Clinically used antifungal azoles as ligands for gold(III) complexes: the

influence of the Au(III) ion on the antimicrobial activity of the complex

Nevena Lj. Stevanović,^a Jakob Kljun,^{*b} Ivana Aleksic,^c Sanja Skaro Bogojevic,^c Dusan Milivojevic,^c Aleksandar Veselinovic,^d Iztok Turel,^{*b} Miloš I. Djuran,^{*e} Jasmina Nikodinovic-Runic^{*c} and Biljana Đ. Glišić^{*a}

^aUniversity of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia ^bUniversity of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia ^cUniversity of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia ^dUniversity of Niš, Faculty of Medicine, Department of Chemistry, Blvd. Dr Zorana Đinđića 81, 18108 Niš, Serbia ^eSerbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

*Corresponding authors.

E-mail address: Jakob.Kljun@fkkt.uni-lj.si (J. Kljun); Iztok.Turel@fkkt.uni-lj.si (I. Turel); milos.djuran@pmf.kg.ac.rs (M. I. Djuran); jasmina.nikodinovic@imgge.bg.ac.rs (J. Nikodinovic-Runic); biljana.glisic@pmf.kg.ac.rs (B. Đ. Glišić).

Abstract

In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl₃(azole)], where azole stands for imidazole (im, 1), 1isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) via the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. In vitro antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5). Moreover, gold(III) complexes 4–7 with clinically used antifungal agents clotrimazole, econazole, tioconazole and voriconazole, respectively, have, in most cases, enhanced antimicrobial effectiveness relative to the corresponding azoles, with the best improvement achieved after complexation of tioconazole ($\mathbf{6}$) and voriconazole ($\mathbf{7}$). The complexes $\mathbf{4}$ - $\mathbf{7}$ and the corresponding antifungal azoles inhibited the growth of dermatophyte *Microsporum canis* at 50 and 25 μ g mL⁻¹. Gold(III) complexes 1–3 significantly reduced the amount of ergosterol in the cell membrane of Candida albicans at the subinhibitory concentration of $0.5 \times MIC$ (minimal inhibitory concentration), while the corresponding imidazole ligands did not significantly affect the ergosterol content, indicating that the mechanism of action of the gold(III)-azole complexes is associated with inhibition of ergosterol biosynthesis. Finally, complexes 5 and 6 significantly reduced the production of pyocyanin, a virulence factor in *Pseudomonas aeruginosa* controlled by quorum sensing, and increased cell survival after exposure to this bacterium. These findings could be of importance for the development of novel gold(III)-based antivirulence therapeutic agents that attenuate virulence without pronounced effect on the growth of the pathogens, offering a lower risk for resistance development.

Keywords: Gold(III) complexes; Imidazole; Antifungal azoles; Antimicrobials; *Candida auris*; Quorum sensing

TABLE OF CONTENTS

Fig. S1 Stability of the $[AuCl_3(vcz)]$ complex (7) followed by UV-Vis	S6		
spectrophotometry at room temperature in DMSO for 48 h. The spectra of vcz ligand			
recorded in the same solvent was presented for comparison.			
Fig. S2 ¹ H NMR spectra of imidazole (im) and [AuCl ₃ (im)] (1) (DMSO, 200 MHz).			
Fig. S3 ¹ H NMR spectra of 1-isopropylimidazole (ipim) and [AuCl ₃ (ipim)] (2)	S8		
(DMSO, 200 MHz).			
Fig. S4 ¹ H NMR spectra of 1-phenylimidazole (phim) and [AuCl ₃ (phim)] (3)	S 9		
(DMSO, 200 MHz).			
Fig. S5 ¹ H NMR spectra of clotrimazole (ctz) and [AuCl ₃ (ctz)] (4) (CDCl ₃ , 500	S10		
MHz).			
Fig. S6 ¹ H NMR spectra of econazole (ecz) and [AuCl ₃ (ecz)] (5) (CDCl ₃ , 500 MHz).	S11		
Fig. S7 ¹ H NMR spectra of tioconazole (tcz) and [AuCl ₃ (tcz)] (6) (CDCl ₃ , 500	S12		
MHz).			
Fig. S8 ¹ H NMR spectra of voriconazole (vcz) and [AuCl ₃ (vcz)] (7) (CDCl ₃ , 500	S13		
MHz).			
Fig. S9 Graphical illustration of the antifungal (1/(MIC, μ M)) and antiproliferative	S14		
activity (1/IC50, $\mu M)$ of gold(III) complexes 1 – 3 and the corresponding non-			
antifungal azoles against the selection of Candida strains.			
Fig. S10 Graphical illustration of the antifungal (1/(MIC, μ M)) and antiproliferative	S15		
activity (1/IC ₅₀ , μ M) of gold(III) complexes 4 – 7 and the corresponding clinically			
used azoles against the selection of Candida strains.			
Fig. S11 Inhibition of <i>Microsporum canis</i> by $gold(III)$ complexes $1 - 7$.	S16		
50 μ g mL ⁻¹ of compounds was added to the medium prior to solidification.			
Fig. S12 Graphical illustration of antibacterial activity (1/(MIC, μ M)) of gold(III)	S17		
complexes $1-3$ and the corresponding non-antifungal azoles against the selection			
of bacterial strains.			
Fig. S13 Graphical illustration of antibacterial activity (1/(MIC, μ M)) of gold(III)	S18		
complexes $4 - 7$ and the corresponding azoles against the selection of bacterial			
strains.			

