.50678800	-1.09489400	-3.37838400
F	2.05168200	0.31056700	-4.12636800
F	3.53275400	0.94851400	-2.68410100
0	1.01326000	0.55513200	-1.58050800
0	1.81447600	-1.55017300	-1.38260200
Ν	-0.45843100	2.42621900	0.11033300
С	1.52980100	1.72223400	1.16242300
С	2.86663000	1.59319700	0.85973800
С	2.84716200	-0.63192400	1.81251300
С	1.74964600	-0.43221000	-1.86114900
С	1.51295300	-0.52576500	2.17851600
С	-1.31424200	3.28974900	-0.44726600
С	0.18449200	5.08215800	0.06120300
С	2.72206600	-0.07279100	-3.02715700
С	1.06470900	4.16914400	0.62343200
С	-1.01898300	4.63972800	-0.47649400
С	0.83468700	0.66972200	1.83272600
С	3.54122400	0.40714600	1.18220600

С	0.71646600	2.82816000	0.64518700
Н	-2.22468200	2.87696600	-0.86421700
Н	-1.72978100	5.32524900	-0.92098900
Н	-0.07681800	0.92252900	2.37697400
0	-0.84936100	-1.54728900	0.14489100
С	-1.05881100	-2.21701900	-0.94242200
0	-1.25084200	-1.82992800	-2.06395000
С	-1.07897500	-3.72992800	-0.59944200
F	-2.10084400	-4.00960200	0.22472700
F	0.04738500	-4.11446700	0.01028900
F	-1.22543400	-4.46767300	-1.69631000
Н	3.37981500	2.37583900	0.31034400
0	-2.72968100	0.56233800	-0.49410900
С	-3.55699800	0.34691400	0.46467300
0	-3.35000200	0.11727500	1.63207600
С	-5.01332600	0.43877300	-0.06900400
F	-5.21644700	-0.41471900	-1.07761400
F	-5.89959400	0.16620300	0.88478900
F	-5.26762600	1.67624100	-0.52265500
Н	0.43555100	6.13699700	0.04204300
Н	2.01171700	4.47723200	1.04996700
Н	3.38345900	-1.54741100	2.03548200
С	5.00357700	0.25820200	0.84890900
Н	5.28598200	1.12220800	0.23751800
С	0.81556700	-1.65099000	2.90800900
Н	0.70863600	-2.44995000	2.16003400
С	5.83589900	0.29272200	2.13540400
Н	5.59131100	-0.55776600	2.78037200
Н	6.90114800	0.23728200	1.89099600
н	5.66181600	1.21228800	2.70209400

С	5.28992300	-1.01072100	0.04600200
Н	5.08135800	-1.91199200	0.63068800
Н	4.68971200	-1.05451700	-0.86561600
Н	6.34648500	-1.03536100	-0.23730800
С	1.66625200	-2.19337100	4.06067100
Н	2.63996800	-2.56205300	3.73061000
Н	1.83157600	-1.41761700	4.81615900
Н	1.14442600	-3.02645000	4.54009700
С	-0.57922000	-1.29819900	3.40895500
Н	-0.54268800	-0.49514900	4.15466300
Н	-1.25505700	-0.99574400	2.60678500
Н	-1.02207700	-2.17390700	3.89128500

2s-Au(OAc^F)₂

G: -1901.123359

Au	-0.24793700	0.34439900	-0.15350200
F	-5.04380600	1.78611000	1.64976900
F	-4.44623300	2.75308600	-0.18544600
F	-4.95617500	0.64970200	-0.18305100
0	-2.23283600	1.09554200	-0.29878100
0	-2.47101800	1.17657700	1.94232200
Ν	0.58566000	2.15395100	-0.37064800
С	2.55262200	0.90250100	-0.03589700
С	1.69956000	-0.22396400	-0.05940100
С	6.76058600	-0.12482700	-0.75070600
С	6.44493800	-0.08536000	1.74901100
С	3.63178500	-1.60692500	0.17704900
С	-2.86809600	1.25771400	0.79996400
С	5.97421800	-0.69683800	0.42909200
С	4.48509400	-0.51256600	0.24332800

С	1.42707000	-2.78466700	-0.02845600
С	-0.14379600	3.25176300	-0.61114500
С	1.83642000	4.57698900	-0.56216400
С	-4.35173200	1.61524000	0.52406900
С	2.57585400	3.43092200	-0.32367800
С	0.45678900	4.48984800	-0.71514800
С	3.92656100	0.75526300	0.12089100
С	2.24005300	-1.50698800	0.01593600
С	1.93039900	2.20229000	-0.23231400
Н	-1.21171100	3.11107200	-0.71949000
Н	-0.15435100	5.36187000	-0.91137900
Н	2.33595500	5.53685900	-0.63534600
Н	3.65147300	3.48095800	-0.21589300
Н	4.56566200	1.63215100	0.14326100
Н	7.83079800	-0.31785800	-0.62495700
Н	6.44227200	-0.57294600	-1.69694400
Н	6.62458500	0.95938100	-0.82738400
Н	6.29213500	0.99943500	1.75568900
Н	5.90231700	-0.50774900	2.60024300
Н	7.51314700	-0.27315800	1.89795200
Н	4.06877900	-2.59799900	0.25130300
0	-1.22091800	-1.39269700	0.21426500
С	-1.86367700	-1.92098400	-0.76864800
0	-1.78073500	-1.69756600	-1.95224000
С	-2.85005100	-2.99123200	-0.23600000
F	-3.73227800	-2.44352100	0.61018400
F	-2.20179200	-3.96170500	0.42349700
F	-3.53304200	-3.56031300	-1.22670700
Н	6.16037000	-1.77629600	0.46925400
С	1.02156900	-3.19045000	1.38963500
Н	1.91190700	-3.40637100	1.99101000
---	------------	-------------	-------------
Н	0.45506500	-2.39845100	1.88482400
Н	0.39947300	-4.09042300	1.36825800
С	2.13490000	-3.93649400	-0.73894100
Н	2.50201000	-3.63825700	-1.72587500
Н	2.97882100	-4.32714200	-0.16194600
Н	1.42877400	-4.76116200	-0.87650500
Н	0.52752100	-2.57157800	-0.60251400

2s-Au-TS1

G: -1901.085076

Au	-0.13914400 -0.40749500 -0.30246400
F	-5.06522900 -1.58324500 -1.94575800
F	-4.33921900 -2.77704500 -0.29961700
F	-4.86205400 -0.70186800 0.01310700
0	-2.12854800 -1.11947300 -0.11954800
0	-2.51640800 -0.92621400 -2.32930700
Ν	0.66700400 -1.98477500 0.69748200
С	2.63588000 -0.74313900 0.30967700
С	1.77155000 0.10927100 -0.38887600
С	6.77650200 -0.14282800 -1.02479200
С	0.90170500 3.32394200 -1.16959100
С	6.46686100 1.26215600 1.04481000
С	0.02051100 1.23350000 -2.29589600
С	3.59177500 1.44861200 -1.09296300
С	-2.83863400 -1.14745600 -1.18065200
С	5.96439700 0.97527600 -0.37024000
С	4.48536500 0.65566000 -0.37412800
С	1.25653700 2.03988400 -1.92026700
С	-0.07730400 -2.98286900 1.18305600

С	1.86590700	-3.93324000	2.19028400
С	-4.29899600	-1.55179100	-0.85535000
С	2.62081000	-2.88590500	1.68568400
С	0.50008000	-3.98711600	1.93701600
С	3.99698400	-0.45251600	0.32117600
С	2.21470600	1.19296000	-1.12622000
С	2.00441500	-1.89779300	0.92890800
Н	-1.13629500	-2.95305700	0.95528400
Н	-0.12139600	-4.78873100	2.31622200
Н	2.34272200	-4.70619900	2.78313700
Н	3.68572600	-2.82565000	1.87498600
Н	4.68216900	-1.09391400	0.86667600
Н	7.83645300	0.12800600	-1.06344400
Н	6.69086700	-1.07573900	-0.45696300
Н	6.43675100	-0.33707600	-2.04674300
Н	5.90328700	2.07607900	1.51083700
Н	6.37291300	0.37711600	1.68342100
Н	7.52355100	1.54715100	1.02322200
Н	-0.67826200	1.08176500	-1.39770400
Н	-0.70051200	1.79630400	-2.89838800
Н	0.25353300	0.31253600	-2.83262500
Н	1.79791700	3.92192200	-0.98311400
Н	0.20135700	3.92700200	-1.75527500
Н	0.43995000	3.09125200	-0.20632600
Н	3.97458000	2.29183700	-1.66337400
0	-2.55858100	1.98389200	-0.39429900
С	-1.98991100	2.03739800	0.69041300
0	-0.94800800	1.45932000	1.09132000
С	-2.59741700	2.97177000	1.77741100
F	-1.73984000	3.96187300	2.09632200

F	-3.73859100	3.55242300	1.39188900
F	-2.86032700	2.30113900	2.91383400
Н	6.09670500	1.88444400	-0.96783700
н	1.75070200	2.31611100	-2.85976300

