# **Supporting Information**

# **Rare-earth Metal Complexes with Redox-Active**

# **Formazanate Ligands**

Da Jin,<sup>a</sup> Xiaofei Sun,<sup>a</sup> Alexander Hinz,<sup>a</sup> Peter W. Roesky<sup>\*a</sup>

<sup>a</sup> Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Geb. 30.45, 76131 Karlsruhe, Germany. E-mail: roesky@kit.edu

# **Table of Contents**

| I. NMR spectra                    | S2  |
|-----------------------------------|-----|
| II. IR spectra                    | S7  |
| III. Cyclic voltammetry (CV)      | S11 |
| IV. UV-Vis spectroscopy           | S12 |
| V. X-ray crystallographic studies | S13 |
| 1) General methods                | S13 |
| 2) Summary of crystal data        | S14 |
| 3) Crystal structures             | S16 |
| VI. References                    | S20 |

### I. NMR spectra



**Fig. S1** <sup>1</sup>H NMR spectrum of [PhNNC(Ph)NNHPh] ( $L^{1}H$ ) in C<sub>6</sub>D<sub>6</sub>, \*, residual protio solvent signal.



Fig. S2  ${}^{13}C{}^{1}H$  NMR spectrum of [PhNNC(Ph)NNHPh] (L<sup>1</sup>H) in C<sub>6</sub>D<sub>6</sub>.



Fig. S3 <sup>1</sup>H NMR spectrum of [PhNNC(4-tBuPh)NNHPh] (L<sup>2</sup>H) in C<sub>6</sub>D<sub>6</sub>, \*, residual protio solvent signal.



Fig. S4  $^{13}C\{^{1}H\}$  NMR spectrum of [PhNNC(4-tBuPh)NNHPh] (L^2H) in C\_6D\_6.



**Fig. S5** <sup>1</sup>H NMR spectrum of [{PhNNC(Ph)NNPh}<sub>3</sub>Y] (1) in  $C_6D_6$ : \*, residual protio solvent signal; #, remaining toluene, which is due to incomplete drying of the crystals before measuring.



Fig. S6  ${}^{13}C{}^{1}H$  NMR spectrum of [{PhNNC(Ph)NNPh}<sub>3</sub>Y] (1) in C<sub>6</sub>D<sub>6</sub>.



**Fig. S7** <sup>1</sup>H NMR spectrum of [{PhNNC(Ph)NNPh}<sub>3</sub>Sm] (2) in  $C_6D_6$ : \*, residual protio solvent signal; #, remaining toluene, which is due to incomplete drying of the crystals before measuring.



Fig. S8  ${}^{13}C{}^{1}H$  NMR spectrum of [{PhNNC(Ph)NNPh}\_3Sm] (2) in C<sub>6</sub>D<sub>6</sub>.



Fig. S9 <sup>1</sup>H NMR spectrum of [{PhNNC(4-*t*BuPh)NNPh}SmCp\*<sub>2</sub>] (4) in C<sub>6</sub>D<sub>6</sub>, \*, residual protio solvent signal.



Fig. S10  $^{13}C{^{1}H}$  NMR spectrum of [{PhNNC(4-tBuPh)NNPh}SmCp\*<sub>2</sub>] (4) in C<sub>6</sub>D<sub>6</sub>.

## II. IR spectra



Fig. S11 IR spectrum of [PhNNC(4-tBuPh)NNHPh] (L<sup>2</sup>H).



Fig. S12 IR spectrum of [{PhNNC(Ph)NNPh}<sub>3</sub>Y] (1).



Fig. S13 IR spectrum of [{PhNNC(Ph)NNPh}<sub>3</sub>Sm] (2).



Fig. S14 IR spectrum of [{PhNNC(Ph)NNPh}<sub>3</sub>Dy] (3).



**Fig. S15** IR spectrum of [{PhNNC(4-*t*BuPh)NNPh}SmCp<sup>\*</sup><sub>2</sub>] (4).



Fig. S16 IR spectrum of [{PhNNC(4-*t*BuPh)NNPh}DyCp<sub>2</sub>] (5).



