Supporting Information

Rhodamine-azo based two fluorescent probes for recognition of trivalent metal ions: crystal structures elucidation and biological application

Jayanta Mandal,^a Kunal Pal,^b Sougata Ghosh Chowdhury,^b Parimal Karmakar,^b Anangamohan Panja,^c Snehasis Banerjee^d and Amrita Saha^{*a}

^aDepartment of Chemistry, Jadavpur University, Kolkata- 700032, India.

E-mail: <u>amritasahachemju@gmail.com</u>, <u>amrita.saha@jadavpuruniversity.in</u>, <i>Tel. +91-33-24572146

^bDepartment of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India.

^cDepartment of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.

^dDepartment of Higher Education, University Branch, Bikash Bhavan, Salt Lake, Sector-3, Kolkata, 700091, India

Fig. S1 FTIR spectra of chemosensor HL1 and HL2.

Fig. S2 ESI-mass spectrum of chemosensor HL1

Fig. S3(a) ¹H-NMR spectrum of the chemosensor HL1 in DMSO- d_6 recorded on a 300 MHz Bruker NMR spectrometer.

Fig. S3(b) ¹H-NMR spectrum of the chemosensor **HL1** in CD₃OD recorded on a 400 MHz Bruker NMR spectrometer.

Fig. S4 ¹³C NMR spectrum of HL1 in DMSO-d₆.

Fig. S5 ESI-mass spectrum of chemosensor HL2.

Fig. S6(a) ¹H-NMR spectrum of the chemosensor HL2 in DMSO-d₆ recorded on a 300 MHz Bruker NMR spectrometer.

Fig. S6(b) ¹H-NMR spectrum of the chemosensor **HL2** in CD₃OD recorded on a 400 MHz Bruker NMR spectrometer.

Fig. S7 ¹³C NMR spectrum of HL2 in DMSO-d₆.

Fig. S8 FTIR spectra of (a) complex 1, (b) complex 2 and (c) complex 3.

Fig. S9 (a) ESI-mass spectrum of $[Al(L1)_2]^+$ (complex 1).

Fig. S9 (b) ESI-mass spectrum of $[Al(L1)_2+H]^{2+}$ (complex 1).

Fig. S10(a) ¹H-NMR spectrum of complex **1** in DMSO-d₆ recorded on a 300 MHz Bruker NMR spectrometer.

Fig. S10(b) ¹H-NMR spectrum of complex 1 in CD₃OD recorded on a 400 MHz Bruker NMR spectrometer.

Fig. S11 13 C NMR spectrum of complex 1 in DMSO-d₆

Fig. S12 (a) ESI-mass spectrum of $[Cr(L1)_2]^+$ (complex 2).

Complex 2

Fig. S12 (b) ESI-mass spectrum of $[Cr(L1)_2+H]^{2+}$ (complex 2).

Fig. S13 (a) ESI-mass spectrum of $[Fe(L1)_2]^+$ (complex 3).

Fig. S13 (b) ESI-mass spectrum of $[Fe(L1)_2+H]^{2+}$ (complex 3).

Fig. S14 FTIR spectra of (a) complex 4, (b) complex 5 and (c) complex 6.

Fig. S15 (a) ESI-mass spectrum of $[Al(L2)_2]^+$ (complex 4).

Fig. S15 (b) ESI-mass spectrum of $[Al(L2)_2+H]^+$ (complex 4).

Fig. S16(a) ¹H-NMR spectrum of complex **4** in DMSO-d₆ recorded on a 300 MHz Bruker NMR spectrometer.

Fig. S16(b) ¹H-NMR spectrum of complex **4** in CD₃OD recorded on a 400 MHz Bruker NMR spectrometer.

Fig. S17 ¹³C NMR spectrum of complex 4 in DMSO-d₆

Fig. S18 (a) ESI-mass spectrum of $[Cr(L2)_2]^+$ (complex 5).

Fig. S18 (b) ESI-mass spectrum of $[Cr(L2)_2+H]^{2+}$ (complex 5).

Fig. S19 (a) ESI-mass spectrum of $[Fe(L2)_2]^+$ (complex 6).

Fig. S19 (b) ESI-mass spectrum of $[Fe(L2)_2+H]^{2+}$ (complex 6).

Fig. S20 Crystal structure of the chemosensor **HL2**. Atoms are shown as 30% thermal ellipsoids. Here, H and solvent molecule atoms are omitted for clarity.

Fig. S21 Crystal structure of complex cation of **1**. Atoms are shown as 30% thermal ellipsoids. Here, H atoms are omitted for clarity.

Fig. S22 ¹H-NMR titration of the free ligand (**HL1**) and with the addition of 1 and 2 equivalent of Al^{3+} in DMSO-d₆ recorded on a 300 MHz Bruker NMR spectrometer.

Fig. 23 ¹H-NMR titration of the free ligand (HL2) and with the addition of 1 and 2 equivalent of $A1^{3+}$ in DMSO-d₆ recorded on a 300 MHz Bruker NMR spectrometer.

Fig. S24 Absorption titration study of **HL2** (10 μ M) with gradual addition of metal ions (Al³⁺, Cr³⁺ and Fe³⁺) (a-c) 0-6 μ M in 10 mM Britton Robinson buffer at pH 7.4.

Fig. S25 2:1 (Ligand:Metal) binding stoichiometry has shown by Job's plot of complex 4-6(a-c)(at λ = 525 nm). Symbols and solid lines represent the experimental and simulated profiles, respectively.

Fig. S26 Absorption spectra of **HL1** in presence of different metal ions in 10 mM Britton Robinson buffer at pH 7.4.

Fig. S28(a) Absorption spectra of HL1 in presence of different solvent.

Fig. S28(b) Absorption spectra of HL2 in presence of different solvent.

Fig. S29 Fluorescence titration of HL2 (10 μ M) in 10 mM Britton Robinson buffer at pH =7.4 by successive addition of metal ions (Al³⁺, Cr³⁺ and Fe³⁺) (0–6 μ M) with λ_{em} = 555 nm.

Fig. S30 Benesi-Hildebrand plot for complex 4-6 (a-c). The plot is obtained after adding 5 μ M Al³⁺, Cr³⁺ and Fe³⁺ solution to the HL2 solution (10 μ M) (in 10 mM HEPES buffer medium, pH 7.4).

Fig. S31 Relative fluorescence intensity diagram of [**HL1**-Cr³⁺] system in the presence of different cations in 10 mM Britton Robinson buffer at pH 7.4.

Fig. S32 Relative fluorescence intensity diagram of [**HL1**-Fe³⁺] system in the presence of different cations in 10 mM Britton Robinson buffer at pH 7.4.

Fig. S33 Relative fluorescence intensity diagram of [**HL2**-Al³⁺] system in the presence of different cations in 10 mM Britton Robinson buffer at pH 7.4

Fig. S34 Relative fluorescence intensity diagram of [**HL2**-Cr³⁺] system in the presence of different cations in 10 mM Britton Robinson buffer at pH 7.4.

Fig. S35 Relative fluorescence intensity diagram of [**HL2**-Fe³⁺] system in the presence of different cations in 10 mM Britton Robinson buffer at pH 7.4.