[2s-AuOAc^F]⁺[OAc^F]⁻

G: -1901.08866

Au	0.06767100	0.41761500	-0.55335100
F	5.19825800	0.90221700	-2.00157000
F	4.43236600	2.48573700	-0.75013900
F	4.71733800	0.50208900	0.06448800
0	2.06362200	1.11937500	-0.48973000
0	2.65717900	0.28138300	-2.49510500
Ν	-0.60211200	1.88376900	0.68060100
С	-2.63859200	0.74198500	0.30626300
С	-1.83607300	-0.08419700	-0.48445400
С	-6.84755600	0.15315200	-0.80483300
С	-1.02597400	-3.31495200	-1.22610200
С	-6.42564600	-1.26663400	1.23497000
С	-0.07118200	-1.21273200	-2.25364000
С	-3.67952800	-1.43967300	-1.07419000
С	2.87675800	0.80099700	-1.42160800
С	-6.00121400	-0.96951200	-0.20327300
С	-4.52429900	-0.64988600	-0.29221700
С	-1.33952100	-2.01577100	-1.96887200
С	0.20331200	2.80631700	1.21381000
С	-1.65453500	3.75366100	2.37323300
С	4.32876200	1.17428700	-1.02848400
С	-2.47644200	2.78516600	1.81642100
С	-0.29761300	3.76628000	2.07355800

С	-3.99437400	0.44282300	0.40198300
С	-2.30981300	-1.17422600	-1.18686000
С	-1.93426600	1.83524500	0.96239600
Н	1.24943000	2.75285700	0.93581200
Н	0.37457300	4.50394100	2.49370500
Н	-2.07295200	4.49624400	3.04399500
Н	-3.53577300	2.75713400	2.04063100
Н	-4.64315300	1.05630900	1.01968300
Н	-7.90849200	-0.11594700	-0.78442100
Н	-6.72799400	1.08332200	-0.23861200
Н	-6.56647700	0.35199600	-1.84361900
Н	-5.83430900	-2.08065200	1.66504000
Н	-6.30324900	-0.38561600	1.87414100
Н	-7.48058300	-1.55703600	1.26740000
Н	0.62305800	-1.16391300	-1.29796600
Н	0.70848500	-1.77132500	-2.78454100
Н	-0.24648900	-0.31600700	-2.85495600
Н	-1.93817900	-3.89377300	-1.05984200
Н	-0.32819900	-3.92748900	-1.80459000
Н	-0.56947200	-3.10219300	-0.25479900
Н	-4.09695900	-2.28606800	-1.61443200
0	2.01517800	-1.98213900	-0.01631600
С	1.79907200	-1.70266900	1.17354100
0	0.95784700	-0.94557300	1.68175000
С	2.73611900	-2.45061600	2.16846100
F	2.61586400	-2.03834700	3.43832000
F	2.47573500	-3.77592400	2.16510600
F	4.03175000	-2.30892900	1.83504100
Н	-1.78300400	-2.26552200	-2.94026500
н	-6.16825000	-1.87447500	-0.79850000

2s-Au-TS2

G: -1901.089371

Au	-0.00119400	0.40701300	-0.48764200
F	5.09471700	1.17835300	-1.97836900
F	4.21451200	2.74240900	-0.77837700
F	4.65768800	0.81773900	0.10462900
0	1.96852300	1.18044000	-0.43451300
0	2.60073800	0.37516600	-2.44255100
Ν	-0.74552800	1.92686300	0.66436800
С	-2.73413000	0.69491000	0.29501000
С	-1.87999200	-0.15361900	-0.41148600
С	-6.87507800	-0.09485400	-0.91723300
С	-0.92196800	-3.38721800	-0.85178800
С	-6.48785300	-1.38973600	1.20975800
С	0.02422000	-1.29206600	-1.93000500
С	-3.65051300	-1.61774500	-0.96867400
С	2.79052600	0.92071300	-1.37649000
С	-6.01945400	-1.15774200	-0.22685800
С	-4.54954600	-0.79904400	-0.28047200
С	-1.22648800	-2.14978800	-1.69767100
С	0.00649000	2.90642100	1.17290800
С	-1.91645900	3.84281200	2.22962200
С	4.21189900	1.41738700	-1.00871700
С	-2.68581200	2.81763800	1.69884700
С	-0.55258200	3.89061000	1.96785900
С	-4.08294400	0.35598900	0.35801500
С	-2.28807500	-1.30984100	-1.04435000
С	-2.08342400	1.84784900	0.90976700
н	1.06216300	2.87841300	0.92842700

Н	0.07925000	4.67305400	2.36935700
Н	-2.38135800	4.60159400	2.84983300
Н	-3.74953900	2.75954900	1.89575800
Н	-4.77665900	0.98706700	0.90515300
Н	-7.92761200	-0.39584400	-0.92186600
Н	-6.80474200	0.86594500	-0.39567200
Н	-6.56014700	0.05972100	-1.95382800
Н	-5.88986500	-2.16112300	1.70445000
Н	-6.41353200	-0.47186800	1.80292600
Н	-7.53468900	-1.70972700	1.22163600
Н	0.80510900	-1.25934900	-0.91039400
Н	0.87424100	-1.86199000	-2.32879400
Н	-0.12580500	-0.51223500	-2.68409700
Н	-1.81789600	-4.00341800	-0.73774300
Н	-0.14453400	-3.99399600	-1.32499100
Н	-0.57426900	-3.10038700	0.14506500
Н	-4.02078100	-2.51543400	-1.45802100
0	1.99361300	-1.90632900	-0.08968300
С	2.00568300	-1.71725600	1.15238800
0	1.25290000	-1.05652400	1.86206900
С	3.16057500	-2.48508900	1.85899400
F	3.30121900	-2.14751900	3.14594200
F	2.93416800	-3.81493000	1.82346000
F	4.34565800	-2.27439000	1.26344600
Н	-1.57568400	-2.48287900	-2.68279700
н	-6.13889900	-2.09815500	-0.77700900

3s-AuOAc^F

G: -1374.70172

Au -0.56176300 -0.38491900 -0.13176000

258

F	-5.72975900	-0.06026700	1.26747800
F	-5.15615400	0.93092100	-0.56178600
F	-5.28405900	-1.22802600	-0.49092500
0	-2.67696600	-0.31399500	-0.40560300
0	-3.12893800	-0.15660900	1.79891100
Ν	-0.11793900	1.74256300	-0.28776000
С	2.05090500	0.79676100	0.02052600
С	1.37778300	-0.42665800	0.01595200
С	6.08174200	0.27696800	1.68153500
С	1.23903300	-3.40939500	-1.45622100
С	6.31526000	0.12645000	-0.82248000
С	-0.34242000	-2.39073100	0.24383200
С	3.40819000	-1.64350700	0.25074500
С	-3.42228400	-0.21192000	0.61995700
С	5.63117900	-0.45357300	0.41615400
С	4.12308400	-0.44070300	0.27239900
С	1.11117400	-2.84133000	-0.04115900
С	-0.98546600	2.74158900	-0.44572200
С	0.76956000	4.34629700	-0.30910300
С	-4.91792000	-0.14375600	0.21185400
С	1.67098600	3.30493500	-0.14116000
С	-0.58248700	4.06698000	-0.46638100
С	3.43989800	0.77458400	0.14624500
С	2.01883000	-1.65165200	0.11295100
С	1.20845300	1.99262800	-0.13594500
Н	-2.02666400	2.45729200	-0.55761800
Н	-1.31576500	4.85321400	-0.59932400
Н	1.12235800	5.37223800	-0.31529500
Н	2.72775300	3.50621300	-0.01142500
н	4.00412000	1.70235600	0.14055500

Н	7.16790200	0.20442600	1.79979000
Н	5.82177100	1.34017000	1.63702600
Н	5.61268300	-0.14711500	2.57472100
Н	6.01862600	-0.41018400	-1.72899300
Н	6.05777300	1.18267500	-0.95683200
Н	7.40392500	0.05826900	-0.72680200
Н	-1.07470700	-2.96526700	-0.33001500
Н	-0.58584900	-2.47957600	1.30787000
Н	2.26977300	-3.70392000	-1.67573500
Н	0.59774400	-4.28830100	-1.57734900
Н	0.93440900	-2.65824500	-2.19376500
Н	3.95159500	-2.58186600	0.33627800
Н	1.38693100	-3.63125800	0.66981300
н	5.93444300	-1.50311400	0.50723100

2t-Au(OAc^F)₂

Au	-0.00000700	0.27629500	-0.08744500
F	-4.74290200	1.87291300	1.71576700
F	-4.11938600	2.80455500	-0.12874500
F	-4.69207400	0.71746300	-0.10689800
0	-1.94807000	1.11561000	-0.23038800
0	-2.20271800	1.13614400	2.01010600
Ν	0.92255300	2.03344900	-0.37215000
С	2.83240500	0.67138200	-0.15188500
С	1.91317500	-0.38726200	0.01031000
С	6.66350200	-0.93995800	1.69193000
С	3.76801000	-1.86801500	0.29822000
С	-2.58709700	1.26582900	0.86778800
С	6.16791300	-1.10026500	0.25517300

