Materials design, synthesis, and transport properties of disordered rare-earth Zintl bismuthides with the *anti*-Th₃P₄ structure type

Michael O. Ogunbunmi, Sviatoslav Baranets, Svilen Bobev*

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware,

19716, United States

*Corresponding author Email: bobev@udel.edu

Table of Contents

1. Tables with Fractional Atomic Coordinates of Ca _{4–x} <i>RE</i> _x Bi ₃ and Ca ₃ HoBi _{1.5} Sb _{1.5} S3-S15						
a. Table S1. Fractional Atomic Coordinates of Ca _{3.33(1)} Ce _{0.67} Bi ₃ S3						
b. Table S2. Fractional Atomic Coordinates of Ca _{3.35(1)} Pr _{0.66} Bi ₃ S4						
c. Table S3. Fractional Atomic Coordinates of Ca _{3.33(1)} Nd _{0.67} Bi ₃ S5						
d. Table S4. Fractional Atomic Coordinates of Ca _{3.23(1)} Sm _{0.77} Bi ₃ S6						
e. Table S5. Fractional Atomic Coordinates of Ca _{3.23(1)} Gd _{0.77} Bi ₃ S7						
f. Table S6. Fractional Atomic Coordinates of Ca _{3.35(1)} Tb _{0.65} Bi ₃ S8						
g. Table S7. Fractional Atomic Coordinates of Ca _{3.33(1)} Dy _{0.67} Bi ₃ S9						
h. Table S8. Fractional Atomic Coordinates of Ca _{3.38(1)} Ho _{0.62} Bi ₃ S10						
i. Table S9. Fractional Atomic Coordinates of Ca _{3.27(1)} Er _{0.73} Bi ₃ S11						
j. Table S10. Fractional Atomic Coordinates of Ca _{3.25(1)} Tm _{0.75} Bi ₃ S12						
k. Table S11. Fractional Atomic Coordinates of Ca _{3.47(1)} Lu _{0.53} Bi ₃ S13						
l. Table S12. Fractional Atomic Coordinates of Ca _{3.29(1)} Y _{0.71} Bi ₃ S14						
m. Table S13. Fractional Atomic Coordinates of Ca _{3.2(1)} Ho _{0.8} Bi _{1.67(1)} Sb _{1.33} S15						
2. Table S2. Selected crystallographic data of Ca ₃ HoBi _{1.5} Sb _{1.5} S16						
3. Figure S1. Differential Scanning Calorimetry and Thermogravimetric Experiments of Ca_3REBi_3 ($RE = Ce, Pr$) and $Ca_3HoBi_{1.5}Sb_{1.5}$ S17						
4. Figure S2. Electronic structure of Ca ₄ Bi ₃ S18						
5. Figure S3. SEM image and EDX analysis of Ca ₃ SmBi ₃ S19						
6. Figure S4. SEM image and EDX analysis of Ca ₃ LaBi _{1.5} Sb _{1.5} S20						

Table S1. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for Ca_{3.33(1)}Ce_{0.67}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	z	U_{eq}
Ca1/Ce1 ^a	16 <i>c</i>	0.07103(5)	x	X	0.0113(4)
Sb1	12 <i>a</i>	3/8	0	1/4	0.0100(2)

^{*a*}Atomic occupancies according to refinement: Ca1/Ce1 = 0.822(7)Ca + 0.178Ce.

Table S2. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for Ca_{3.35(1)}Pr_{0.66}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z	U_{eq}
Ca1/Pr1 ^a	16 <i>c</i>	0.0721(1)	x	x	0.0067(9)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0068(3)

^{*a*}Atomic occupancies according to refinement: Ca1/Pr1 = 0.836(8)Ca + 0.164Pr.

Table S3. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for Ca_{3.33(1)}Nd_{0.67}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z	Ueq
Ca1/Nd1 ^a	16 <i>c</i>	0.0719(2)	X	x	0.0084(8)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0084(2)

^{*a*}Atomic occupancies according to refinement: Ca1/Nd1 = 0.833(6)Ca + 0.167Nd.

Table S4. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for Ca_{3.23(1)}Sm_{0.77}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z	Ueq
Ca1/Sm1 ^a	16 <i>c</i>	0.0719(1)	X	X	0.0087(7)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0083(2)

^{*a*}Atomic occupancies according to refinement: Ca1/Sm1 = 0.807(6)Ca + 0.193Sm.

Table S5. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for Ca_{3.23(1)}Gd_{0.77}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	У	Z.	U_{eq}
Ca1/Gd1 ^a	16 <i>c</i>	0.0723(1)	x	X	0.0073(7)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0065(2)

^{*a*}Atomic occupancies according to refinement: Ca1/Gd1 = 0.808(7)Ca + 0.192Gd.

Table S6. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for Ca_{3.35(1)}Tb_{0.65}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z.	U_{eq}	
Ca1/Tb1 ^a	16 <i>c</i>	0.0725(1)	x	x	0.011(1)	
Bi1	12 <i>a</i>	3/8	0	1/4	0.010(1)	

^{*a*}Atomic occupancies according to refinement: Ca1/Tb1 = 0.837(10)Ca + 0.163Tb.