Fig. S14 Inhibition of violacein production in the presence of gold(III)-azole	S19
complexes $1 - 3$, $5 - 7$ and ligand phim tested on Chromobacterium violaceum	
CV026 at 200 μg per disc concentration. White arrows denote zones of growth	
inhibition and black measuring lines indicate zones of violacein synthesis inhibition.	
DMSO was used as solvent control.	
Fig. S15 Inhibition of prodigiosin production in the presence of gold(III)-azole	S20
complexes 2, 3, 7 and ligand phim and ctz tested on <i>Serratia marcescens</i> at 200 µg	
per disc concentration. White arrows denote zones of growth inhibition and black	
measuring lines indicate zones of prodigiosin synthesis inhibition. DMSO was used	
as solvent control.	
Table S1 The selectivity index value (SI) of gold(III)-azole complexes $1 - 7$ and the	S21
azole ligands on Candida strains	
Table S2 Crystallographic data for complexes 3 – 5 and 7	S22
Spectroscopic characterization of the studied azoles	S24

Fig. S1 Stability of the [AuCl₃(vcz)] complex (**7**) followed by UV-Vis spectrophotometry at room temperature in DMSO for 48 h. The spectra of vcz ligand recorded in the same solvent was presented for comparison.

Fig. S2 1 H NMR spectra of imidazole (im) and [AuCl₃(im)] (1) (DMSO, 200 MHz).

Fig. S3 ¹H NMR spectra of 1-isopropylimidazole (ipim) and [AuCl₃(ipim)] (2) (DMSO, 200 MHz).

Fig. S4 ¹H NMR spectra of 1-phenylimidazole (phim) and [AuCl₃(phim)] (3) (DMSO, 200 MHz).

Fig. S5¹H NMR spectra of clotrimazole (ctz) and [AuCl₃(ctz)] (4) (CDCl₃, 500 MHz).

Fig. S6 ¹H NMR spectra of econazole (ecz) and [AuCl₃(ecz)] (5) (CDCl₃, 500 MHz).

Fig. S7 ¹H NMR spectra of tioconazole (tcz) and [AuCl₃(tcz)] (6) (CDCl₃, 500 MHz).

Fig. S8 ¹H NMR spectra of voriconazole (vcz) and [AuCl₃(vcz)] (7) (CDCl₃, 500 MHz).

Fig. S9 Graphical illustration of the antifungal (1/(MIC, μ M)) and antiproliferative activity (1/IC₅₀, μ M) of gold(III) complexes 1 - 3 and the corresponding non-antifungal azoles against the selection of *Candida* strains.

Fig. S10 Graphical illustration of the antifungal (1/(MIC, μ M)) and antiproliferative activity (1/IC₅₀, μ M) of gold(III) complexes 4 – 7 and the corresponding clinically used azoles against the selection of *Candida* strains.