Fig. S36 Relative fluorescence intensity diagram of [**HL1**-Al³⁺] system in the presence of different anions in Britton Robinson buffer medium (10 mM) at pH 7.4. 1=only **HL1** (10 μ M) and (2-20)= **HL1** (10 μ M) + Al³⁺(5 μ M) + Anions (50 μ M), Anions = 2-S₂O₃²⁻, 3-S²⁻, 4-SO₃²⁻, 5-HSO₄⁻, 6-SO₄²⁻, 7-SCN⁻, 8-N₃⁻, 9-OCN⁻, 10-AsO₄³⁻, 11-H₂PO₄⁻, 12-HPO₄²⁻, 13-PO₄³⁻, 14-ClO₄⁻, 15-AcO⁻, 16-NO₃⁻, 17-F⁻, 18-Cl⁻, 19-PF₆⁻, 20-P₂O₇⁴⁻, 21NaOCl, 22KO₂, 23H₂O₂.

Fig. S37 Relative fluorescence intensity diagram of [**HL1**-Cr³⁺] system in the presence of different anions in Britton Robinson buffer medium (10 mM) at pH 7.4. 1=only **HL1** (10 μ M) and (2-20)= **HL1** (10 μ M) + Cr³⁺(5 μ M) + Anions (50 μ M), Anions = 2-S₂O₃²⁻, 3-S²⁻, 4-SO₃²⁻, 5-HSO₄⁻, 6-SO₄²⁻, 7-SCN⁻, 8-N₃⁻, 9-OCN⁻, 10-AsO₄³⁻, 11-H₂PO₄⁻, 12-HPO₄²⁻, 13-PO₄³⁻, 14-ClO₄⁻, 15-AcO⁻, 16-NO₃⁻, 17-F⁻, 18-Cl⁻, 19-PF₆⁻, 20-P₂O₇⁴⁻, 21NaOCl, 22KO₂, 23H₂O₂.

Fig. S38 Relative fluorescence intensity diagram of [**HL1**-Fe³⁺] system in the presence of different anions in Britton Robinson buffer medium (10 mM) at pH 7.4. 1=only **HL1** (10 μ M) and (2-20)= **HL1** (10 μ M) + Fe³⁺(5 μ M) + Anions (50 μ M), Anions = 2-S₂O₃²⁻, 3-S²⁻, 4-SO₃²⁻, 5-HSO₄⁻, 6-SO₄²⁻, 7-SCN⁻, 8-N₃⁻, 9-OCN⁻, 10-AsO₄³⁻, 11-H₂PO₄⁻, 12-HPO₄²⁻, 13-PO₄³⁻, 14-ClO₄⁻, 15-AcO⁻, 16-NO₃⁻, 17-F⁻, 18-Cl⁻, 19-PF₆⁻, 20-P₂O₇⁴⁻, 21NaOCl, 22KO₂, 23H₂O₂.

Fig. S39 Relative fluorescence intensity diagram of [**HL2**-Al³⁺] system in the presence of different anions in Britton Robinson buffer medium (10 mM) at pH 7.4. 1=only **HL2** (10 μ M) and (2-20)= **HL2** (10 μ M) + Al³⁺(5 μ M) + Anions (50 μ M), Anions = 2-S₂O₃²⁻, 3-S²⁻, 4-SO₃²⁻, 5-HSO₄⁻, 6-SO₄²⁻, 7-SCN⁻, 8-N₃⁻, 9-OCN⁻, 10-AsO₄³⁻, 11-H₂PO₄⁻, 12-HPO₄²⁻, 13-PO₄³⁻, 14-ClO₄⁻, 15-AcO⁻, 16-NO₃⁻, 17-F⁻, 18-Cl⁻, 19-PF₆⁻, 20-P₂O₇⁴⁻, 21NaOCl, 22KO₂, 23H₂O₂.

Fig. S40 Relative fluorescence intensity diagram of [**HL2**-Cr³⁺] system in the presence of different anions in Britton Robinson buffer medium (10 mM) at pH 7.4. 1=only **HL2** (10 μ M) and (2-20)= **HL2** (10 μ M) + Fe³⁺(5 μ M) + Anions (50 μ M), Anions = 2-S₂O₃²⁻, 3-S²⁻, 4-SO₃²⁻, 5-HSO₄⁻, 6-SO₄²⁻, 7-SCN⁻, 8-N₃⁻, 9-OCN⁻, 10-AsO₄³⁻, 11-H₂PO₄⁻, 12-HPO₄²⁻, 13-PO₄³⁻, 14-ClO₄⁻, 15-AcO⁻, 16-NO₃⁻, 17-F⁻, 18-Cl, 19-PF₆⁻, 20-P₂O₇⁴⁻, 21NaOCl, 22KO₂, 23H₂O₂.

Fig. S41 Relative fluorescence intensity diagram of [**HL2**-Fe³⁺] system in the presence of different anions in Britton Robinson buffer medium (10 mM) at pH 7.4. 1=only **HL2** (10 μ M) and (2-20)= **HL2** (10 μ M) + Fe³⁺(5 μ M) + Anions (50 μ M), Anions = 2-S₂O₃²⁻, 3-S²⁻, 4-SO₃²⁻, 5-HSO₄⁻, 6-SO₄²⁻, 7-SCN⁻, 8-N₃⁻, 9-OCN⁻, 10-AsO₄³⁻, 11-H₂PO₄⁻, 12-HPO₄²⁻, 13-PO₄³⁻, 14-ClO₄⁻, 15-AcO⁻, 16-NO₃⁻, 17-F⁻, 18-Cl, 19-PF₆⁻, 20-P₂O₇⁴⁻, 21NaOCl, 22-KO₂, 23H₂O₂.

Fig. S42 Visual colour changes of chemosensor HL2 (10μ M) in presence of common metal ions (0.5 equivalent) in 10 mM Britton Robinson buffer (pH 7.4). The images in above row and below row were taken under visible light and UV light respectively.

Fig. S43 Visual colour changes of real samples under normal light (above) and UV light (below) in presence of chemosensors (**HL1** and **HL2**). (A) Saloon waste water, (1= Only saloon waste water, 2 and 3= Saloon waste water + **HL1/HL2**). (B) Laboratory tap water (1= Only laboratory tap water, 2 and 3=laboratory tap water + **HL1/HL2**).

Fig. S44 Colour changes of paper strip under normal light (above) and UV light (below) in presence of chemosensors HL1 (A) and HL2 (B) [1=only HL1/ HL2; 2-4= HL1/ HL2 + Cr³⁺, Al³⁺ and Fe³⁺, respectively].

Fig. S45 The photostability of HL1 (10 μ M) in 10 mM Britton Robinson buffer at pH 7.4.(λ ex = 450 nm. Slit 1/1).

Fig. S46 The photostability of HL2 (10 μ M) in 10 mM Britton Robinson buffer at pH 7.4.(λ ex = 450 nm. Slit 1/1).

Fig. S47 Fluorescence intensity of HL2 (10 μ M) in the absence and presence of metal ions (Al³⁺, Cr³⁺ and Fe³⁺) (5 μ M) at different pH values in 10 mM Britton Robinson buffer.

Fig. S48 Time-resolved fluorescence decay curves (logarithm of normalized intensity vs time in ns) of HL2.

Fig. S49 Survivability of WI38 cells exposed to HL1 and HL2.

. Fig. S50 Bright field, fluorescence and merged microscopic images of untreated HeLa (Control), cells in presence of chemosensor (HL2) $(10\mu M) + M^{3+} (Al^{3+}, Cr^{3+} and Fe^{3+}) (5\mu M)$.

Fig. S51(a) DFT optimized structure of HL1 (Enol and Keto form)

(Enol)

Fig. S51(b) DFT optimized structure of HL2 (Enol and Keto form)

Fig. S52(b) Selected contour plots of molecular orbitals of HL1 and HL2.