С	4.69175600	-0.84131900	0.13487600
С	1.51789800	-2.90658200	0.39629900
С	0.24405500	3.17038900	-0.57696200
С	2.29833200	4.35689700	-0.80549400
С	-4.05791700	1.67141600	0.59065300
С	2.98401200	3.17178700	-0.59868200
С	0.90776000	4.36050700	-0.79566900
С	4.20444700	0.44091900	-0.08997500
С	2.37811600	-1.68148200	0.24574900
С	2.27543600	1.99553100	-0.37894300
Н	-0.83600200	3.09926600	-0.56720700
Н	0.33574700	5.26555300	-0.95725600
Н	2.84736900	5.27626200	-0.97803600
Н	4.06618500	3.15093900	-0.61218900
Н	4.90157000	1.26414800	-0.21255900
Н	6.47911300	0.07434800	2.06018900
Н	6.15257100	-1.63771400	2.36293500
Н	7.73865400	-1.13375800	1.75556400
Н	4.13270400	-2.87711000	0.47826400
0	-1.02332500	-1.43613800	0.24261300
С	-1.73962800	-1.88506000	-0.73014400
0	-1.75004200	-1.56724800	-1.89410500
С	-2.70572400	-2.97630900	-0.20349400
F	-2.06153500	-3.90946200	0.50897300
F	-3.33765600	-3.59042200	-1.20112300
F	-3.63307600	-2.42540700	0.59368300
Н	6.38657800	-2.11387300	-0.09612400
С	1.14875300	-3.50673700	-0.95915000
Н	0.48015700	-4.36409000	-0.83627600
н	0.64914400	-2.77304300	-1.59750500

Н	2.04365000	-3.84817800	-1.48939600
Н	0.61708600	-2.67205500	0.96084200
Н	6.71119600	-0.41020000	-0.39881600
н	2.07863900	-3.64565700	0.97646000

2t-Au-TS1

Au	0.01150000 -0.42618700 -0.33538300
F	-5.00094700 -1.50254600 -1.82423200
F	-4.19809300 -2.75921200 -0.26345000
F	-4.68911600 -0.69412900 0.15236500
0	-1.96041900 -1.16899000 -0.14742900
0	-2.48854300 -0.77107700 -2.30090600
Ν	0.82857300 -1.91549600 0.78478000
С	2.76919200 -0.62899100 0.39496500
С	1.89732400 0.16228600 -0.35606100
С	6.78717500 0.63012900 -1.37052400
С	0.13604100 1.17872400 -2.30779800
С	3.65153400 1.61971200 -0.98008800
С	-2.73688400 -1.09733900 -1.15991800
С	6.01676600 1.24678500 -0.20374800
С	4.55986500 0.87116600 -0.22612800
С	1.29063100 2.05747200 -1.85925800
С	0.10282000 -2.91346000 1.29727300
С	2.04961100 -3.76377300 2.38463900
С	-4.17854700 -1.51566300 -0.77538400
С	2.78619700 -2.71761800 1.85067200
С	0.69153000 -3.86718800 2.10651300
С	4.11175400 -0.25841400 0.45824800
С	2.29721400 1.28342600 -1.06317800

С	2.15904400	-1.78161300	1.03906500
Н	-0.95105100	-2.92540700	1.04502500
Н	0.08485700	-4.66967800	2.50715900
Н	2.53461900	-4.49699700	3.01986100
Н	3.84444800	-2.61557800	2.05912200
Н	4.81372400	-0.84542400	1.04309400
Н	7.84195100	0.91930900	-1.33493600
Н	6.73376100	-0.46296600	-1.34238000
Н	6.37741600	0.96115300	-2.33010600
Н	-0.60847000	0.96313500	-1.45122100
Н	-0.60459700	1.70410500	-2.91948800
Н	0.45128800	0.29069400	-2.85756700
Н	4.00692500	2.49078800	-1.52555600
0	-2.30288400	2.04545000	-0.36313800
С	-1.61353700	2.21568900	0.63914800
0	-0.59509000	1.60129200	1.03609100
С	-2.01029200	3.38140700	1.59245300
F	-1.04368500	4.32176200	1.62852700
F	-3.14043900	3.99883300	1.23076800
F	-2.18369300	2.95173300	2.85567400
Н	6.10905500	2.33708200	-0.24048700
Н	1.76337300	2.50313500	-2.73959800
Н	6.46016500	0.91970900	0.74219000
н	0.90866900	2.88639800	-1.25250300

[2t-AuOAc^F]⁺[OAc^F]⁻

Au	-0.18720100	0.28825500	-0.54063300
F	4.86047000	1.00881800	-2.19420100
F	4.02208200	2.59576600	-0.99455000

F	4.48726000	0.68545700	-0.09233000
0	1.77952500	1.06599600	-0.56419200
0	2.35589900	0.18201200	-2.55483300
Ν	-0.84988300	1.70920700	0.74719700
С	-2.85024100	0.47732800	0.47619400
С	-2.06050400	-0.29588600	-0.37693100
С	-7.03953900	-0.60672700	-0.83085400
С	-0.31344900	-1.33816100	-2.21916400
С	-3.86208200	-1.74570500	-0.86537500
С	2.57681000	0.76687700	-1.51605300
С	-6.14326400	-1.37851600	0.13663600
С	-4.69295100	-1.00818500	-0.01776700
С	-1.55566900	-2.16697900	-1.91913900
С	-0.05767700	2.66108700	1.24749400
С	-1.88302300	3.50007100	2.53490300
С	4.00941900	1.26737500	-1.20172400
С	-2.69105700	2.50162300	2.01141500
С	-0.54957300	3.58309700	2.15279900
С	-4.18037700	0.10488300	0.65434300
С	-2.51937200	-1.40648600	-1.06098000
С	-2.15871400	1.59276700	1.10819700
Н	0.97134100	2.66073300	0.90759900
Н	0.11183700	4.34548500	2.54498700
Н	-2.29368700	4.21077700	3.24389200
Н	-3.73164200	2.41734000	2.30031600
Н	-4.82348600	0.67080000	1.32222800
Н	-8.08795700	-0.89114500	-0.69904900
Н	-6.95805800	0.47247800	-0.66590500
Н	-6.76109200	-0.80901100	-1.87001600
н	0.39647300	-1.29027300	-1.27247600

Н	0.47161200	-1.86882300	-2.76876500
Н	-0.52162800	-0.44484000	-2.81639500
Н	-4.26852500	-2.60989300	-1.38528400
0	1.75587900	-2.10298900	-0.04691700
С	1.71534700	-1.73861100	1.14104700
0	0.94428100	-0.95890500	1.71663500
С	2.81996100	-2.39433300	2.02293200
F	2.86031500	-1.92269100	3.27684000
F	2.63171300	-3.72823200	2.11619400
F	4.04620200	-2.21189100	1.49924100
Н	-2.02173100	-2.46422100	-2.86375300
Н	-6.26174700	-2.45351200	-0.03167300
Н	-6.45921900	-1.17897500	1.16589500
н	-1.26570400	-3.09057900	-1.40612700

2t-Au-TS2

Au	-0.22691400 0.2654	1800 -0.47064300
F	4.78214200 1.20677	400 -2.18775800
F	3.88460600 2.73782	300 -0.95886200
F	4.44008800 0.83682	800 -0.08845900
0	1.71234400 1.11253	300 -0.53838400
0	2.32028600 0.25649	500 -2.53351400
Ν	-0.96718000 1.77334	0.69799200
С	-2.92010800 0.45443	600 0.46332400
С	-2.07606000 -0.36729	9800 -0.28353700
С	-6.98764000 -0.91532	2600 -1.00423100
С	-0.20774000 -1.44838	3900 -1.89867400
С	-3.81004000 -1.91602	.000 -0.71456900
С	2.51620700 0.85153	800 -1.49537000

С	-6.14925500	-1.51318900	0.12513200
С	-4.69957200	-1.12300700	0.01823900
С	-1.41712100	-2.33301800	-1.59971900
С	-0.22946900	2.79221500	1.14619400
С	-2.12508500	3.66345900	2.30337000
С	3.92768700	1.41357100	-1.18580200
С	-2.87931000	2.59748400	1.83485300
С	-0.78283900	3.76544700	1.95851200
С	-4.24842000	0.05984300	0.61155900
С	-2.47067800	-1.55218600	-0.87672700
С	-2.28349700	1.64176800	1.02419600
Н	0.81034400	2.80392900	0.84020300
Н	-0.16296100	4.58094600	2.30975300
Н	-2.58458500	4.41172400	2.94015800
Н	-3.92517600	2.49546000	2.09774800
Н	-4.93984700	0.66653800	1.18959900
Н	-8.03659600	-1.21210400	-0.90855400
Н	-6.94207800	0.17844200	-0.99041700
Н	-6.62736500	-1.25314500	-1.98120400
Н	0.58094900	-1.39677600	-0.89422800
Н	0.64394400	-1.98956300	-2.32912500
Н	-0.41767800	-0.67636400	-2.64693800
Н	-4.17085700	-2.83627700	-1.16756800
0	1.73961900	-2.07920000	-0.05557500
С	1.86721800	-1.72248700	1.14258300
0	1.18632200	-0.95508300	1.81675600
С	3.08682400	-2.39631500	1.83553000
F	3.29703600	-1.94555600	3.07717600
F	2.90917100	-3.72988200	1.92527500
F	4.22229300	-2.19812600	1.14494900