Fig. S11 Inhibition of *Microsporum canis* by gold(III) complexes 1 - 7. 50 µg mL⁻¹ of compounds was added to the medium prior to solidification.

Fig. S12 Graphical illustration of antibacterial activity (1/(MIC, μ M)) of gold(III) complexes 1 – 3 and the corresponding non-antifungal azoles against the selection of bacterial strains.

Fig. S13 Graphical illustration of antibacterial activity (1/(MIC, μ M)) of gold(III) complexes 4 –

7 and the corresponding azoles against the selection of bacterial strains.

Fig. S14 Inhibition of violacein production in the presence of gold(III)-azole complexes 1 - 3, 5 - 7 and ligand phim tested on *Chromobacterium violaceum* CV026 at 200 µg per disc concentration. White arrows denote zones of growth inhibition and black measuring lines indicate zones of violacein synthesis inhibition. DMSO was used as solvent control.

Fig. S15 Inhibition of prodigiosin production in the presence of gold(III)-azole complexes 2, 3, 7 and ligand phim and ctz tested on *Serratia marcescens* at 200 μ g per disc concentration. White arrows denote zones of growth inhibition and black measuring lines indicate zones of prodigiosin synthesis inhibition. DMSO was used as solvent control.

Test organism	C. albicans	C. parapsilosis	C. glabrata	C. krusei	C. auris		
Au(III) complex/azole	ATCC 10231	ATCC 22019	ATCC 2001	ATCC 6258	ATCC 21092		
Au(III) complex/Imidazole							
[AuCl ₃ (im)] (1)	2.3	2.3	2.3	4.6	1.1		
imidazole (im)	n/a ^a	n/a	n/a	n/a	n/a		
[AuCl ₃ (ipim)] (2)	0.6	0.6	0.3	0.6	0.6		
1-isopropylimidazole (ipim)	n/a	n/a	n/a	n/a	n/a		
[AuCl ₃ (phim)] (3)	0.8	0.8	0.8	0.8	1.6		
1-phenylimidazole (phim)	n/a	1	1	1	n/a		
Au(III) complex/Clinically used azole							
$[AuCl_3(ctz)] (4)$	0.2 ^b	4.4	1.3	15.5	3.3		
clotrimazole (ctz)	3.3	0.8	1	6.2	1		
[AuCl ₃ (ecz)] (5)	5.7	10.5	2.9	1.4	2.9		
econazole (ecz)	1.4	2.6	0.2	0.7	1.4		
$[AuCl_3(tcz)] (6)$	10.8	10.8	0.7	4.3	1.8		
tioconazole (tcz)	6.2	47.3	0.2	0.4	1.7		
$[AuCl_3(vcz)] (7)$	44.8	1075	2.8	143.3	11.2		
voriconazole (vcz)	24	2863	1.5	613	1.5		

Table S1 The selectivity index value (SI) of gold(III)-azole complexes 1 - 7 and the azole ligands on *Candida* strains

^anot applicable, as compounds were not cytotoxic in the concentrations tested; ^bthe highest and the lowest (not so favorable) values are marked in bold.

Compound	3	4
CCDC No.	2099556	2099557
Empirical formula	C9H8AuCl3N2	$C_{22}H_{17}AuCl_4N_2$
Formula weight	447.49	648.14
Temperature/K	150.00(10)	150.00(10)
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /n	P2 ₁ /n
a/Å	8.7297(5)	9.4310(4)
b/Å	6.9516(3)	18.1660(7)
c/Å	19.7326(11)	12.7936(6)
α/°	90	90
β/°	102.008(5)	100.300(4)
γ/°	90	90
Volume/Å ³	1171.28(11)	2156.52(16)
Z	4	4
$\rho_{calc} g cm^{-3}$	2.538	1.996
µ/mm ⁻¹	13.210	7.329
F(000)	824.0	1240.0
Crystal size/mm ³	$0.3 \times 0.05 \times 0.05$	0.6 imes 0.5 imes 0.4
Radiation	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.71073)
2Θ range for data collection/°	4.7704 to 58.8898	4.93 to 51.362
	$-10 \le h \le 11$,	$-11 \le h \le 11$,
Index ranges	$-9 \le k \le 9,$	$-21 \le k \le 22,$
	$-24 \le l \le 24$	$-11 \le l \le 15$
Reflections collected	8011	13267
	2782	4091
Independent reflections	$[R_{int} = 0.0316,$	$[R_{int} = 0.0247,$
	$R_{sigma} = 0.0467$]	$R_{sigma} = 0.0242$]
Data/restraints/parameters	2782/0/136	4091/0/262
Goodness-of-fit on F ²	1.057	1.055
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0280,$	$R_1 = 0.0231,$
	$wR_2 = 0.0603$	$wR_2 = 0.0535$
Final R indexes [all data]	$R_1 = 0.0359,$	$R_1 = 0.0289,$
	$wR_2 = 0.0656$	$wR_2 = 0.0561$
Largest diff. peak/hole / e Å ⁻³	1.93/-2.15	1.06/-1.08
Flack parameter	/	/