Table S7. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for Ca_{3.33(1)}Dy_{0.67}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	У	Z	U_{eq}
Ca1/Dy1 ^a	16 <i>c</i>	0.0724(1)	x	x	0.0090(7)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0096(2)

^{*a*}Atomic occupancies according to refinement: Ca1/Dy1 = 0.833(4)Ca + 0.167Dy

Table S8. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for Ca_{3.38(1)}Ho_{0.62}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z	U_{eq}
Ca1/Ho1 ^a	16 <i>c</i>	0.07252(9)	X	x	0.0095(6)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0097(2)

^{*a*}Atomic occupancies according to refinement: Ca1/Ho1 = 0.844(5)Ca + 0.156Ho.

Table S9. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for Ca_{3.27(1)}Er_{0.73}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z	U_{eq}
Ca1/Er1 ^a	16 <i>c</i>	0.0727(2)	x	x	0.011(1)
Bi1	12 <i>a</i>	3/8	0	1/4	0.010(1)

^{*a*}Atomic occupancies according to refinement: Ca1/Er1 = 0.818(8)Ca + 0.182Er.

Table S10. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for Ca_{3.25(1)}Tm_{0.75}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z	U_{eq}
Ca1/Tm1 ^a	16 <i>c</i>	0.0725(1)	X	X	0.0091(9)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0106(3)

^{*a*}Atomic occupancies according to refinement: Ca1/Tm1 = 0.813(7)Ca + 0.187Tm.

Table S11. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for Ca_{3.47(1)}Lu_{0.5}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z	U_{eq}
Ca1/Lu1 ^a	16 <i>c</i>	0.07235(9)	x	X	0.0116(5)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0151(3)

^{*a*}Atomic occupancies according to refinement: Ca1/Lu1 = 0.865(6)Ca + 0.135Lu.

Table S12. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for Ca_{3.29(1)}Y_{0.71}Bi₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	z	U_{eq}
Ca1/Y1 ^a	16 <i>c</i>	0.0728(2)	X	x	0.011(1)
Bi1	12 <i>a</i>	3/8	0	1/4	0.0096(2)

^{*a*}Atomic occupancies according to refinement: Ca1/Y1 = 0.823(18)Ca + 0.177Y.

Table S13. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for Ca_{3.2}Ho_{0.8}Bi_{1.67(1)}Sb_{1.33}. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Site	x	у	Z	U_{eq}
Ca1/Ho1 ^a	16 <i>c</i>	0.07250(2)	x	x	0.009(1)
Bi1/Sb1 ^b	12 <i>a</i>	3/8	0	1/4	0.009(1)

^{*a*}Atomic occupancies of Ca and Ho were fixed according to the ratio Ca/Ho = 0.8Ca + 0.2Ho. ^{*b*}Atomic occupancies according to refinement: Bi1/Sb1 = 0.56(4)Bi + 0.44(4)Sb.

refined formula	Ca3.2Ho0.8Bi1.67(1)Sb1.33
formula wt.	771.12
$a/ m \AA$	9.4530(17)
$V/Å^3$	844.7(4)
$\rho_{cal}/g\ cm^{-3}$	6.06
μ/cm^{-1}	481.5
$R_1 (I \geq 2\sigma_I)^a$	0.0376
$wR_2 (I \geq 2\sigma_I)^a$	0.0768
R_1 (all data) ^a	0.0403
wR_2 (all data) ^a	0.0775
largest diff. peak and hole	2.69; -1.25

Table S14. Selected crystallographic data of Ca₃HoBi_{1.5}Sb_{1.5}, measured at 200(2) K, space group $I\overline{4}3d$, Z = 4, Mo K α radiation $\lambda = 0.71073$ Å.

^{*a*} R₁= $\sum ||F_o| - |F_c|| / \sum |F_o|;$ wR₂=[$\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]$]^{1/2}, where w=1/[$\sigma^2 F_o^2 + (0.0236P)^2 + (83.284P)$], and P=($F_o^2 + 2F_c^2$)/3.

Figure S1. Plots of TG/DSC analysis for (a) Ca₃LaBi₃ (b) Ca₃PrBi₃ and (c) Ca₃HoBi_{1.5}Sb_{1.5} samples. The weight (wt.) % and heat flows are represented as blue, brown, and green lines, respectively.

Figure S2. (a) Electronic band structure of Ca₄Bi₃. (b) Total density of states (TDOS) and orbital resolved DOS of Ca₄Bi₃. (c) calculated COHP curves for Ca–Bi and Ca–Ca interactions for Ca₄Bi₃. COHP are showing the bonding and antibonding states as indicated. The Fermi energy is set as a reference point at 0 eV.

Figure S3. (a) SEM image of single crystal of Ca₃SmBi₃. (b) and (c) Representative histograms from EDS analysis of Ca₃SmBi₃ under high magnification.

Figure S4. (a) SEM image of single crystal of Ca₃LaBi_{1.5}Sb_{1.5}. (b) and (c) Representative histograms from EDS analysis of Ca₃SmBi₃ under high magnification.