Fig. S52 (b) Selected contour plots of molecular orbitals of Al-bound chemosensor.

	Lifetime (ns) $(\tau_{av.})$	Quantum Yield (Φ)	LOD (M)	Binding Constant (M ⁻¹)
HL1	2.26	0.005	-	-
HL2	2.21	0.006	-	-
complex 1	4.56	0.26	$2.86 \times 10^{-8} \mathrm{M}$	5.14×10 ⁵
complex 2	3.77	0.24	$2.67 \times 10^{-8} \mathrm{M}$	4.91×10 ⁵
complex 3	2.14	0.027	5.62× 10 ⁻⁶ M	3.37×10 ⁴
complex 4	4.24	0.25	$2.78 \times 10^{-8} \mathrm{M}$	5.03 ×10 ⁵
complex 5	3.59	0.23	$2.61 \times 10^{-8} \mathrm{M}$	4.86×10 ⁵
complex 6	2.12	0.022	6.14× 10 ⁻⁶ M	3.95×10 ⁴

Table S1. Lifetime, quantum yield, LOD and binding constant values of chemosensors (HL1 and HL2) and complexes (1-6).

Table S2. Crystal parameters and selected refinement details for HL1, HL2, complex 1 and

complex 4.

sample	HL 1	HL2	complex 1	complex 4
CCDC	2051844	2051845	2051846	2051847
Empirical formula	C ₄₂ H ₃₈ Cl ₆ N ₆ O ₄	C ₄₂ H ₃₈ Cl ₃ N ₆ O ₄	C ₈₉ H ₉₇ AlN ₁₇ O ₁₅	C ₁₆₄ H ₁₅₀ Al ₂ N ₂₈ O ₃₆
Formula weight	903.48	797.13	1671.81	3143.07
Temperature (K)	273(2)	273(2)	273(2)	293(2)
Crystal system	monoclinic	triclinic	Monoclinic	triclinic
Space group	P21/c	P-1	P21/c	P-1
a (Å)	23.1315(19)	9.2184(7)	13.9132(12)	16.651(16)
<i>b</i> (Å)	11.7069(10)	13.4158(10)	16.3851(14)	20.317(19)
<i>c</i> (Å)	17.5826(15)	17.3821(13)	19.9383(17)	28.03(3)
$\alpha(^{\circ})$	90	84.617(3)	92.089(3)	106.557(14)
β(°)	110.173(3)	78.146(3)	106.005(3)	94.278(18)
γ(°)	90	76.103(3)	90.341(3)	114.051(14)
Volume (Å ³)	4469.3(7)	2040.0(3)	4365.6(7)	8101(13)
Ζ	4	2	2	2
$D_{\text{calc}} (\text{g cm}^{-3})$	1.343	1.298	1.272	1.288
Absorption coefficient (mm ⁻¹)	0.432	0.273	0.098	0.103
F(000)	1864	830	1766	3288
θ Range for data collection (°)	1.97-27.11	1.92-27.15	1.66-27.19	1.61-27.12
Reflections collected	9827	9010	19326	35653
Independent reflection / R _{int}	4996/0.1022	5171/0.0898	12734/0.0695	14083/0.1302
Data / restraints / parameters	9827/0/581	9010/0/500	19326/0/1072	35653/0/2132
Goodness-of-fit on F^2	1.026	1.022	1.036	1.024
Final indices[I> $2\sigma(I)$]	R1=0.0936	R1 = 0.1062	R1=0.0812	R1=0.0941
	wR1=0.2212	wR1=0.0761	wR1=0.2388	wR1=0.2572
<i>R</i> indices (all data)	R1=0.1700	R1=0.1062	R1 = 0.1190	R1=0.2280
	wR2=0.2707	wR2= 0.3072	wR2=0.2844	wR2= 0.3493
Largest diff. peak / deepest hole (e Å ⁻³)	0.297/-0.369	0.957/-0.663	0.858/-0.828	1.163/-0.328

HL1		HL2		complex 1		complex 4	
N4-C9	1.282(4)	C27-N6	1.221(4)	Al1-O1	1.889(2)	Al1-O2	1.863(4)
N4-N3	1.370(4)	N6-N5	1.361(5)	Al1-O2	1.893(2)	Al1-O3	1.811(4)
O2-C19	1.229(4)	C26-N5	1.367(2)	Al1-O6	1.850(2)	Al1-O6	1.929(4)
03-C31	1.356(4)	C10-N5	1.489(3)	Al1-07	1.840(2)	Al1-07	1.807(4)
O5-C40	1.371(4)	C26-O4	1.230(4)	Al1-N3	1.985(2)	Al1-N3	1.957(4)
O5-C32	1.375(4)	C29-O1	1.335(4)	Al1-N9	1.992(2)	Al1-N10	2.000(4)
N3-C19	1.374(4)	C10-C11	1.511(5)	O2-C11	1.291(3)	O6 -C67	1.251(5)
N3-C8	1.510(4)	C10-C6	1.512(4)	O1-C10	1.290(3)	O2- C26	1.294(5)
N5-N6	1.241(4	C27-N6	1.282(6)	N2-C11	1.307(3)	N9-C67	1.334(6)
N5-C12	1.446(5)	C14-N1	1.382(3)	N10-C10	1.312(3)	N3-C26	1.322(5)
O7-C29	1.375(5)	C3-N4	1.361(4)	N6-N7	1.265(4)	N11-N12	1.265(6)
O7-C30	1.436(6)	N4-C3	1.371(5)	N2-N3	1.401(3)	N5-N6	1.277(6)
N1-C4	1.392(5)	N4-C2	1.454(6)	07-Al1-O1	168.75(9	02–Al–O3	170.38(15)
N6-C14	1.434(5)	N2-N3	1.261(5)	06-Al1-O2	169.39(9)	N4-Al-N10	170.19(17)
N2-C36	1.446(7)	N1-C15	1.489(9)	N3-Al1-N9	167.36(10)	07–Al–O6	168.23(14)
N3-C8-C100	109.9(3)	N5-C10-C20	99.6(3)	07-Al1-O6	91.10(10)	N4-Al1-O2	80.43(15)
N3-C8-C7	110.5(3)	N5-C10-C6	109.6(3)	O2-Al1-N9	90.24(9)	N4-Al1- O3	92.43(17)
C100- C8-C7	110.6(3)	C20-C10-C6	111.4(3)	06-Al1-O1	90.21(10)	N10-Al1-O3	92.15(15)
N3-C8-C25	98.7(2)	N5-C10-C11	111.3(3)	O7-Al1-N3	97.59(9)	N10-Al1-O2	94.01(14)
C100-C8-C25	113.8(3)	C20-C10-C11	114.1(3)	O6-Al1-N3	90.13(9)	N10-Al1-O6	78.87(15)
C7-C8-C25	112.7(3)	C6-C10-C11	110.4(3)	O1-Al1-N3	93.58(9)	N10-Al1-O6	89.78(14)
				O2-Al1-N3	79.29(9)	N4-Al1-O6	92.69(15)
				07-Al1-N9	89.60(9)	N4-Al1-O7	98.38(17)

Table S3. Selected Bond lengths (Å) and Bond angles (°) for HL1, HL2, complex 1 and complex 4.