Fig. S17 IR spectrum of [{PhNNC(4-*t*BuPh)NNPh}YbCp<sub>2</sub>] (6).



Fig. S18 IR spectrum of [{PhNNC(4-*t*BuPh)NNPh}<sub>3</sub>Yb] (7).

# III. Cyclic voltammetry (CV)



Fig. S19 Cyclic voltammogram of L<sup>2</sup>H (THF, 0.1 M [Bu<sub>4</sub>N][PF<sub>6</sub>]) recorded at 250 mVs<sup>-1</sup>

### Table S1. Electrochemical parameters for formazan ligand (L<sup>2</sup>H)

|                  | E <sup>0</sup> vs Fc <sup>/+</sup> [V]                |                                                          |                                                            |      |      |
|------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|------|------|
|                  | (L <sup>2</sup> ) <sup>0/1-</sup> (I/I <sup>′</sup> ) | (L <sup>2</sup> ) <sup>1-/2-</sup> (II/II <sup>′</sup> ) | (L <sup>2</sup> ) <sup>2-/3-</sup> (III/III <sup>′</sup> ) | Δ΄   | Δ″   |
| L <sup>2</sup> H | -0.81                                                 | -1.55                                                    | -2.29                                                      | 0.74 | 0.74 |

Table S2. Electrochemical parameters for tris-formazanate complexes

|                                  | E <sup>0</sup> vs Fc <sup>/+</sup> [V]      |                                                |                                                  |      |      |
|----------------------------------|---------------------------------------------|------------------------------------------------|--------------------------------------------------|------|------|
|                                  | (L <sup>n</sup> )₃Ln <sup>0/1-</sup> (I/I′) | (L <sup>n</sup> )₃Ln <sup>1-/2-</sup> (II/II′) | (L <sup>n</sup> )₃Ln <sup>2-/3-</sup> (III/III′) | Δ´   | Δ″   |
| (L <sup>1</sup> )₃Y ( <b>1</b> ) | -0.77                                       | -1.51                                          | -2.22                                            | 0.74 | 0.71 |
| (L¹)₃Sm ( <b>2</b> )             | -0.95                                       | -1.71                                          | -2.54                                            | 0.76 | 0.83 |
| (L¹)₃Dy ( <b>3</b> )             | -0.76                                       | -1.60                                          | -2.46                                            | 0.84 | 0.86 |
| (L²)₃Yb ( <b>7</b> )             | -0.76                                       | -1.53                                          | -2.32                                            | 0.77 | 0.79 |
|                                  |                                             |                                                |                                                  |      |      |

n = 1 or 2

### Table S3. Electrochemical parameters for mono-formazanate complexes

|                                                            | E <sup>0</sup> vs Fc <sup>/+</sup> [V]                              |                                                                        |                                                                          | _     |              |
|------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|-------|--------------|
|                                                            | L <sup>2</sup> LnR <sub>2</sub> <sup>0/1-</sup> (I/I <sup>′</sup> ) | L <sup>2</sup> LnR <sub>2</sub> <sup>1-/2-</sup> (II/II <sup>′</sup> ) | L <sup>2</sup> LnR <sub>2</sub> <sup>2-/3-</sup> (III/III <sup>′</sup> ) | Δ́    | Δ″           |
| L <sup>2</sup> SmCp <sup>*</sup> <sub>2</sub> ( <b>4</b> ) | -0.78                                                               | -1.60                                                                  | -2.42                                                                    | 0.82  | 0.82         |
| L <sup>2</sup> DyCp <sub>2</sub> ( <b>5</b> )              | -0.82                                                               | -1.57                                                                  | -2.30                                                                    | 0.75  | 0.73         |
| L <sup>2</sup> YbCp <sub>2</sub> (6)                       | -0.76                                                               | -1.51                                                                  | -2.25                                                                    | 0.75  | 0.74         |
|                                                            |                                                                     |                                                                        |                                                                          | R = ( | Cp or $Cp^*$ |