Н	-1.79966300	-2.75292500	-2.53545800
Н	-6.23314600	-2.60448000	0.10478900
Н	-6.54424200	-1.17939100	1.09019000
н	-1.10775900	-3.18126700	-0.97843800

3t-AuOAc^F

G: -1296.197986

Au	-0.31131300 -0.45714400 -0.26118000
F	-5.41138800 -0.26546500 1.38883300
F	-4.93935700 0.81266300 -0.42026800
F	-5.03459600 -1.34897000 -0.43830400
0	-2.43885100 -0.41243400 -0.43491500
0	-2.78742400 -0.32703300 1.79255600
Ν	0.09083300 1.68240500 -0.20924400
С	2.28619000 0.75386900 -0.10314100
С	1.63330800 -0.47539000 -0.19891500
С	6.33071900 -0.60126200 1.53513700
С	-0.06526000 -2.49015400 -0.14851300
С	3.68981700 -1.67159600 -0.17023300
С	-3.13565200 -0.35149700 0.62748500
С	5.88469600 -0.46166700 0.08013700
С	4.38494000 -0.46038000 -0.05726400
С	1.39973100 -2.87681500 -0.45411000
С	-0.79683900 2.67604400 -0.22584700
С	0.94280800 4.29354000 -0.04495000
С	-4.64994300 -0.29079700 0.29337200
С	1.86560800 3.25759700 -0.02506800
С	-0.41256500 4.00480900 -0.14657100
С	3.68075200 0.74713700 -0.03267700
С	2.29758800 -1.69403300 -0.25050400

С	1.42025700	1.94222800	-0.10820800
Н	-1.83909100	2.38558200	-0.30675900
Н	-1.16264100	4.78631600	-0.16401800
Н	1.28168500	5.32218400	0.01969100
Н	2.92611400	3.46445100	0.05521400
Н	4.23518700	1.67874800	0.03823800
Н	7.42274600	-0.60273700	1.61029300
Н	5.94974500	0.22580300	2.14293100
Н	5.95978400	-1.53444500	1.97106300
Н	-0.77836600	-2.98711300	-0.81055500
Н	-0.33135600	-2.72768300	0.88669800
Н	4.25198700	-2.60221100	-0.20258200
Н	1.70888400	-3.73700800	0.15120500
Н	6.30236100	-1.28505000	-0.50898900
Н	1.48330400	-3.19365800	-1.50079100
н	6.28893400	0.46623600	-0.33796400

1s

G: -714.292467

Ν	-2.69275600	-1.34812700	0.49051600
С	-0.68382800	-0.11565300	-0.00049600
С	0.09800000	-1.27601200	-0.04454900
С	1.68248600	3.43083600	-1.10538800
С	1.68285000	3.31235000	1.41025000
С	2.09367300	0.05121100	-0.00398900
С	2.02321300	2.57458700	0.11480700
С	1.34365100	1.22316200	0.04961500
С	2.31944900	-2.47077500	-0.11414700
С	-4.01769300	-1.47756700	0.50024400
С	-4.34459200	0.65708300	-0.50066300

С	-2.96596300	0.80279600	-0.52061500
С	-4.89124800	-0.50762800	0.02408500
С	-0.04935000	1.12549300	0.04826400
С	1.48637000	-1.20822400	-0.05185700
С	-2.16229100	-0.22103500	-0.00539200
Н	-4.40365900	-2.40661800	0.91389900
Н	-5.96314200	-0.66776300	0.05988400
Н	-4.98313900	1.43942600	-0.89895400
Н	-2.51526400	1.69125400	-0.94777400
Н	-0.64311100	2.03236400	0.10974900
Н	2.22501800	4.38153400	-1.07199300
Н	1.94710800	2.92010400	-2.03650100
Н	0.61150500	3.65854200	-1.13892200
Н	0.61275100	3.54008500	1.46439400
Н	1.94449300	2.71492800	2.28909900
Н	2.22883600	4.25995400	1.46722500
Н	3.17885700	0.12327500	-0.00522800
Н	3.10406800	2.39018800	0.10647100
С	3.19407200	-2.62716000	1.13031000
Н	3.92673100	-1.81599200	1.20178100
Н	2.59131000	-2.61805500	2.04372700
Н	3.74570700	-3.57256700	1.09546400
С	3.16710700	-2.51952200	-1.38592500
Н	2.54458400	-2.43681100	-2.28230300
Н	3.89584100	-1.70190300	-1.40558000
Н	3.72164900	-3.46220200	-1.44221300
Н	1.62003900	-3.31472900	-0.14240200
н	-0.39632600	-2.24176500	-0.08076000

1b-Au(OAc^F)₂

G: -1979.605751

Au	-0.42684100	0.39262900	-0.12016300
F	-5.29723000	1.48691000	1.73181200
F	-4.70759500	2.62383800	-0.00599000
F	-5.14797100	0.51335600	-0.18895100
0	-2.43686500	1.07678400	-0.22189400
0	-2.71493000	0.90994300	2.01082600
Ν	0.28349900	2.25578400	-0.29571400
С	2.34268900	1.12581300	-0.11705000
С	1.58482300	-0.06228400	-0.02549200
С	6.33366700	-0.74109500	1.58892300
С	2.60741900	-3.80936200	0.43530500
С	6.47569600	-1.05569400	-0.89429500
С	6.60249500	1.22459800	0.08880400
С	0.83734500	-2.96341900	-1.02679400
С	3.65972400	-1.23059900	0.22201200
С	-3.09490100	1.09976900	0.87641800
С	5.94589200	-0.14889000	0.22614300
С	4.42453400	-0.06848800	0.13056400
С	1.59879000	-2.66231500	0.27557300
С	-0.52953300	3.31034900	-0.45333000
С	1.36304600	4.74936900	-0.58763700
С	-4.58562500	1.43377100	0.60677900
С	2.18687900	3.64805500	-0.43416300
С	-0.01728700	4.58249400	-0.59898200
С	3.73700800	1.11833400	-0.04129000
С	0.74498000	-2.69114600	1.55525500
С	2.26270000	-1.28601100	0.15103600
С	1.62763800	2.38126000	-0.28494900
н	-1.59197600	3.10711100	-0.46780500

Н	-0.69636900	5.41685100	-0.72164900
Н	1.79711500	5.73664000	-0.70300900
Н	3.26197300	3.76899100	-0.43469800
Н	4.27532900	2.05411300	-0.11176300
Н	5.96663400	-0.11329300	2.40738400
Н	5.92665900	-1.74728800	1.72486100
Н	7.42374700	-0.80658600	1.67173700
Н	7.56780400	-1.11671900	-0.83998700
Н	6.08065800	-2.07281300	-0.81690800
Н	6.20523400	-0.66055900	-1.87892700
Н	6.37873500	1.68800700	-0.87766500
Н	6.28608500	1.90912400	0.88270800
Н	7.68898500	1.11632500	0.15988000
Н	1.55261300	-3.26794500	-1.79812800
Н	0.12949800	-3.78519900	-0.88223500
Н	0.29977500	-2.10575100	-1.42371700
Н	3.19484400	-3.72828600	1.35510900
Н	2.04551500	-4.74740900	0.48907500
Н	3.29132000	-3.88819100	-0.41524700
Н	0.16204000	-3.61656000	1.59873700
Н	1.40879700	-2.66921500	2.42630400
Н	4.18861200	-2.16355500	0.35987500
Н	0.05340100	-1.85832900	1.64472400
0	-1.38591500	-1.38641800	0.09156100
С	-2.10617600	-1.79529400	-0.89371400
0	-2.11184800	-1.44508300	-2.04873000
С	-3.07302000	-2.90474500	-0.40473900
F	-2.41155100	-3.91903900	0.16854300
F	-3.78898500	-3.40429500	-1.41015700
F	-3.92859400	-2.41480100	0.50406400

1b

G: -792.790646

Ν	3.04704600	1.06134300	-0.53605000
С	0.95939700	-0.00934100	0.00289000
С	0.26514300	1.20685200	0.03487800
С	-1.50541700	-3.29279100	-1.37207600
С	-1.51155100	-3.39151800	1.13081400
С	-1.81234800	0.01678200	0.00580000
С	-1.89975000	-2.54466600	-0.09012000
С	-1.15536900	-1.20945500	-0.03507200
С	-1.91699100	2.54503700	0.08887300
С	4.37784500	1.09747400	-0.55374300
С	4.55999800	-1.01514300	0.52742000
С	3.17467400	-1.06337100	0.55639500
С	5.18396500	0.08750200	-0.04333700
С	0.24370800	-1.20228200	-0.03281600
С	-1.12329000	1.23845800	0.04235200
С	2.44172900	-0.00669000	0.00327800
Н	4.82550500	1.98107000	-1.00333600
Н	6.26423700	0.17041800	-0.08822600
Н	5.14443900	-1.82407400	0.95461400
Н	2.66563200	-1.90060000	1.02000600
Н	0.78107600	-2.14340200	-0.08473900
Н	-2.03210500	-4.25198400	-1.42544000
Н	-1.76817500	-2.71012700	-2.26113600
Н	-0.43162700	-3.49862600	-1.40823100
Н	-0.43762200	-3.59857400	1.15562300
Н	-1.77935000	-2.88090000	2.06173800
н	-2.03728300	-4.35235800	1.10588100