Electrochemical study

The electrochemical behavior of the metal bound chemosensor complexes (1-6) was studied in acetonitrile medium containing 0.1 M tetrabutylammonium perchlorate as a supporting electrolyte in a conventional three-electrode configuration using a Pt disk working electrode, Pt auxiliary electrode and Ag/AgCl reference electrode. All electrochemical data are collected in Table S4. Interestingly we are only able to collect data for Fe³⁺ and Cr³⁺ bound chemosensor complexes (2, 3, 5 and 6) and all the peaks are irreversible in nature. The reductive response at -0,44 V and the oxidative response at 1.26 V may be

assigned to FeIII/FeII and FeIII/FeIV couple. The lowest potential cathodic response occurs near -0.59 V has been assigned to the Cr(III)/Cr(II) couple. Rest of the oxidative peaks appears in all the compounds are probably due to ligand based oxidations.

Complex	$E_{p}(V)$
HL1	0.33, 0.90, 1.33
HL2	0.31, 1.16, 1.33
2	0.33, 0.92, -0.59
3	0.877, 1.48, 1.26, -0.44
5	0.33, 0.95, 1.15, 1.51, -0.58
6	0.32, 0.90, 1.28, 1.49, -0.44

Table S4. Electrochemical Data for complexes 2, 3, 5 and 6.

 Table S5. Energy (eV) and composition (%) of selected M.O.s of HL1 and HL2.

M.O.s	HL1 Energy(eV)		HL2 Ene	ergy(eV)
	Enol	Keto	Enol	Keto
LUMO+5	1.48	1.35	1.12	1.37
LUMO+4	1.2	1.02	0.66	1.03
LUMO+3	1.05	0.84	0.43	0.86
LUMO+2	0.79	0.21	-0.37	0.23
LUMO+1	-0.12	-0.04	-0.6	0
LUMO	-0.53	-0.5	-3.19	-0.45
НОМО	-6.43	-6.06	-5.68	-6
HOMO-1	-6.57	-6.67	-6.55	-6.66
HOMO-2	-6.64	-6.79	-7.35	-6.78
HOMO-3	-7.18	-7.32	-7.61	-7.31
HOMO-4	-7.2	-7.42	-7.83	-7.37
HOMO-5	-7.55	-7.59	-7.84	-7.49

Table S6. Electronic transition calculated by TDDFT using CAM-B3LYP/CPCM method inmethanol solvent of chemosensors enol form (HL1 and HL2) (Used number of states = 20).

Probe	E _{excitation} (ev)	$\lambda_{\text{excitation}}$ (nm)	Osc. frequency	Key transation	Experimental
HL1				HOMO-2→LUMO	360
(enol)	29575.75	338.1149	0.9577	(89%)	
				HOMO-2→LUMO+1	310
				(56%),	
				HOMO→LUMO+1	
	32361.61	309.0081	0.6827	(12%)	
HL2				HOMO-2→LUMO	360
(enol)	29370.08	340.4826	1.0739	(89%)	
				HOMO-2→LUMO+1	310
				(53%)	
				HOMO→LUMO+1(14	
	32192.23	310.634	0.6948	%)	
HL1				HOMO-2→LUMO	360
(Keto)				(83%),	
				HOMO→LUMO+1	
	26710.04	374.391	0.728	(10%)	
				HOMO→LUMO (10%),	360
				HOMO→LUMO+1	

				(0.00())	
				(80%)	
				HOMO-11→LUMO+1	310
				(11%),	
				HOMO-9→LUMO	
				(10%),	
				HOMO-9→LUMO+1	
	32425.33	308.4009	0.0104	(27%)	
HL2	26624.55	375.5933	0.7514	HOMO→LUMO (86%)	360
(Keto)				HOMO→LUMO+1	360
	29166.02	342.8648	0.7536	(84%)	
				HOMO-11→LUMO+1	310
				(11%)	
				HOMO-9→LUMO	
				(15%),	
				HOMO-9→LUMO+1	
				(32%),	
				HOMO-6→LUMO+1	
	32407.58	308.5698	0.0097	(10%)	

Chart. S1 Literature survey of rhodamine based derivatives used in sensing of Al^{3+} , Cr^{3+} and Fe^{3+} ions.

Sl. No.	Probe	Crystal structure of metal-bound chemosensor(L)	Sensing Medium	Limit of detection (LOD)	Biological study	Fluorescence intensity enhancement	Refs.
1.		No	CH ₃ CN:H ₂ O (1:1, v/v)	12×10 ⁻⁶ M(Al ³⁺), 15×10 ⁻⁶ M(Cr ³⁺), 20×10 ⁻⁶ M (Fe ³⁺)	No		24a
2.		No	MeOH–H ₂ O (6:4, v/v)	1.74×10 ⁻⁹ M (Al ³⁺), 2.36×10 ⁻⁶ M (Cr ³⁺), 2.90×10 ⁻ ⁶ M(Fe ³⁺)	No	62 (Al ³⁺), 1.7 (Cr ³⁺), 1.47 (Fe ³⁺)	24b
3.		No	H ₂ O:methanol (3:7, v/v)	1.18×10 ⁻⁹ M(Al ³⁺), 1.80×10 ⁻⁶ M (Cr ³⁺), 4.04×10 ⁻ ⁶ M (Fe ³⁺)	No	98 (Al ³⁺), 50 (Cr ³⁺), 38 (Fe ³⁺)	24c
4.		No	CH ₃ OH–H ₂ O, (9:1, v/v)	6.87×10 ⁻⁹ M (Al ³⁺), 15.8×10 ⁻⁶ M (Cr ³⁺), 14.0×10 ⁻⁶ M (Fe ³⁺)	Yes	1465 (Al ³⁺), 588 (Cr ³⁺), 800 (Fe ³⁺)	24d

5.	HN + + + + + + + + + + + + + + + + + + +	No	methanol/H ₂ O (1 : 1, v/v, pH 7.2)	0.34×10 ⁻⁶ M (Al ³⁺), 0.29×10 ⁻⁶ M (Cr ³⁺), 0.31×10 ⁻⁶ M (Fe ³⁺)	Yes	14 (Al ³⁺), 10 (Cr ³⁺), 21 (Fe ³⁺)	24e
6.		No	water/ethanol (14:1, v/v)	23.5×10 ⁻⁹ M (Al ³⁺), 13.4×10 ⁻⁹ M (Cr ³⁺), 69.7×10 ⁻⁹ M (Fe ³⁺)	NO	145 (Al ³⁺), 174 (Cr ³⁺), 30 (Fe ³⁺)	24f
7.	HN C NH	No	H2O/CH ₃ CN (4:1),v/v	1.34×10 ⁻⁶ M (Al ³⁺), 2.28×10 ⁻⁶ M (Cr ³⁺), 1.28×10 ⁻⁶ M (Fe ³⁺)	Yes	31 (Al ³⁺), 26 (Cr ³⁺), 41 (Fe ³⁺)	24g
8.		No	HEPES-buffered MeOH/H ₂ O	$\begin{array}{c} 1.61 \times 10^{-7} \\ M \ (Al^{3+}), \\ 8.91 \times 10^{-8} \\ M \ (Cr^{3+}), \\ 8.74 \times 10^{-8} \\ M \ (Fe^{3+}) \end{array}$	No		24h
9.		No	H ₂ O/CH ₃ CN (7:3, v/v, pH 7.2, 20 mM HEPES buffer)	$\begin{array}{c} 0.74{\times}10^{-6} \\ M \ (Al^{3+}), \\ 0.47{\times}10^{-6} \\ M \ (Cr^{3+}), \\ 2.57{\times}10^{-6} \\ M \ (Fe^{3+}) \end{array}$	No	653 (Al ³⁺), 667 (Cr ³⁺), 669 (Fe ³⁺)	24i
10.		No	EtOH water/acetonitrile (14 : 1, v/v) (pH 7.2, 10 mM HEPES buffer)	3.79×10 ⁻⁷ M (Al ³⁺), 14.8×10 ⁻⁷ M (Cr ³⁺), 3.29×10 ⁻⁷ M (Fe ³⁺) 0.74×10 ⁻⁷ M (Cu ²⁺)	No	36 (Al ³⁺), 17 (Cr ³⁺), 40 (Fe ³⁺), 89 (Cu ²⁺)	24j
11		No	aqueous medium	24×10 ⁻⁹ M (Al ³⁺), 27×10 ⁻⁹ M (Cr ³⁺),	No		24k
12.		Yes	H ₂ O– EtOH (4 : 1, v/v)	3.26 × 10 ⁻⁶ M(Al ³⁺)	Yes		241