# IV. UV-Vis spectroscopy

| Subestance        | Absorption    | Extinction coefficient                   |
|-------------------|---------------|------------------------------------------|
|                   | Max / nm      | (L·mol <sup>-1</sup> ·cm <sup>-1</sup> ) |
| Compound 1        | 300, 489,540  | 251474, 171878, 117488                   |
| Compound 2        | 300, 489,540  | 210340, 135800, 100800                   |
| Compound 3        | 300, 489, 540 | 184230, 120874, 79056                    |
| Compound 4        | 299, 410, 484 | 77710, 40266, 40724                      |
| Compound 5        | 301, 410, 480 | 62370, 51100, 30394                      |
| Compound <b>6</b> | 296, 405, 479 | 88800, 83140, 46920                      |
| Compound 7        | 300, 494      | 72880, 40658, 31044                      |
|                   |               |                                          |

### Table S4. UV-Vis spectroscopic data for compounds 1–7

See also video for the experimental setup.

### V. X-ray crystallographic studies

#### 1) General methods

A suitable crystal was covered in mineral oil (Aldrich) and mounted on a glass fiber. The crystal was transferred directly to the cold stream of a STOE IPDS 2 or a STOE StadiVari diffractometer. All structures were solved by using the program SHELXS/T<sup>1, 2</sup> and Olex2.<sup>3</sup> The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least-squares techniques on  $F^2$  by using the program SHELXL.<sup>1, 2</sup> In each case, the locations of the largest peaks in the final difference Fourier map calculations, as well as the magnitude of the residual electron densities, were of no chemical significance. Specific comments for each data set are given below.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication no. CCDC 2120929-2120935. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: <u>deposit@ccdc.cam.ac.uk</u>). Summary of the crystal data, data collection and refinement for compounds are given in Table S5 and Table S6.

#### The following special comments apply to the models of the structures:

-In the crystal structure of **4**, the *t*Bu group (C8-C11) is disordered over two positions with an occupancy of 0.53/0.46.

-In the crystal structure of **5**, the *t*Bu group (C8-C11) is disordered over two positions with an occupancy of 0.51/0.49.

# 2) Summary of crystal data

Table S5: Crystal data and structure refinement of 1-3.

| Compound                                      | ind 1          |                | 3              |
|-----------------------------------------------|----------------|----------------|----------------|
| Formula                                       | C57H45N12Y     | C57H45N12Sm    | C57H45N12Dy    |
| <i>D<sub>calc.</sub></i> / g cm <sup>-3</sup> | 1.405          | <b>1.49</b> 6  | 1.524          |
| μ/mm <sup>-1</sup>                            | 1.304          | 1.316          | 1.672          |
| Formula Weight                                | 986.96         | 1048.41        | 1060.55        |
| Colour                                        | red            | red            | red            |
| Shape                                         | fragment       | fragment       | plate          |
| Size/mm <sup>3</sup>                          | 0.36x0.31x0.29 | 0.25x0.16x0.08 | 0.15x0.11x0.05 |
| т/к                                           | 150            | 100            | 100            |
| Crystal System                                | triclinic      | triclinic      | triclinic      |
| Space Group                                   | ΡĪ             | РĪ             | РĪ             |
| a/Å                                           | 12.7048(6)     | 12.7070(9)     | 12.6707(8)     |
| b/Å                                           | 13.1743(5)     | 13.1135(10)    | 13.1442(8)     |
| c/Å                                           | 15.8425(7)     | 15.8352(9)     | 15.7479(13)    |
| <i>α</i> /°                                   | 97.320(3)      | 97.146(6)      | 97.226(6)      |
| βſ                                            | 91.965(3)      | 92.198(5)      | 92.117(6)      |
| γl°                                           | 116.855(3)     | 116.609(6)     | 116.709(5)     |
| V/Å <sup>3</sup>                              | 2333.74(18)    | 2327.7(3)      | 2311.3(3)      |
| Ζ                                             | 2              | 2              | 2              |
| Ζ'                                            | 1              | 1              | 1              |
| Wavelength/Å                                  | 0.71073        | 0.71073        | 0.71073        |
| Radiation type                                | MoKa           | MoKa           | MoKa           |
| <i>Θ</i> <sub>min</sub> /°                    | 1.755          | 1.759          | 1.809          |
| ⊖max/°                                        | 29.264         | 31.410         | 31.397         |
| Measured Refl.                                | 24350          | 22800          | 20709          |
| Independent Refl.                             | 12536          | 12300          | 12170          |
| Reflections with I > 2(I)                     | 9751           | 10797          | 9617           |
| R <sub>int</sub>                              | 0.0239         | 0.0289         | 0.0659         |
| Parameters                                    | 631            | 631            | 631            |
| Restraints                                    | 0              | 0              | 0              |
| Largest Peak                                  | 0.52           | 1.06           | 2.45           |
| Deepest Hole                                  | -0.20          | -0.87          | -1.75          |
| GooF                                          | 1.020          | 1.035          | 1.018          |
| wR <sub>2</sub> (all data)                    | 0.1040         | 0.0784         | 0.1538         |
| wR <sub>2</sub>                               | 0.0975         | 0.0747         | 0.1397         |
| R1 (all data)                                 | 0.0580         | 0.0397         | 0.0829         |
| <b>R</b> 1                                    | 0.0394         | 0.0315         | 0.0596         |