Table S2 Crystallographic data for complexes 3-5 and 7

Continuation of Table S2.

Compound	5	7	
CCDC No.	2099558	2099560	
Empirical formula	C ₁₈ H ₁₅ AuCl ₆ N ₂ O	C ₁₆ H ₁₄ AuCl ₃ F ₃ N ₅ O	
Formula weight	684.99	652.64	
Temperature/K	150.05(10)	150.00(10)	
Crystal system	triclinic	monoclinic	
Space group	P-1	P21	
a/Å	7.5671(3)	12.1573(5)	
b/Å	9.5470(5)	5.8115(2)	
c/Å	15.8505(7)	15.0653(6)	
α/°	89.941(4)	90	
β/°	80.989(4)	99.973(4)	
γ/°	76.380(4)	90	
Volume/Å ³	1098.39(9)	1048.32(7)	
Z	2	2	
$\rho_{calc} g \ cm^{-3}$	2.071	2.068	
µ/mm ⁻¹	7.439	7.443	
F(000)	652.0	620.0	
Crystal size/mm ³	0.2 imes 0.2 imes 0.1	$0.3 \times 0.05 \times 0.05$	
Radiation	Mo Kα (λ = 0.71073)	MoKa ($\lambda = 0.71073$)	
20 range for data collection/°	5.208 to 54.968	5.492 to 54.964	
	$-9 \le h \le 8,$	$-15 \le h \le 15$,	
Index ranges	$-12 \le k \le 12,$	$-7 \le k \le 5,$	
	$-20 \le l \le 20$	$-19 \le l \le 17$	
Reflections collected	10977	8078	
	5033	3723	
Independent reflections	$[R_{int} = 0.0493,$	$[R_{int} = 0.0290,$	
	$R_{sigma} = 0.0605$]	$R_{sigma} = 0.0407$]	
Data/restraints/parameters	5033/0/253	3723/1/264	
Goodness-of-fit on F ²	1.038	1.023	
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0369,$	$R_1 = 0.0263,$	
[1 = 20 (1)]	$wR_2 = 0.0789$	$wR_2 = 0.0621$	
Final R indexes [all data]	$R_1 = 0.0465,$	$R_1 = 0.0282,$	
	$wR_2 = 0.0851$	$wR_2 = 0.0633$	
Largest diff. peak/hole / e Å ⁻³	1.66/-1.56	1.34/-1.08	
Flack parameter	/	-0.010(9)	

Spectroscopic characterization of the studied azoles

Imidazole (im). MW = 68.06. IR (KBr, v, cm⁻¹): 3124s (v(N–H)), 3020s (v(C_{diazole}–H)), 1576m, 1542s, 1497m, 1448m (v(C=C) and v(C=N)), 842s, 757s, 738s, 660s, 620m (γ (C_{diazole}– H)). ¹H NMR (200 MHz, DMSO-*d*₆): δ = 12.05 (*s*, 1H, NH), 7.64 (*s*, 1H, C2H), 7.01 (*s*, 2H, C4H and C5H). UV-Vis (CHCl₃, λ_{max} , nm): 260 (ε = 2.2^{·10³} M⁻¹cm⁻¹).