Н	-2.89570400	0.03548100	0.00700100
С	-2.80725300	2.55520700	1.34022300
Н	-3.51524500	1.72128800	1.34289500
Н	-2.20210500	2.48762600	2.25037300
Н	-3.38499900	3.48502700	1.38401400
С	-2.79993900	2.64625400	-1.16372500
Н	-2.18931000	2.64317800	-2.07264300
Н	-3.50871200	1.81564600	-1.23033500
Н	-3.37655400	3.57761600	-1.14396000
Н	0.84383800	2.12128100	0.06016700
С	-3.41806000	-2.36494600	-0.08702900
Н	-3.76753800	-1.86108300	0.81999700
Н	-3.76238600	-1.79176400	-0.95397100
Н	-3.90004600	-3.34686800	-0.12680400
С	-1.00793400	3.77342900	0.13575300
Н	-0.36926900	3.77375500	1.02490400
Н	-0.36551000	3.83863800	-0.74817400
н	-1.62185600	4.67917900	0.16758100

1t-*p*-H⁺

G: -557.722243

Ν	2.36574500	0.87908000	-0.36377200
С	0.00662000	0.48165300	0.03412900
С	-0.31437100	1.78408400	0.43209700
С	-3.93310200	-1.76641100	0.45904400
С	-2.64512400	1.30789300	0.04713400
С	-3.43119800	-0.96029100	-0.73848800
С	-2.34350500	0.00362600	-0.35274400
С	3.67492600	0.58120500	-0.39430500
С	3.13821700	-1.60424400	0.37258600

С	1.79635500	-1.25964400	0.39855400
С	4.09667900	-0.67307700	-0.02371100
С	-1.01009000	-0.39841900	-0.34818700
С	-1.64199500	2.18791000	0.43807600
С	1.39875600	0.01916800	0.02229100
Н	4.33660700	1.37017200	-0.72769300
Н	5.15143100	-0.91424800	-0.04810800
Н	3.44204700	-2.60093600	0.67386000
Н	1.04628200	-1.96484700	0.73288500
Н	-0.75817300	-1.40404100	-0.67267100
Н	-3.12307600	-2.35187700	0.90578700
Н	-4.33757000	-1.10747900	1.23389500
Н	-4.72437600	-2.45862500	0.15583000
Н	-3.68049700	1.63685300	0.05078700
Н	-4.26450600	-0.40599500	-1.18190600
Н	-3.05435100	-1.64325400	-1.50685500
Н	0.45834600	2.46863100	0.77000300
Н	2.09088000	1.80776400	-0.67453800
н	-1.89627500	3.19359200	0.75626400

1t-*p*-Au(OAc^F)₃

G: -2270.526112

Au	0.52088000	-0.07956900	-0.37500200
F	-3.18940500	1.53585100	-3.70800300
F	-3.79074600	1.00151900	-1.70398500
F	-2.68962300	2.83046400	-2.05480300
0	-1.10540600	0.89998000	-1.00382500
0	-0.98520000	0.15591000	-3.13680900
Ν	-0.38093300	-1.85213400	-0.72201900
С	-1.78213100	-1.49264000	1.24289000

С	-3.06571300	-0.95922400	1.35654300
С	-2.48735600	-0.03098600	3.48964900
С	-1.48778400	0.77268100	-2.23391700
С	-1.21385200	-0.57813500	3.39210500
С	0.02350600	-2.54805300	-1.79980100
С	-1.71428700	-4.13656200	-1.44245400
С	-2.81219500	1.55594200	-2.43381200
С	-2.11065700	-3.41268600	-0.33000500
С	-0.61938800	-3.70585800	-2.18147800
С	-0.85050900	-1.30894600	2.26810800
С	-3.43017800	-0.21121400	2.47428000
С	-1.41946300	-2.26370200	0.03872600
Н	0.86000700	-2.14417600	-2.35643200
Н	-0.26768900	-4.24204600	-3.05404600
Н	-2.94259000	-3.73213900	0.28595600
Н	0.14088700	-1.74543700	2.19327600
0	1.50682700	1.65734500	-0.20331400
С	1.14094000	2.48815100	0.71942800
0	0.27787900	2.38072300	1.55004900
С	2.02721700	3.75874000	0.64209800
F	1.92737400	4.34380100	-0.55723300
F	3.31512100	3.45045400	0.84131900
F	1.67033000	4.64740300	1.56441500
Н	-3.77744400	-1.10222100	0.54817700
0	2.06654400	-1.01444100	0.49285200
С	3.14388900	-1.17616800	-0.20880900
0	3.35890600	-0.88636500	-1.35623100
С	4.22729500	-1.85600900	0.66872300
F	3.79103800	-3.03399300	1.13331100
F	5.33714600	-2.07361100	-0.02781400

F	4.53757100	-1.09090100	1.72075300
Н	-2.75592400	0.55249400	4.36606500
Н	-2.24939800	-5.03670200	-1.72509800
С	-4.81884900	0.35180900	2.59933100
Н	-4.77679800	1.29435700	3.15486300
Н	-5.20592900	0.58517500	1.60205100
Н	-0.49541000	-0.43046300	4.19179700
С	-5.76911200	-0.61469800	3.30524600
Н	-5.41502500	-0.84540000	4.31508800
Н	-6.77156300	-0.18354100	3.38809000
Н	-5.85003200	-1.55776500	2.75495900

1t-p-Au-TSA

G: -2270.490218

Au	0.56969700	-0.33595700	0.19566100
F	-4.10446400	1.89968300	-1.91804500
F	-2.76515000	1.29368500	-3.50154400
F	-3.71794600	-0.19361000	-2.25452700
0	-1.21462000	0.05741400	-1.34010100
0	-1.78764100	2.12369000	-0.62378500
Ν	0.17217900	-2.27414000	-0.16300900
С	-1.76592600	-1.68105800	1.04278300
С	-3.11181300	-1.46283400	0.83189500
С	-2.98596000	0.58398100	2.12887800
С	-1.92056100	1.10007100	-1.27443800
С	-1.65009700	0.36858000	2.37451300
С	0.95389500	-3.05558200	-0.91641600
С	-0.65377000	-4.81772400	-0.74652500
С	-3.14604200	1.02255600	-2.23829800
С	-1.46001500	-3.98737100	0.01818900

С	0.56548600	-4.34727800	-1.21967300
С	-1.00917600	-0.77030000	1.84080900
С	-3.73912200	-0.33293800	1.37310500
С	-1.02147700	-2.70455200	0.30515100
Н	1.88442000	-2.62777500	-1.26834400
Н	1.22062600	-4.96671800	-1.81952000
Н	-0.11182900	-1.13711500	2.34808400
0	0.89363400	1.55332400	0.73993000
С	1.10738800	2.42210800	-0.19666800
0	1.25958900	2.26197100	-1.37759000
С	1.21566500	3.83395500	0.43638700
F	2.34996600	3.93403500	1.14981400
F	0.19736700	4.09757900	1.26000000
F	1.24105500	4.77665100	-0.50165100
Н	-3.67231200	-2.12773700	0.18279500
0	2.56118500	-0.47084500	-0.46441300
С	3.42416900	-0.71986800	0.45585500
0	3.26475400	-0.94238800	1.63205400
С	4.85249700	-0.72306600	-0.15634200
F	5.13965600	0.45766800	-0.71395600
F	5.77627700	-0.97729100	0.76641600
F	4.95514100	-1.66231400	-1.10843600
Н	-0.97541000	-5.82794500	-0.97447900
Н	-2.41992200	-4.31609300	0.39792700
Н	-3.47459500	1.47003000	2.52103400
С	-5.19963500	-0.10382800	1.15182300
Н	-5.50514900	-0.57292700	0.21218900
С	-6.02773800	-0.67591300	2.30735300
Н	-5.75512300	-0.20601900	3.25691300
н	-7.09170400	-0.49649200	2.13029800

Н	-5.87358600	-1.75475600	2.40461000
Н	-1.07933900	1.05859000	2.98548100
н	-5.38629700	0.97085000	1.06517700

2t-p-Au(OAc^F)₂

Au	-0.06361400	0.19594900	-0.08568600
F	-4.87642400	1.69924600	1.63081100
F	-4.22043800	2.62589000	-0.20511800
F	-4.80053800	0.54105100	-0.18853600
0	-2.06010800	0.89328200	-0.26577600
0	-2.32672200	1.02221400	1.96894900
Ν	0.80448700	1.99141800	-0.35549700
С	2.74894200	0.66813500	-0.15019900
С	1.83632600	-0.38757100	-0.00181400
С	6.56413500	-1.03829800	1.63103400
С	3.64736200	-1.92697500	0.24125900
С	-2.70622300	1.09323300	0.81913900
С	6.05502400	-1.17584300	0.19652700
С	4.58046400	-0.89859200	0.09299500
С	0.10431200	3.11655400	-0.54009700
С	2.13293200	4.35754800	-0.71000100
С	-4.17389100	1.49304000	0.51737700
С	2.84540900	3.18330500	-0.52361100
С	0.74320100	4.32765800	-0.72188300
С	4.11619400	0.40132400	-0.10363000
С	2.27484300	-1.68222600	0.19535900
С	2.16297300	1.98670100	-0.34783500
Н	-0.97428300	3.02048800	-0.54376800
н	0.15260300	5.22319600	-0.86890100