Table S6: Crystal data and structure refinement of 4-7.

| Compound                                | 4              | 5              | 6                                                 | 7                                                                  |
|-----------------------------------------|----------------|----------------|---------------------------------------------------|--------------------------------------------------------------------|
| Formula                                 | C43H53N4Sm     | C33H33N4Dy     | C <sub>33</sub> H <sub>33</sub> N <sub>4</sub> Yb | C <sub>76</sub> H <sub>86</sub> N <sub>12</sub> Yb(1.5<br>pentane) |
| D <sub>calc.</sub> / g cm <sup>-3</sup> | 1.370          | 1.525          | 1.543                                             | 1.288                                                              |
| μ/mm <sup>-1</sup>                      | 1.594          | 2.675          | 3.340                                             | 1.397                                                              |
| Formula Weight                          | 776.24         | 648.13         | 658.67                                            | 1347.62                                                            |
| Colour                                  | dark red       | dark red       | dark red                                          | dark red                                                           |
| Shape                                   | plate          | fragment       | thin plate                                        | block                                                              |
| Size/mm <sup>3</sup>                    | 0.22x0.17x0.11 | 0.52x0.40x0.20 | 0.27x0.20x0.06                                    | 0.32x0.22x0.15                                                     |
| Т/К                                     | 100            | 150            | 100                                               | 150                                                                |
| Crystal System                          | monoclinic     | monoclinic     | monoclinic                                        | triclinic                                                          |
| Space Group                             | P21/c          | P21            | <b>P2</b> <sub>1</sub>                            | ΡĪ                                                                 |
| a/Å                                     | 22.8627(11)    | 10.179(2       | 10.179(2)                                         | 12.4474(10)                                                        |
| b/Å                                     | 10.1803(5)     | 11.509(2)      | 11.509(2)                                         | 15.2412(10)                                                        |
| c/Å                                     | 17.1284(8)     | 12.716(3)      | 12.716(3)                                         | 19.8619(19)                                                        |
| α/°                                     | -              | -              | -                                                 | 81.535(7)                                                          |
| βſ                                      | 109.217(4)     | 108.62(3)      | 108.62(3)                                         | 80.353(7)                                                          |
| γl°                                     | -              | -              | -                                                 | 69.971(6)                                                          |
| V/ų                                     | 3764.5(3)      | 1411.6(5)      | 1411.6(5)                                         | 3473.7(5)                                                          |
| Z                                       | 4              | 2              | 2                                                 | 2                                                                  |
| Ζ'                                      | 1              | 1              | 1                                                 | 1                                                                  |
| Wavelength/Å                            | 0.71073        | 0.71073        | 0.71073                                           | 0.71073                                                            |
| Radiation type                          | MoKa           | MoKa           | MoKa                                              | MoKa                                                               |
| ⊖ <sub>min</sub> /°                     | 2.212          | 1.690          | 2.111                                             | 1.686                                                              |
| ⊖max/°                                  | 30.061         | 29.848         | 31.708                                            | 29.527                                                             |
| Measured Refl.                          | 17565          | 23042          | 21895                                             | 40105                                                              |
| Independent Refl.                       | 9548           | 7733           | 5288                                              | 19291                                                              |
| Reflections with I > 2(I)               | 6259           | 7090           | 5028                                              | 15030                                                              |
| Rint                                    | 0.0636         | 0.0523         | 0.0780                                            | 0.0366                                                             |
| Parameters                              | 486            | 386            | 346                                               | 842                                                                |
| Restraints                              | 10             | 1              | 655                                               | 86                                                                 |
| Largest Peak                            | 1.88           | 2.53           | 3.61                                              | 1.94                                                               |
| Deepest Hole                            | -2.08          | -3.06          | -4.33                                             | -1.48                                                              |
| GooF                                    | 0.959          | 1.026          | 1.239                                             | 0.977                                                              |
| wR <sub>2</sub> (all data)              | 0.1695         | 0.1421         | 0.1809                                            | 0.0954                                                             |
| wR <sub>2</sub>                         | 0.1498         | 0.1403         | 0.1872                                            | 0.0901                                                             |
| R1 (all data)                           | 0.0994         | 0.0582         | 0.0837                                            | 0.0582                                                             |
| <i>R</i> <sub>1</sub>                   | 0.0628         | 0.0546         | 0.0768                                            | 0.0395                                                             |