			1				
13.	HN + + + + + + + + + + + + + + + + + + +	No	Water, 10 mM with Tris-HCl buffer solution (pH = 7.4).	5.2×10 ⁻⁶ M (Fe ³⁺)	Yes	>200 (Fe ³⁺)	24m
14.		No	MeOH/H ₂ O (1/4, v/v), HEPES buffer (10 mM), pH 7.2	6.7×10 ⁻⁸ M (Al ³⁺),	Yes		24n
15.		No	MeOH/H2O (1 : 1, v/v, HEPES, 0.5 mM, pH = 7.35	0.314×10 ⁻ ⁶ M (Al ³⁺)	Yes		240
16.		No	Ethanol	40×10 ⁻⁶ M (Fe ³⁺)	No		24p
17.	HN + + + + + + + +	No	water:methanol (9:1, v/v)	~10 ⁻⁹ M(Al ³⁺)	Yes	780(HL1)(Al ³⁺) 725(HL2)(Al ³⁺) 425(HL3)(Al ³⁺) 391(HL4)(Al ³⁺)	24q
18.	HL1	Yes	water:methanol (1:9, v/v)	2.86×10 ⁻⁸ M (Al ³⁺), 2.67×10 ⁻⁸ M (Cr ³⁺), 5.62×10 ⁻⁶ M (Fe ³⁺)	Yes	400 (Al ³⁺), 380 (Cr ³⁺), 100 (Fe ³⁺)	This work
19.	HL2	Yes	water:methanol (1:9, v/v)	$\begin{array}{c} 2.78{\times}10^{-8} \\ M \ (Al^{3+}), \\ 2.61{\times}10^{-8} \\ M \ (Cr^{3+}), \\ 6.14{\times}10^{-6} \\ M \ (Fe^{3+}) \end{array}$	Yes	396 (Al ³⁺), 390 (Cr ³⁺), 100 (Fe ³⁺)	This work

Table S7 Cartesian Coordinates of the optimized species

Keto form of HL1

8	-0.588775000	-2.798812000	0.192668000
8	2.763804000	0.528391000	-1.963802000
8	-2.678875000	-4.190594000	-0.648359000
8	0.847358000	-0.263225000	4.000223000
7	0.445381000	-0.651282000	1.216528000
7	1.470673000	0.044889000	1.790706000
7	0.677508000	4.769993000	-2.414346000
6	-4.134003000	-2.332722000	-0.154429000
6	2.931707000	0.821945000	3.338158000
6	1.721259000	2.599925000	-2.152542000
6	-3.185990000	-0.300321000	0.786124000
6	1.028186000	3.862045000	-0.201955000
6	3.792681000	-1.657929000	0.783442000
6	4.352748000	-2.709849000	0.088996000
6	1.516615000	2.839026000	0.584078000
6	-4.275245000	-0.990283000	0.346244000
6	1.631487000	0.130956000	3.165097000
6	3.835985000	-1.535795000	-1.967284000
6	3.267902000	-0.504614000	-1.225185000
6	3.237069000	-0.531984000	0.161266000
6	1.132330000	3.739342000	-1.612780000
6	-2.921317000	-2.938966000	-0.201119000
6	-0.794700000	-0.180475000	1.218398000
6	-1.891840000	-0.892664000	0.752680000
6	2.596495000	0.574848000	0.971114000
6	-1.701948000	-2.247110000	0.247922000
6	2.113479000	1.683505000	0.061686000
6	3.492643000	1.079858000	2.095237000
6	2.204350000	1.593164000	-1.318879000
6	-7.881450000	1.015664000	0.593604000

6	-10.101850000	-0.386320000	-0.348240000
6	-9.139274000	1.597210000	0.625735000
6	-8.843133000	-0.973501000	-0.381940000
6	4.789811000	1.826841000	4.429260000
6	-3.783874000	-4.938110000	-1.099077000
6	6.377796000	-2.850097000	-3.861074000
6	5.163629000	-3.688505000	-3.460153000
6	4.717477000	1.722320000	2.000859000
6	4.375622000	-2.651268000	-1.330379000
6	4.910671000	-3.907270000	0.809014000
6	-7.729807000	-0.278066000	0.086220000
6	0.548610000	4.623592000	-3.851065000
6	3.560720000	1.185535000	4.520202000
6	5.358878000	2.091279000	3.179974000
6	-10.252485000	0.900816000	0.155798000
6	0.411305000	5.091369000	0.408001000
6	-0.052623000	5.882104000	-4.457498000
1	-5.038043000	-2.825863000	-0.485662000
1	1.816460000	2.457316000	-3.220989000
1	-3.320823000	0.708325000	1.164494000
1	3.776898000	-1.708308000	1.869208000
1	1.440034000	2.935569000	1.664298000
1	3.827647000	-1.439281000	-3.045089000
1	-0.913514000	0.823137000	1.616324000
1	-7.004673000	1.539570000	0.954623000
1	-10.964935000	-0.933555000	-0.714573000
1	-9.257445000	2.601870000	1.020840000
1	-8.694974000	-1.976310000	-0.768629000
1	5.313864000	2.126354000	5.331194000
1	-3.390627000	-5.906463000	-1.409986000
1	-4.522460000	-5.082557000	-0.300472000

1	-4.275528000	-4.452310000	-1.951498000
1	7.289444000	-3.244003000	-3.400338000
1	6.514525000	-2.861719000	-4.947242000
1	6.261920000	-1.810841000	-3.541502000
1	5.304041000	-4.725219000	-3.781482000
1	4.266011000	-3.333415000	-3.975866000
1	5.164162000	1.931071000	1.033968000
1	4.777789000	-3.807533000	1.888580000
1	5.986344000	-4.037885000	0.626691000
1	4.411138000	-4.832927000	0.498141000
1	1.543845000	4.451570000	-4.276556000
1	-0.064251000	3.746614000	-4.112995000
1	3.094034000	0.967674000	5.475205000
1	6.319732000	2.594163000	3.128736000
1	0.468862000	5.055709000	1.498375000
1	0.920159000	6.003916000	0.075077000
1	-0.650232000	5.197931000	0.144759000
1	-1.061495000	6.063983000	-4.070195000
1	0.565020000	6.755769000	-4.229862000
1	-0.127941000	5.786705000	-5.543701000
7	-5.504957000	-0.320611000	0.416776000
7	-6.493437000	-0.971048000	0.005454000
7	4.894742000	-3.716788000	-2.036111000
1	0.564982000	-1.620265000	0.882833000
1	-0.028109000	5.355560000	-1.991657000
1	5.465633000	-4.352620000	-1.501842000
1	-11.234447000	1.363145000	0.184854000