Н	2.66143700	5.29448300	-0.84847500
Н	3.92815600	3.18653300	-0.51371600
Н	4.83350200	1.20832600	-0.22427100
Н	6.39447100	-0.02631800	2.01262200
Н	6.05076600	-1.73796200	2.29819700
Н	7.63745400	-1.24505000	1.68330100
Н	3.99605600	-2.94481200	0.39340700
0	-0.80848300	-1.64717000	0.27551300
С	-1.19747000	-2.33474500	-0.74261200
0	-1.14035700	-2.06874700	-1.91815600
С	-1.79984300	-3.68037500	-0.26482300
F	-0.89865500	-4.38532500	0.43524300
F	-2.19242200	-4.42963500	-1.29180100
F	-2.86053000	-3.47813900	0.52685200
Н	6.25890500	-2.18747400	-0.16871900
Н	6.60085700	-0.48414900	-0.45353900
н	1.57248400	-2.49879000	0.31710600

1t-*o*-H⁺

G: -557.721222

N	1.87790000	-0.94067600	-0.66325100
С	0.00933900	0.51191600	-0.13707000
С	-0.97140600	-0.48537900	-0.18687000
С	-2.67596800	1.18876600	-0.36079300
С	-1.70953800	2.18690200	-0.30977200
С	-3.37388300	-1.23509500	-0.28166200
С	3.14425300	-1.38462500	-0.60952000
С	3.66764300	0.44956000	0.80917100
С	2.35108800	0.87483900	0.73643000
С	4.07507200	-0.69957900	0.13373600

С	-0.36668400	1.85750900	-0.19248700
С	-2.32132300	-0.16118700	-0.29625400
С	1.42795900	0.15723300	-0.01760700
Н	3.36248500	-2.27759400	-1.18100900
Н	5.09568800	-1.05657900	0.17843300
Н	4.38009700	1.00897400	1.40566600
Н	2.01928300	1.74940700	1.28112000
Н	0.38583100	2.63855400	-0.17449700
Н	-3.72453800	1.45850800	-0.45178800
С	-3.90799000	-1.49437800	1.12660200
Н	-4.67525300	-2.27434800	1.11271700
Н	-3.10573100	-1.81899900	1.79700000
Н	-4.35299200	-0.58853100	1.55018900
Н	-2.95598100	-2.16036800	-0.69147400
Н	-4.19976000	-0.93796900	-0.93628300
Н	-0.69044200	-1.53298300	-0.10482600
Н	1.22790300	-1.45189500	-1.25497000
н	-2.00325100	3.22965400	-0.37094800

1t-o-Au(OAc^F)₃

G: -2270.525881

Au	0.38684700	0.07534500	-0.61914300
F	-4.62856500	1.30053400	0.22009300
F	-3.76012200	2.32237700	-1.47437200
F	-4.09614200	0.18892600	-1.55012600
0	-1.53974900	0.42094100	-1.02766100
0	-2.04687100	1.41896400	0.93884400
Ν	0.09488400	-1.79551700	-1.33122400
С	-1.58962100	-2.29063600	0.38813200
С	-2.98293200	-2.40861200	0.38782900

С	-3.02607200	-1.65042400	2.67682000
С	-2.30320900	1.00446200	-0.15890300
С	-1.63674800	-1.54071200	2.69778400
С	0.82664500	-2.11796400	-2.41345200
С	-0.31749200	-4.19465700	-2.59842100
С	-3.72569900	1.19285700	-0.75202200
С	-1.05170100	-3.85471200	-1.47600100
С	0.64802900	-3.31466900	-3.07165100
С	-0.92777900	-1.86938600	1.54127600
С	-3.69368100	-2.07977700	1.53268400
С	-0.83482000	-2.64005000	-0.82863100
Н	1.55542400	-1.38859400	-2.74499400
Н	1.25454700	-3.53723200	-3.94061000
Н	0.15742300	-1.80338500	1.55387000
0	0.79137300	1.87618700	0.16100300
С	0.45292000	2.94314200	-0.48389700
0	-0.06174300	3.05577500	-1.56641700
С	0.82055000	4.18991500	0.36386500
F	2.13769700	4.22941900	0.60449800
F	0.19003300	4.17372000	1.54290900
F	0.48492700	5.31154900	-0.26704600
Н	-3.50267300	-2.72301300	-0.51127300
0	2.35578800	-0.29035000	-0.53898200
С	2.89958900	-0.66294600	0.57557800
0	2.39297600	-0.87700100	1.64515100
С	4.42732700	-0.83043200	0.36265700
F	4.98697300	0.32589200	-0.00796400
F	5.02191500	-1.24029500	1.47730500
F	4.67582100	-1.73248800	-0.59617600
н	-0.48803500	-5.14442000	-3.09370000

Н	-1.78823600	-4.53221600	-1.06152600
Н	-3.59406800	-1.38723600	3.56476200
С	-0.89828600	-1.09983900	3.93126900
Н	-1.60516700	-0.63343900	4.62424600
С	-0.17720700	-2.25332100	4.62602400
Н	-0.88525900	-3.02619000	4.94232200
Н	0.55412700	-2.71926400	3.95810800
Н	0.35719900	-1.89821100	5.51242100
Н	-4.77695900	-2.14624600	1.53049000
н	-0.16936200	-0.33047800	3.65352600

1t-o-Au-TSA

G: -2270.494455

Au	-0.37153700	0.41877600	0.18916500
F	4.34132200 -	-1.25660200	-2.41360200
F	3.02560600 -	-0.02508200	-3.60055800
F	4.15231200	0.84645500	-1.97246200
0	1.50127100	0.44880100	-1.30608900
0	2.25008500	-1.62864700	-0.82560300
Ν	-0.13376200	2.41314500	0.18462800
С	1.76598000	1.76508200	1.41655700
С	3.13313500	1.66323900	1.26608900
С	3.06417000	-0.55924100	2.26661900
С	2.28019400	-0.54011000	-1.37602600
С	1.69523600	-0.47309000	2.47663000
С	-0.93676400	3.24943600	-0.48216100
С	0.50973900	5.06932600	0.07942700
С	3.46424800	-0.24995700	-2.34954100
С	1.33926500	4.18395300	0.75206800
С	-0.64021500	4.59828000	-0.54360100

С	1.03016600	0.70102700	2.02588900
С	3.76899400	0.49722300	1.69305200
С	0.99126500	2.84346900	0.79786800
Н	-1.80755100	2.81775000	-0.95965800
Н	-1.31087200	5.26093600	-1.07644700
Н	0.08018100	0.94503200	2.51285000
0	-0.57441800	-1.55270700	0.36810300
С	-0.64784400	-2.26943200	-0.70936900
0	-0.70807500	-1.92922100	-1.85942900
С	-0.70274000	-3.76780300	-0.31105400
F	-1.83152400	-4.02897400	0.36821700
F	0.32606100	-4.11219200	0.46904000
F	-0.68435700	-4.54937500	-1.38669400
Н	3.69215600	2.44552300	0.76580400
0	-2.29905600	0.51277100	-0.64093100
С	-3.25699300	0.39759600	0.20978500
0	-3.21958700	0.30162000	1.41270900
С	-4.62008400	0.40510600	-0.53569300
F	-4.69461900	-0.60522800	-1.40810700
F	-5.63863500	0.29219000	0.31227800
F	-4.77955400	1.54886000	-1.21775300
Н	0.75963500	6.12379800	0.03922400
Н	2.24668100	4.51268400	1.24441300
Н	3.60578700	-1.44743600	2.56883000
С	0.90390600	-1.52136700	3.19473900
Н	0.00215700	-1.72394200	2.60751400
С	1.63288200	-2.82082600	3.48623500
Н	2.01447900	-3.27737200	2.56843500
Н	2.47339100	-2.67456700	4.17152100
н	0.94601700	-3.53240800	3.95150200

Н	4.84079300	0.40074600	1.55082200
н	0.54637400	-1.06893300	4.13038900

2t-o-Au(OAc^F)₂

Au	-0.40757600	-0.12369600	-0.00698700
F	3.95666000	-2.82119000	1.39316000
F	3.01419200	-3.49364100	-0.42849000
F	4.06504400	-1.60246400	-0.38528600
0	1.29257700	-1.35743500	-0.31869600
0	1.69686500	-1.50974700	1.89441800
Ν	-1.70012000	-1.63414200	-0.26181900
С	-3.25617900	0.08991100	0.13415500
С	-2.12416600	0.92706300	0.24775000
С	-3.58720800	2.76309300	0.70322200
С	1.95728500	-1.68722400	0.72409700
С	-4.70274400	1.94980600	0.58497900
С	-1.16012100	3.28442600	0.65492100
С	-1.29465600	-2.87981800	-0.54235300
С	-3.56448400	-3.60313900	-0.61586400
С	3.26897000	-2.41266400	0.32751100
С	-3.96672300	-2.30861000	-0.33259800
С	-2.20976400	-3.89650300	-0.72584700
С	-4.54073800	0.60414300	0.30083600
С	-2.27699900	2.28281400	0.54272800
С	-3.01074300	-1.31423600	-0.15627700
Н	-0.22660700	-3.03650200	-0.62086200
Н	-1.85584200	-4.89498600	-0.94996100
Н	-4.30663300	-4.38192200	-0.75383500
н	-5.01792700	-2.06368100	-0.25015300