1-Isopropylimidazole (ipim). MW = 110.16. IR (KBr, *v*, cm⁻¹): 3113m, 3044w, 3032w ($v(C_{diazole}-H)$), 2980s, 2935m (v(C-H)), 1500s, 1460m, 1409m, 1373m (v(C=C) and v(C=N)), 917m, 818m, 739m, 667s, 643m ($\gamma(C_{diazole}-H)$). ¹H NMR (200 MHz, DMSO-*d*₆): δ = 7.72 (*s*, 1H, C2H), 7.21 (*s*, 1H, C4H), 6.89 (*s*, 1H, C5H), 4.32 (*m*, C6H), 1.34 (*m*, 6H, C7H and C8H). UV-Vis (CHCl₃, λ_{max} , nm): 260 (ε = 3.0·10³ M⁻¹cm⁻¹).

1-Phenylimidazole (phim). MW = 144.17. IR (KBr, v, cm⁻¹): 3116m, 3069m (v(C_{diazole}–H) and v(C_{ar}–H)), 1601s, 1514s, 1505s, 1483m, 1461m (v(C_{ar}=C_{ar}) and v(C=N)), 817m, 760s, 692s, 659s (γ (C_{ar}–H) and γ (C_{diazole}–H)). ¹H NMR (200 MHz, DMSO- d_6): δ = 8.30 (s, 1H, C2H), 7.77 (s, 1H, C4H), 7.66 (m, 2H, C7H and C11H), 7.52 (m, 2H, C8H and C10H), 7.36 (m, 1H, C9H), 7.13 ppm (d, J = 0.9 Hz, 1H, C5H). UV-Vis (CHCl₃, λ_{max} , nm): 262 (ε = 3.5^{-10³} M⁻¹cm⁻¹).

Clotrimazole (ctz). MW = 344.84. IR (KBr, v, cm⁻¹): 3195w, 3167w, 3136w, 3112w (ν (C_{diazole}–H) and ν (C_{ar}–H)), 2977w, 2916w, 2870w (ν (C–H)), 1585w, 1566w, 1493m, 1466m, 1443m, 1434m (ν (C_{ar}=C_{ar}) and ν (C=N)), 1211s, 1192w (β (C_{ar}–H) and β (C_{diazole}–H)), 766vs, 753vs, 708s, 696m, 672s (γ (C_{ar}–H) and (γ (C_{diazole}–H)), 634m (ν (C–Cl)). ¹H NMR (500 MHz, CDCl₃): δ = 7.46 (d, J = 5.6 Hz, 1H, C2H), 7.42 (dd, J = 7.9, 1.4 Hz, 1H, C8H), 7.33 (m, 7H, C10H, C14H, C15H, C16H, C20H, C21H, C22H), 7.26 (m, 1H, C9H), 7.19 (m, 4H, C13H, C17H, C19H, C23H), 7.05 (m, 1H, C4H), 6.92 (dd, J = 8.0, 1.6 Hz, 1H, C5H), 6.74 ppm (t, J = 1.3 Hz, 1H, C11H). UV-Vis (CHCl₃, λ_{max} , nm): 260 (ε = 3.1^{-10³} M⁻¹cm⁻¹).

Econazole (ecz). MW = 381.68. IR (KBr, v, cm⁻¹): 3194w, 3176w, 3132w, 3115w, 3091w, 3064w (v(C_{diazole}–H) and v(C_{ar}–H)), 2981w, 2969w, 2946w (v(C–H)), 1590m, 1564m, 1505s, 1489s, 1473m, 1432m (v(C_{ar}=C_{ar}) and v(C=N)), 1233s, 1200m (β (C_{ar}–H) and β (C_{diazole}–H), 1107s (v(C–O)), 1090vs, 1046m, 1032m (v(C_{ar}–Cl)), 800m, 787m, 733m, 661m, 626m (γ (C_{ar}–H)) and (γ (C_{diazole}–H)). ¹H NMR (500 MHz, CDCl₃): δ = 9.02 (*s*, 1H, C2H), 7.48 (*d*, *J* = 1.8 Hz, 1H, C10H), 7.38 (*d*, *J* = 1.7 Hz, 1H, C4H), 7.35 (*d*, *J* = 1.8 Hz, 1H, C5H), 7.32 (*m*, 1H, C13H), 7.31 (*m*, 1H, C12H), 7.29 (*m*, 1H, C17H), 7.09 (*s*, 1H, H19), 7.08 (*s*, 1H, C16H), 7.01 (*t*, *J* = 1.6 Hz, 1H, C20H), 5.05 (*dd*, *J* = 7.8, 2.9 Hz, C7H), 4.51 (*d*, *J* = 11.8 Hz, 1H, C6H), 4.46 (*dd*, *J* = 14.4, 2.9 Hz, 1H, C6H), 4.36 (*dd*, *J* = 14.4, 7.8 Hz, 1H, C14H), 4.22 ppm (*d*, *J* = 11.8 Hz, 1H, C14H). UV-Vis (CHCl₃, λ_{max} , nm): 260 (ε = 3.1·10³ M⁻¹cm⁻¹).