Enol form of HL1

8	-0.698463000	0.297496000	-1.533754000
8	2.980093000	0.353667000	-1.632892000

8	-2.674739000	0.651882000	-3.179687000
8	0.146769000	-0.901287000	3.798452000
7	0.144458000	-0.253306000	0.904930000
7	1.178416000	-0.434072000	1.765415000
7	3.139943000	5.033678000	-0.836766000
6	-4.309726000	0.232852000	-1.437998000
6	2.559744000	-0.800649000	3.532945000
6	3.036076000	2.642248000	-1.213947000
6	-3.485985000	-0.268195000	0.776757000
6	2.821966000	3.531796000	1.030548000
6	2.805262000	-2.681359000	0.398300000
6	2.968007000	-3.654846000	-0.565847000
6	2.704586000	2.236965000	1.491310000
6	-4.547497000	-0.080960000	-0.085776000
6	1.141266000	-0.732433000	3.112207000
6	3.137543000	-1.892113000	-2.218784000
6	2.961041000	-0.945712000	-1.213030000
6	2.795965000	-1.310186000	0.114681000
6	2.990089000	3.741901000	-0.363022000
6	-3.019565000	0.354243000	-1.902699000
6	-1.081580000	-0.355620000	1.282870000
6	-2.163364000	-0.149589000	0.326875000
6	2.555348000	-0.282630000	1.198963000
6	-1.921541000	0.164278000	-1.021633000
6	2.748265000	1.115545000	0.652860000
6	3.381192000	-0.544094000	2.446626000
6	2.917556000	1.351801000	-0.702684000
6	-8.308004000	-0.506818000	1.594957000
6	-10.450158000	-0.114428000	-0.150185000
6	-9.611090000	-0.623750000	2.052236000
6	-9.145452000	0.003809000	-0.613385000

6	4.449709000	-1.080618000	4.946872000
6	-3.718779000	0.844604000	-4.105518000
6	5.131679000	-3.583801000	-4.429396000
6	3.653610000	-3.936678000	-4.259954000
6	4.759550000	-0.551357000	2.593740000
6	3.135880000	-3.251549000	-1.917039000
6	2.948467000	-5.115890000	-0.205834000
6	-8.072661000	-0.190989000	0.253943000
6	3.082667000	5.337352000	-2.253393000
6	3.068793000	-1.072036000	4.795068000
6	5.283677000	-0.822228000	3.854668000
6	-10.684909000	-0.428499000	1.183719000
6	2.781786000	4.703239000	1.973885000
6	3.182010000	6.838742000	-2.474928000
1	-0.048643000	0.135849000	-0.806037000
1	-5.166614000	0.371902000	-2.082782000
1	3.154819000	2.750676000	-2.283977000
1	-3.692231000	-0.509320000	1.814350000
1	2.669988000	-2.996145000	1.429693000
1	2.570748000	2.079260000	2.558248000
1	3.266003000	-1.528223000	-3.229804000
1	-1.343227000	-0.593262000	2.309509000
1	-7.460106000	-0.654509000	2.252843000
1	-11.282634000	0.038437000	-0.829910000
1	-9.795733000	-0.869079000	3.093777000
1	-8.930481000	0.247668000	-1.648465000
1	4.887707000	-1.288518000	5.917908000
1	-3.239572000	1.065712000	-5.059724000
1	-4.336699000	-0.056031000	-4.209186000
1	-4.362177000	1.685737000	-3.818451000
1	5.767635000	-4.414301000	-4.105902000

1	5.361000000	-3.370437000	-5.478458000
1	5.397796000	-2.705389000	-3.835173000
1	3.411163000	-4.821421000	-4.857083000
1	3.021304000	-3.131336000	-4.646019000
1	5.410964000	-0.350931000	1.749157000
1	2.764194000	-5.249558000	0.862575000
1	3.901650000	-5.613341000	-0.433011000
1	2.162596000	-5.655516000	-0.748525000
1	3.920681000	4.838142000	-2.753047000
1	2.161157000	4.946229000	-2.712876000
1	2.396095000	-1.268415000	5.623383000
1	6.360461000	-0.832831000	3.993197000
1	2.712898000	4.365489000	3.010501000
1	3.679990000	5.325685000	1.881906000
1	1.915581000	5.353879000	1.789922000
1	2.340199000	7.363227000	-2.008710000
1	4.109440000	7.233157000	-2.049502000
1	3.165887000	7.071618000	-3.542777000
7	-5.834493000	-0.222313000	0.472913000
7	-6.782418000	-0.046037000	-0.322407000
7	3.252270000	-4.220868000	-2.895885000
1	-11.702720000	-0.521951000	1.549912000
1	3.508198000	-5.136572000	-2.560264000
1	2.737667000	5.746682000	-0.245441000

Enol form of HL2

8	-0.349098000	0.316519000	-1.523356000
8	3.128755000	0.350253000	-1.613203000
8	-2.275985000	0.708991000	-3.223801000
8	0.385547000	-0.927651000	3.800485000

7	0.412940000	-0.256317000	0.918738000
7	1.437275000	-0.452679000	1.783308000
7	3.462836000	5.013402000	-0.768225000
6	-3.967735000	0.297992000	-1.532992000
6	2.804659000	-0.855141000	3.552104000
6	3.267500000	2.633827000	-1.170099000
6	-3.212337000	-0.227868000	0.702128000
6	3.181342000	3.499348000	1.095140000
6	3.089697000	-2.705420000	0.398874000
6	3.232877000	-3.669668000	-0.578159000
6	3.051921000	2.201253000	1.544354000
6	-4.246526000	-0.022017000	-0.190651000
6	1.392109000	-0.764319000	3.123991000
6	3.306275000	-1.890715000	-2.224375000
6	3.153219000	-0.955860000	-1.204098000
6	3.045910000	-1.331002000	0.126699000
6	3.292515000	3.725867000	-0.304007000
6	-2.661767000	0.406724000	-1.960096000
6	-0.820740000	-0.348591000	1.272487000
6	-1.876411000	-0.122723000	0.289945000
6	2.822197000	-0.312620000	1.222477000
6	-1.595261000	0.196395000	-1.048483000
6	3.028731000	1.088601000	0.690708000
6	3.635853000	-0.598429000	2.471706000
6	3.139536000	1.340488000	-0.668233000
6	-8.077008000	-0.412539000	1.376426000
6	-10.149197000	0.003875000	-0.434380000
6	-9.394959000	-0.514833000	1.784457000
6	-8.828254000	0.109266000	-0.854962000
6	4.685093000	-1.174855000	4.972288000
6	-3.293563000	0.934031000	-4.183602000