Н	-5.40652500	-0.04306000	0.21419800
Н	-3.71609500	3.81758500	0.93198400
0	0.98462800	1.31345800	0.28900800
С	1.71736500	1.63503100	-0.72102900
0	1.57874300	1.37459600	-1.89088300
С	2.93964200	2.45571300	-0.23792400
F	2.58082900	3.45419800	0.57850500
F	3.60518400	2.98594600	-1.26151700
F	3.78595000	1.66338000	0.43716500
С	-0.75524800	3.83229400	-0.71245600
Н	0.09436800	4.51580700	-0.62165000
Н	-0.47479300	3.02762900	-1.39744500
Н	-1.58348900	4.38125600	-1.17203500
Н	-0.29902500	2.84047900	1.15149200
Н	-1.50593500	4.10889400	1.28563200
Н	-5.69633200	2.36379600	0.71967200

2t-*o*-Au-TS1

Au	0.41808500	-0.30665900	-0.40159400
F	-4.37847600	-2.41555400	-1.42340800
F	-3.20311300	-3.44936400	0.06353100
F	-4.06202100	-1.51543200	0.51218700
0	-1.34631000	-1.40683700	-0.02441700
0	-2.09801000	-1.25171900	-2.14247500
Ν	1.59967500	-1.55118800	0.68895000
С	3.20741700	0.07560100	0.10113000
С	2.13890400	0.64604300	-0.59699800
С	0.05459600	1.16931300	-2.40615700
С	3.50069500	2.39332000	-1.42467000

С	-2.19120800	-1.55404800	-0.97213700
С	4.58138100	1.86441100	-0.72440700
С	1.03529400	2.29081500	-2.10951700
С	1.12979400	-2.65009300	1.28605500
С	3.28669700	-3.05656200	2.22169000
С	-3.48095800	-2.23925000	-0.45424000
С	3.75571900	-1.90858800	1.60121300
С	1.95878900	-3.43570200	2.06496500
С	4.44949100	0.70792100	0.03531300
С	2.24074700	1.78639600	-1.37620800
С	2.89260700	-1.14753400	0.82447900
Н	0.08253500	-2.87834600	1.12579300
Н	1.55740600	-4.32384600	2.53677900
Н	3.95720600	-3.65356100	2.83017400
Н	4.78619600	-1.59545100	1.71637700
Н	5.30436900	0.30447000	0.56765100
Н	-0.56832600	0.87793300	-1.47432600
Н	-0.82640500	1.49083000	-2.97111200
Н	0.50091600	0.32985800	-2.94165700
Н	3.63254900	3.28677000	-2.02818600
0	-2.32715600	1.68891400	-0.32888000
С	-1.62927400	2.01807400	0.62791300
0	-0.49554700	1.61633700	0.97880200
С	-2.18951500	3.11868800	1.57679800
F	-1.39133900	4.20579100	1.57942000
F	-3.41438900	3.53666500	1.23806000
F	-2.25993900	2.68382400	2.84866700
Н	1.33185500	2.76469700	-3.05000100
Н	0.54200300	3.06359400	-1.50890500
н	5.54584800	2.35763000	-0.78100300

[2t-o-AuOAc^F]⁺[OAc^F]⁻

Au	-0.57321800	0.18791400	-0.55879600
F	4.39828100	1.64170700	-1.94575300
F	3.33793200	3.02376200	-0.67094200
F	3.97296600	1.10541600	0.10170800
0	1.26225600	1.23640600	-0.47819500
0	2.02275100	0.56980100	-2.49262200
Ν	-1.48809200	1.46628600	0.72387500
С	-3.28215700	-0.02186600	0.32202900
С	-2.35033000	-0.66189600	-0.49846300
С	-0.39261700	-1.36849100	-2.28779200
С	-3.90578600	-2.32251100	-1.14080200
С	2.12906000	1.09759200	-1.40641200
С	-4.85874300	-1.71411300	-0.32807000
С	-1.50519000	-2.38426600	-2.06409900
С	-0.86481100	2.50963600	1.27789900
С	-2.85468100	3.06027400	2.47399500
С	3.48161800	1.72389900	-0.98185200
С	-3.48552700	1.96815900	1.89660100
С	-1.52841300	3.33669700	2.16526900
С	-4.56186100	-0.56946700	0.40599400
С	-2.61159800	-1.79984500	-1.24158600
С	-2.78501000	1.16223000	1.01065200
Н	0.17043700	2.65998000	0.99477300
Н	-1.00284000	4.17724500	2.60079100
Н	-3.39754500	3.69315300	3.16763200
Н	-4.51679600	1.73191800	2.12901900
Н	-5.31872300	-0.11213300	1.03477300

Н	0.27348100	-1.25225800	-1.30911900
н	0.48618500	-1.76086600	-2.81142400
н	-0.70732500	-0.49868100	-2.87191400
н	-4.16657000	-3.21155600	-1.70764800
0	1.68309600	-1.92944800	-0.12099700
С	1.55891400	-1.65316100	1.08559300
0	0.68369300	-1.00574000	1.67489200
С	2.69684800	-2.24187300	1.97265000
F	2.63721700	-1.85114300	3.25307100
F	2.65275500	-3.59144000	1.97607700
F	3.91416700	-1.89493800	1.51608400
Н	-1.87627800	-2.72609000	-3.03513000
н	-1.10078700	-3.26511300	-1.55323200
н	-5.85491200	-2.13923300	-0.26720500

2t-o-Au-TS2

Au	-0.58054200	0.16004800	-0.53108300
F	4.34061100	1.85606200	-1.88375300
F	3.16122300	3.18686700	-0.65983100
F	3.94048700	1.35031600	0.17651800
0	1.23488100	1.24184700	-0.42392800
0	2.05818400	0.59407300	-2.42029200
Ν	-1.56534400	1.47974800	0.68312400
С	-3.30957400	-0.07083400	0.27730600
С	-2.33491800	-0.72236100	-0.48105700
С	-0.27016600	-1.42425500	-2.07381800
С	-3.81949000	-2.45645300	-1.10118700
С	2.11521800	1.15121400	-1.34514200
С	-4.81724600	-1.83344200	-0.35451200
С	-1.36407000	-2.47686100	-1.90574700
---	-------------	-------------	-------------
С	-0.99219100	2.55812600	1.22323600
С	-3.03498200	3.09555900	2.33156300
С	3.41117500	1.89382000	-0.92939000
С	-3.61707200	1.96875200	1.76898600
С	-1.70632800	3.39724900	2.05931300
С	-4.57735200	-0.64933800	0.33811300
С	-2.53748000	-1.90230000	-1.17510100
С	-2.86373200	1.15328200	0.93623700
Н	0.04836500	2.72724900	0.97062300
Н	-1.21839800	4.26505500	2.48522200
Н	-3.61819300	3.73515800	2.98520800
Н	-4.64930000	1.71375700	1.97555600
Н	-5.37060100	-0.18718400	0.91652400
Н	0.43653500	-1.35975800	-1.01392000
Н	0.66694400	-1.81482400	-2.48859200
Н	-0.54527600	-0.62843100	-2.77429600
Н	-4.03746200	-3.37880000	-1.63176300
0	1.59200500	-1.98616800	-0.12232200
С	1.57518800	-1.71091900	1.10329500
0	0.73743500	-1.10540000	1.76678300
С	2.83256100	-2.24455400	1.84841300
F	2.86117800	-1.89884500	3.14010800
F	2.88852200	-3.59008300	1.79887100
F	3.96567400	-1.78415200	1.29062900
Н	-1.65392100	-2.86152100	-2.88875900
Н	-0.97024400	-3.32848900	-1.33929400
н	-5.80472300	-2.28062500	-0.31068900

3t-AuOAc^F

G: -1217.690809

Au	0.10731800	-0.51031000	-0.17590000
F	-5.07789300	0.01307700	1.09674100
F	-4.38777800	1.09500100	-0.63879500
F	-4.63495600	-1.05268200	-0.72571200
0	-1.99270700	-0.33549400	-0.49582700
0	-2.49865800	-0.21098600	1.69925800
Ν	0.63068800	1.60025800	-0.14715700
С	2.75529200	0.55033800	0.13179000
С	2.03953500	-0.64366200	0.01675600
С	0.21419700	-2.54933300	0.00040100
С	4.00758300	-1.96680000	0.21747900
С	-2.76032200	-0.21752400	0.51173100
С	4.74639100	-0.78985400	0.34772500
С	1.66834900	-3.03399600	-0.19552100
С	-0.19448600	2.64144700	-0.25044600
С	1.61842400	4.16149700	0.02719600
С	-4.23562800	-0.04297500	0.06353400
С	2.47575600	3.07594700	0.13644600
С	0.25997200	3.94782800	-0.17111800
С	4.13981600	0.46355200	0.29868200
С	2.62440300	-1.90425100	0.03889900
С	1.96231400	1.78629900	0.04465200
Н	-1.24328200	2.40804100	-0.40180400
Н	-0.43975000	4.76989400	-0.26135100
Н	2.01080900	5.17057700	0.09739800
Н	3.53707700	3.22604000	0.29438600
Н	4.74850400	1.35759900	0.38691300
Н	-0.48346200	-3.01913600	-0.69690400
н	-0.13466200	-2.74153900	1.02032700