Tioconazole (tcz). MW = 387.70. IR (KBr, v, cm⁻¹): 3119w, 3094w, 3065w, 3023w (v(C_{diazole}–H) and v(C_{ar}–H)), 2979w, 2935w (v(C–H)), 1589m, 1562m, 1503s, 1467s, 1434m (v(C_{ar}=C_{ar}) and v(C=N)), 1230m, 1221m (β (C_{ar}–H) and β (C_{diazole}–H)), 1120s (v(C–O)), 828m, 815m, 785m, 692m (γ (C_{ar}–H)), 736vs (v(C–S)), 628m (v(C–Cl)). ¹H NMR (500 MHz, CDCl₃): δ = 7.43 (*d*, *J* = 2.1 Hz, 2H, C2H, C10H), 7.33 (*d*, *J* = 8.4 Hz, 1H, C12H), 7.28 (*dd*, *J* = 8.4, 2.0 Hz, 1H, C17H), 7.05 (*d*, *J* = 5.7 Hz, 1H, C13H), 7.01(*s*, 1H, C9H), 6.88 (*s*, 1H, C5H), 6.75 (*d*, *J* = 5.7 Hz, 1H, C14H), 4.94 (*dd*, *J* = 7.7, 2.7 Hz, 1H, C7H), 4.40 (*d*, *J* = 11.9 Hz, 1H, C14H), 4.24 (*d*, *J* = 11.9 Hz, 1H, C14H), 4.16 (*dd*, *J* = 14.5, 2.7 Hz, 1H, C6H), 4.00 ppm (*dd*, *J* = 14.5, 7.7 Hz, 1H, C6H). UV-Vis (CHCl₃, λ_{max} , nm): 262 (ε = 1.3·10³ M⁻¹cm⁻¹).

Voriconazole (vcz). MW = 349.31. IR (KBr, v, cm⁻¹): 3196br (v(O–H)), 3120w, 3047w, 3017w (v(C_{triazole}–H) and v(C_{ar}–H)), 2995w, 2979w, 2941w (v(C–H)), 1619s, 1587vs, 1507s, 1496vs, 1451vs, 1408vs (v(C_{ar}=C_{ar}) and v(C=N)), 1278s (δ (O–H)), 1249m, 1210m (β (C_{ar}–H) and β (C_{triazole}–H)), 1132s (v(C–F)), 1054m (v(C–O)), 858s, 825w, 787w, 779m, 724m, 718m (γ (C_{ar}– H)) and (γ (C_{triazole}–H)), 622m (β (C_{ar}–F)). ¹H NMR (500 MHz, CDCl₃): δ = 8.93 (t, J = 3.7 Hz, 1H, C18H), 8.62 (d, J = 1.4 Hz, 1H, C20H), 7.96 (s, 1H, C5H), 7.62 (m, 1H, C3H), 7.55 (s, 1H, C9H), 6.85 (m, 1H, C12H), 6.82 (m, 1H, C10H), 6.49 (s, 1H, OH), 4.72 (d, J = 14.2 Hz, 1H, C6H), 4.32 (d, J = 14.2 Hz, 1H, C6H), 4.13 (q, J = 7.1 Hz, 1H, C14H), 1.11 ppm (d, J = 7.1 Hz, 3H, C15H). UV-Vis (CHCl₃, λ_{max} , nm): 267 (ε = 2.3·10³ M⁻¹cm⁻¹)