6	5.272530000	-3.544874000	-4.494176000
6	3.802057000	-3.910817000	-4.297146000
6	-11.880959000	-0.432765000	1.355321000
6	5.013395000	-0.625650000	2.625103000
6	3.341683000	-3.254986000	-1.934396000
6	3.261006000	-5.132785000	-0.226225000
6	-7.785321000	-0.097383000	0.044126000
6	3.354075000	5.341922000	-2.179011000
6	3.304862000	-1.146285000	4.814322000
6	5.527850000	-0.916571000	3.886285000
6	-10.454604000	-0.309759000	0.889108000
6	3.217005000	4.658064000	2.054571000
6	3.500132000	6.841394000	-2.384993000
1	-4.799613000	0.453197000	-2.206015000
1	3.346481000	2.756735000	-2.242578000
1	-3.447549000	-0.472998000	1.732526000
1	3.001598000	-3.031656000	1.431729000
1	2.964530000	2.034764000	2.614635000
1	3.397151000	-1.520070000	-3.237302000
1	-1.109293000	-0.591220000	2.290040000
1	-7.262186000	-0.571786000	2.072547000
1	-10.953651000	0.168211000	-1.145242000
1	-9.615984000	-0.758628000	2.820167000
1	-8.586036000	0.353615000	-1.884131000
1	5.115198000	-1.398550000	5.942869000
1	-2.781300000	1.158903000	-5.118702000
1	-3.919792000	0.044820000	-4.315724000
1	-3.926245000	1.782757000	-3.901179000
1	5.919533000	-4.370737000	-4.182240000
1	5.475750000	-3.331859000	-5.548378000
1	5.543822000	-2.661360000	-3.909307000

1	3.557264000	-4.795387000	-4.891747000
1	3.154941000	-3.108700000	-4.664667000
1	-12.584351000	-0.174776000	0.559866000
1	-12.101874000	-1.454912000	1.681683000
1	-12.076347000	0.225254000	2.208405000
1	5.673902000	-0.426212000	1.787497000
1	3.121043000	-5.275036000	0.847686000
1	4.215178000	-5.603852000	-0.496200000
1	2.469815000	-5.689116000	-0.743295000
1	4.146219000	4.817722000	-2.725294000
1	2.396761000	4.994038000	-2.596626000
1	2.631850000	-1.343379000	5.642106000
1	6.603316000	-0.943362000	4.029505000
1	3.174385000	4.307792000	3.088331000
1	4.132283000	5.250229000	1.936608000
1	2.370976000	5.341908000	1.906529000
1	2.702479000	7.389201000	-1.871823000
1	4.461428000	7.195062000	-2.000729000
1	3.443180000	7.085673000	-3.448743000
7	-5.551871000	-0.153230000	0.333646000
7	-6.476847000	0.035039000	-0.486399000
7	3.434631000	-4.211586000	-2.923331000
1	3.131971000	5.738088000	-0.146604000
1	3.719617000	-5.127033000	-2.607495000
1	0.270713000	0.141921000	-0.769091000

Keto form of HL2

8	-0.251303000	-2.842351000	0.192796000
8	3.025778000	0.572006000	-1.959496000
8	-2.301150000	-4.289584000	-0.653587000
8	1.105694000	-0.263589000	3.999671000

7	0.722668000	-0.666752000	1.215023000
7	1.727485000	0.056897000	1.791416000
7	0.825605000	4.754341000	-2.424252000
6	-3.806301000	-2.469619000	-0.167653000
6	3.162166000	0.875894000	3.342040000
6	1.927252000	2.613802000	-2.155407000
6	-2.915907000	-0.411458000	0.771966000
6	1.188107000	3.856878000	-0.209526000
6	4.094185000	-1.586443000	0.794643000
6	4.683713000	-2.624599000	0.103858000
6	1.700213000	2.848118000	0.579862000
6	-3.984932000	-1.130488000	0.330039000
6	1.881472000	0.149899000	3.166052000
6	4.149113000	-1.464729000	-1.955845000
6	3.551533000	-0.447653000	-1.217429000
6	3.513932000	-0.475054000	0.168825000
6	1.303936000	3.736649000	-1.619611000
6	-2.577941000	-3.043895000	-0.209096000
6	-0.529642000	-0.228322000	1.211758000
6	-1.606014000	-0.969726000	0.744173000
6	2.841189000	0.615590000	0.974562000
6	-1.378816000	-2.319658000	0.242994000
6	2.331926000	1.709462000	0.061526000
6	3.719934000	1.146524000	2.100437000
6	2.433301000	1.621138000	-1.318423000
6	-7.651088000	0.775565000	0.556782000
6	-9.825265000	-0.684868000	-0.375944000
6	-8.923246000	1.318221000	0.583088000
6	-8.551445000	-1.239623000	-0.406475000
6	4.988892000	1.932891000	4.436984000
6	-3.384331000	-5.065825000	-1.108334000

6	6.729904000	-2.719531000	-3.837881000
6	5.534519000	-3.586241000	-3.440676000
6	-11.410352000	1.209037000	0.164953000
6	4.927229000	1.821720000	2.008615000
6	4.712475000	-2.566348000	-1.315402000
6	5.267048000	-3.807592000	0.827558000
6	-7.456663000	-0.516725000	0.057554000
6	0.709750000	4.604149000	-3.861659000
6	3.777292000	1.258743000	4.525310000
6	5.554625000	2.210226000	3.188985000
6	-10.033114000	0.600510000	0.119038000
6	0.533718000	5.068782000	0.396187000
6	0.080734000	5.846735000	-4.472711000
1	-4.696017000	-2.986847000	-0.501010000
1	2.032221000	2.473342000	-3.223221000
1	-3.078402000	0.594039000	1.147889000
1	4.073832000	-1.636696000	1.880343000
1	1.614835000	2.942886000	1.659578000
1	4.144239000	-1.368867000	-3.033732000
1	-0.675821000	0.772765000	1.606957000
1	-6.792767000	1.330371000	0.916278000
1	-10.671168000	-1.260186000	-0.741913000
1	-9.067494000	2.323107000	0.972526000
1	-8.381502000	-2.240313000	-0.789887000
1	5.501712000	2.248248000	5.339979000
1	-2.964715000	-6.023803000	-1.417004000
1	-4.122343000	-5.229190000	-0.312820000
1	-3.884992000	-4.593542000	-1.963120000
1	7.648924000	-3.091157000	-3.373298000
1	6.870996000	-2.728862000	-4.923519000
1	6.588041000	-1.683062000	-3.519769000

1	5.700781000	-4.619625000	-3.760415000
1	4.630678000	-3.253003000	-3.960120000
1	-12.152535000	0.551642000	-0.295581000
1	-11.727362000	1.397961000	1.196770000
1	-11.439966000	2.169197000	-0.361383000
1	5.371175000	2.040660000	1.042706000
1	5.125844000	-3.710733000	1.906327000
1	6.346583000	-3.911735000	0.651114000
1	4.792099000	-4.745351000	0.514446000
1	1.711823000	4.457423000	-4.280494000
1	0.121212000	3.711732000	-4.127271000
1	3.313547000	1.030235000	5.479260000
1	6.501638000	2.738912000	3.139756000
1	0.586225000	5.035291000	1.486886000
1	1.018674000	5.995026000	0.065431000
1	-0.528926000	5.145440000	0.127056000
1	-0.934890000	6.003246000	-4.091995000
1	0.674582000	6.735853000	-4.241624000
1	0.014797000	5.748954000	-5.559319000
7	-5.233220000	-0.494024000	0.395349000
7	-6.201933000	-1.172904000	-0.017433000
7	5.260871000	-3.619441000	-2.017698000
1	0.868173000	-1.633268000	0.884523000
1	0.100635000	5.319288000	-2.006230000
1	5.844530000	-4.240882000	-1.480303000

S1 of the Al-complex

13	0.175007000	0.571681000	-0.219133000
8	-0.988574000	-0.892804000	0.637186000
8	1.271814000	-0.853452000	-0.862249000
8	1.479004000	1.873363000	-0.525252000