- H 4.51380800 -2.92746700 0.25103500
- H 1.88254400 -3.89342600 0.45046100
- Н 1.80105300 -3.38559100 -1.22590200
- H 5.82140400 -0.85013200 0.48488100

References

- [1] E. Langseth, C. H. Görbitz, R. H. Heyn, M. Tilset, *Organometallics* **2012**, *31*, 6567-6571.
- [2] M. S. M. Holmsen, A. Nova, K. Hylland, D. S. Wragg, S. Øien-Ødegaard, R. H. Heyn, M. Tilset, *Chem. Commun.* **2018**, *54*, 11104-11107.
- [3] R. V. Parish, J. P. Wright, R. G. Pritchard, J. Organomet. Chem. 2000, 596, 165-176.
- [4] E. Abás, M. Gómez-Bachiller, E. Colom, E. Pardina, A. Rodríguez-Diéguez, L. Grasa, M. Laguna, J. Organomet. Chem. **2020**, *920*, 121340.
- [5] M. S. M. Holmsen, A. Nova, S. Øien-Ødegaard, R. H. Heyn, M. Tilset, Angew. Chem. Int. Ed. 2020, 59, 1516-1520.
- [6] T. Wiedemann, G. Voit, A. Tchernook, P. Roesle, I. Göttker-Schnetmann, S. Mecking, J. Am. Chem. Soc. 2014, 136, 2078-2085.
- [7] V. Diemer, H. Chaumeil, A. Defoin, A. Fort, A. Boeglin, C. Carré, Eur. J. Org. Chem. 2006, 2727-2738.
- [8] P. Coppo, E. A. Plummer, L. De Cola, *Chem. Commun.* **2004**, 1774-1775.
- [9] I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel, P. S. Baran, *J. Am. Chem. Soc.* **2010**, *132*, 13194-13196.
- [10] L. Ackermann, H. K. Potukuchi, A. R. Kapdi, C. Schulzke, *Chem. Eur. J.* **2010**, *16*, 3300-3303.
- [11] K. L. Billingsley, S. L. Buchwald, *Angew. Chem., Int. Ed.* **2008**, *47*, 4695-4698.
- [12] S. Kawamorita, T. Miyazaki, H. Ohmiya, T. Iwai, M. Sawamura, J. Am. Chem. Soc. 2011, 133, 19310-19313.
- [13] C. Liu, W. Yang, *Chem. Commun.* **2009**, 6267-6269.
- [14] G. R. Dick, E. M. Woerly, M. D. Burke, Angew. Chem., Int. Ed. 2012, 51, 2667-2672.
- [15] M. Parmentier, P. Gros, Y. Fort, *Tetrahedron* **2005**, *61*, 3261-3269.
- [16] L.-C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020-18021.
- [17] C. A. Fleckenstein, H. Plenio, *Green Chem.* **2007**, *9*, 1287-1291.
- [18] J. W. Haworth, I. M. Heilbron, D. H. Hey, J. Chem. Soc. **1940**, 349-355.
- [19] P. G. Bomben, B. D. Koivisto, C. P. Berlinguette, *Inorg. Chem.* **2010**, *49*, 4960-4971.
- [20] F.-A. Kang, Z. Sui, W. V. Murray, J. Am. Chem. Soc. 2008, 130, 11300-11302.
- [21] R. Kumar, A. Linden, C. Nevado, *Angew. Chem. Int. Ed.* **2015**, *54*, 14287-14290.
- [22] M. Lafrance, D. Shore, K. Fagnou, Org. Lett. 2006, 8, 5097-5100.
- [23] E. Kianmehr, Y. Amiri Lomedasht, N. Faghih, K. M. Khan, J. Org. Chem. **2016**, *81*, 6087-6092.
- [24] G. Bott, L. D. Field, S. Sternhell, J. Am. Chem. Soc. 1980, 102, 5618-5626.
- [25] L. Lunazzi, M. Mancinelli, A. Mazzanti, S. Lepri, R. Ruzziconi, M. Schlosser, *Org. Biomol. Chem.* **2012**, *10*, 1847-1855.
- [26] V. Belot, D. Farran, M. Jean, M. Albalat, N. Vanthuyne, C. Roussel, J. Org. Chem. 2017, 82, 10188-10200.
- [27] R. Ruzziconi, S. Spizzichino, A. Mazzanti, L. Lunazzi, M. Schlosser, Org. Biomol. Chem. 2010, 8, 4463-4471.
- [28] A. S. Ionkin, W. J. Marshall, Y. Wang, *Organometallics* **2005**, *24*, 619-627.
- [29] C.-C. Liu, L.-C. So, J. C. Y. Lo, M. C. W. Chan, H. Kaneyoshi, H. Makio, *Organometallics* **2012**, *31*, 5274-5281.
- [30] S. C. F. Kui, N. Zhu, M. C. W. Chan, *Angew. Chem. Int. Ed.* **2003**, *42*, 1628-1632.
- [31] M. Xu, R. Zhou, G. Wang, Q. Xiao, W. Du, G. Che, *Inorg. Chim. Acta* **2008**, *361*, 2407-2412.
- [32] T.-D. Nguyen, C.-H. Lin, C.-G. Wu, *Inorg. Chem.* **2017**, *56*, 252-260.
- [33] G. E. Carr, R. D. Chambers, T. F. Holmes, D. G. Parker, J. Organomet. Chem. **1987**, 325, 13-23.

- [34] S. Brooker, N. Bertel, D. Stalke, M. Noltemeyer, H. W. Roesky, G. M. Sheldrick, F. T. Edelmann, *Organometallics* **1992**, *11*, 192-195.
- [35] G. W. Parshall, Acc. Chem. Res. **1970**, *3*, 139-144.
- [36] G. W. Parshall, Acc. Chem. Res. **1975**, *8*, 113-117.
- [37] M. I. Bruce, Angew. Chem., Int. Ed. **1977**, 16, 73-86.
- [38] W. R. Dolbier, Jr., in *Guide to Fluorine NMR for Organic Chemists*, **2016**, pp. 9-53.
- [39] M. S. M. Holmsen, A. Nova, D. Balcells, E. Langseth, S. Øien-Ødegaard, E. A. Tråseth, R. H. Heyn, M. Tilset, *Dalton Trans.* **2016**, *45*, 14719-14724.
- [40] E. Langseth, PhD thesis, University of Oslo (Oslo), **2014**.
- [41] G. M. Sheldrick, *Acta Crystallogr., Sect. A* **2015**, *71*, 3-8.
- [42] G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3-8.
- [43] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* **2009**, *42*, 339-341.
- [44] F. H. Allen, O. Johnson, G. P. Shields, B. R. Smith, M. Towler, *J. Appl. Crystallogr.* **2004**, *37*, 335-338.
- [45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16 Rev. C.01, Wallingford, CT* 2016.
- [46] C. Adamo, V. Barone, J. Chem. Phys. **1999**, *110*, 6158-6170.
- [47] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. **2010**, 132, 154104.
- [48] E. Langseth, A. Nova, E. A. Tråseth, F. Rise, S. Øien, R. H. Heyn, M. Tilset, *J. Am. Chem. Soc.* **2014**, *136*, 10104-10115.
- [49] M. S. M. Holmsen, A. Nova, D. Balcells, E. Langseth, S. Øien-Ødegaard, R. H. Heyn, M. Tilset, G. Laurenczy, *ACS Catal.* **2017**, *7*, 5023-5034.
- [50] D. Balcells, O. Eisenstein, M. Tilset, A. Nova, *Dalton Trans.* **2016**, *45*, 5504-5513.
- [51] E. Langseth, M. L. Scheuermann, D. Balcells, W. Kaminsky, K. I. Goldberg, O. Eisenstein, R. H. Heyn, M. Tilset, *Angew. Chem. Int. Ed.* **2013**, *52*, 1660-1663.
- [52] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650-654.
- [53] A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639-5648.
- [54] D. Figgen, K. A. Peterson, M. Dolg, H. Stoll, J. Chem. Phys. **2009**, 130, 164108.
- [55] D. Figgen, G. Rauhut, M. Dolg, H. Stoll, *Chem. Phys.* **2005**, *311*, 227-244.
- [56] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2019, 40, 2234-2241.
- [57] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- [58] M. Albrecht, Chem. Rev. **2010**, *110*, 576-623.
- [59] A. D. Ryabov, *Chem. Rev.* **1990**, *90*, 403-424.
- [60] W. A. Sheppard, J. Am. Chem. Soc. 1970, 92, 5419-5422.