8	-1.157555000	1.792728000	0.205411000
8	4.938979000	-1.011506000	1.240823000
7	0.901543000	0.459738000	1.698317000
7	-0.623286000	0.319021000	-2.018819000
8	-5.141738000	-0.863994000	-0.927831000
7	0.248520000	-0.495938000	2.473785000
7	-0.008081000	-0.684334000	-2.798430000
8	-2.633831000	3.650722000	1.413860000
8	3.008807000	3.679610000	-1.760378000
7	5.395370000	4.446376000	2.538508000
7	5.737465000	5.665072000	2.558542000
6	-0.740512000	-1.193805000	1.848304000
7	7.005517000	2.260271000	-1.637306000
6	1.851205000	1.180945000	2.249418000
1	2.100568000	1.000954000	3.297198000
6	2.600500000	2.192299000	1.579493000
7	2.662024000	-4.027750000	4.234141000
6	0.969807000	-1.245618000	-2.094979000
6	3.628766000	-2.190798000	-0.982268000
6	-1.458978000	-2.239050000	2.602240000
7	-5.336136000	4.050906000	-2.711535000
6	3.447364000	-2.719082000	0.311316000
6	4.491279000	-1.080634000	-1.167800000
6	2.957257000	-2.819809000	-2.165722000
6	1.729836000	-2.358827000	-2.704030000
6	4.345671000	3.884341000	1.721778000
6	5.152089000	-0.494852000	-0.039246000
6	-2.131374000	2.336008000	-0.502451000
6	2.380581000	2.489951000	0.193813000
6	-2.403026000	1.966129000	-1.858850000
6	-1.638023000	0.956283000	-2.540952000

1	-1.928537000	0.686340000	-3.555402000
6	2.611082000	-3.846855000	0.601569000
1	2.140826000	-4.352004000	-0.233981000
6	2.384792000	-4.301660000	1.876182000
6	4.087867000	-2.095942000	1.436649000
6	-0.796956000	-2.914766000	3.648165000
1	0.256186000	-2.738850000	3.842801000
6	4.159246000	4.174062000	0.338979000
1	4.795432000	4.906800000	-0.137700000
6	1.203678000	-2.986794000	-3.850519000
1	0.264837000	-2.618307000	-4.245080000
7	-6.152518000	4.818451000	-2.104996000
6	-2.798266000	-2.582967000	2.281125000
6	2.993607000	-3.606555000	3.017361000
7	-6.747109000	2.598455000	2.023005000
6	3.605036000	2.876391000	2.311041000
1	3.805697000	2.616442000	3.345282000
6	3.220691000	3.488378000	-0.411029000
6	-3.577835000	-1.959847000	1.161769000
6	1.863815000	-4.055743000	-4.454527000
1	1.436382000	-4.527403000	-5.333128000
6	6.234118000	1.192863000	-1.429437000
7	-3.433911000	-4.166130000	-4.002926000
6	4.751238000	-0.481133000	-2.440418000
1	4.266135000	-0.907552000	-3.310246000
6	-2.963270000	3.336798000	0.105587000
6	3.884213000	-2.507775000	2.726000000
1	4.401166000	-1.984909000	3.520236000
6	-4.384924000	-0.826808000	1.404294000
6	-4.268859000	3.527318000	-1.934059000
6	5.994524000	0.578728000	-0.147885000

1	6.448279000	0.972933000	0.751651000
6	-4.332851000	-1.971873000	-1.182026000
6	-3.547244000	-2.544682000	-0.125607000
6	3.072593000	-4.518024000	-3.920668000
1	3.594404000	-5.350910000	-4.380797000
6	-3.471780000	2.577058000	-2.553327000
1	-3.693712000	2.299995000	-3.578313000
6	3.610268000	-3.899181000	-2.789533000
1	4.553220000	-4.247150000	-2.379536000
6	-2.751663000	-3.684721000	-0.467086000
1	-2.143312000	-4.132832000	0.309972000
6	-1.448842000	-3.895304000	4.395517000
1	-0.908731000	-4.416725000	5.177543000
6	-5.172348000	-0.273886000	0.336348000
6	-4.001983000	3.916603000	-0.596023000
1	-4.636959000	4.672640000	-0.155084000
6	1.535367000	-5.516302000	2.136501000
1	1.150680000	-5.932688000	1.200437000
1	0.691892000	-5.280654000	2.792897000
1	2.114087000	-6.289495000	2.654872000
6	-2.779395000	-4.212980000	4.106387000
1	-3.298538000	-4.972260000	4.681595000
6	-2.712450000	-4.215047000	-1.733512000
6	-4.478002000	-0.164609000	2.672292000
1	-3.905702000	-0.567280000	3.500559000
6	5.574638000	0.608502000	-2.597800000
6	-3.517865000	-3.612011000	-2.798320000
6	7.741073000	2.845398000	-0.511838000
1	8.439409000	2.125551000	-0.058002000
1	7.077815000	3.200322000	0.291196000
6	-5.251873000	0.950720000	2.876722000

6	-5.968311000	0.825244000	0.497807000
1	-6.515366000	1.195597000	-0.358555000
6	-3.437624000	-3.564957000	3.056833000
1	-4.464584000	-3.822391000	2.821265000
6	-6.037607000	1.504317000	1.769484000
6	-4.330195000	-2.469787000	-2.455813000
1	-4.946328000	-1.982835000	-3.200084000
6	3.283718000	-3.393898000	5.401340000
1	3.085176000	-2.310029000	5.459433000
1	2.885453000	-3.858329000	6.306284000
6	-1.845495000	-5.398713000	-2.064138000
1	-1.352336000	-5.787390000	-1.167684000
1	-1.076892000	-5.123635000	-2.795393000
1	-2.433159000	-6.198017000	-2.526904000
6	-3.448024000	4.640496000	2.100780000
1	-3.404645000	5.611132000	1.591796000
1	-3.006011000	4.727787000	3.092958000
1	-4.490198000	4.309824000	2.181681000
6	-7.597307000	3.177030000	0.978833000
1	-8.233558000	2.430091000	0.479543000
1	-7.003947000	3.679329000	0.198698000
6	5.823971000	1.209610000	-3.954158000
1	5.310287000	0.640782000	-4.734609000
1	6.895311000	1.240163000	-4.178849000
1	5.475661000	2.247384000	-3.993097000
6	3.908074000	4.565951000	-2.482431000
1	3.829960000	5.596680000	-2.114592000
1	3.571182000	4.522476000	-3.517053000
1	4.944420000	4.215477000	-2.407831000
6	-5.325921000	1.617505000	4.223143000
1	-4.722082000	1.080950000	4.961528000

1	-6.360837000	1.669172000	4.577609000
1	-4.974778000	2.653371000	4.166697000
6	-4.210189000	-3.603213000	-5.110085000
1	-5.293833000	-3.624184000	-4.914437000
1	-3.936306000	-2.557501000	-5.320184000
1	0.477694000	-0.605232000	3.452706000
6	4.991569000	6.723199000	1.800298000
1	5.551367000	6.974232000	0.891681000
1	3.962396000	6.457258000	1.536493000
1	4.999847000	7.604306000	2.445483000
6	-7.222921000	5.334685000	-2.977632000
1	-7.134415000	4.954328000	-4.001210000
1	-8.189103000	5.048899000	-2.547105000
1	-7.171160000	6.429402000	-2.975260000
1	-8.245791000	3.926441000	1.438960000
1	-4.015797000	-4.192702000	-6.008492000
1	4.377716000	-3.518684000	5.408697000
1	8.321297000	3.694910000	-0.878172000