#### 3) Crystal structures



**Fig. S20** Molecular structure of **1** in the solid state with thermal ellipsoids at the 30% probability level (left: front view; right: side view). All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Y-N1 2.315(2), Y-N4 2.429(2), Y-N5 2.377(2), Y-N8 2.392(2), Y-N9 2.351(2), Y-N12 2.382(2), N1-N2 1.315(2), N3-N4 1.303(2), N5-N6 1.320(2), N7-N8 1.316(2), N9-N10 1.322(2), N11-N12 1.306(2), N2-C1 1.336(2), N3-C1 1.362(2), N6-C2 1.345(2), N7-C2 1.351(2), N10-C3 1.359(2), N11-C3 1.358(2); N1-Y-N4 70.74(5), N5-Y-N8 66.71(5), N9-Y-N12 70.85(5), N2-N1-Y 132.77(12), N1-N2-C1 120.82(15), N4-N3-C1 121.3(2), N3-N4-Y 131.16(11), N6-N5-Y 115.19(12), N5-N6-C2 120.4(2), N8-N7-C2 119.36(15), N7-N8-Y 116.52(11), N10-N9-Y 105.67(11), N9-N10-C3 119.3(2), N12-N11-C3 121.21(15), N11-N12-Y 103.71(11), N2-C1-N3 129.1(2), N6-C2-N7 125.1(2), N10-C3-N11 126.8(2).



**Fig. S21** Molecular structure of **2** in the solid state with thermal ellipsoids at the 30% probability level (left: front view; right: side view). All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Sm-N1 2.497(2), Sm-N4 2.373(2), Sm-N5 2.443(2), Sm-N8 2.434(2), Sm-N9 2.407(2), Sm-N12 2.435(2), N1-N2 1.302(3), N2-C1 1.356(3), N3-N4 1.317(3), N3-C1 1.338(3), N5-N6 1.310(3), N6-C2 1.347(3), N7-N8 1.318(3), N7-C2 1.352(3), N9-N10 1.313(3), N10-C3 1.363(3), N11-N12 1.300(3), N11-C3 1.358(3); N1-Sm-N4 68.02(6), N5-Sm-N8 65.12(6), N9-Sm-N12 69.59(6), N2-N1-Sm 132.93(14), N1-N2-C1 120.8 (2), N4-N3-C1 120.4(2), N3-N4-Sm 134.30(15), N6-N5-Sm 115.47(14), N5-N6-C2 119.6(2), N8-N7-C2 119.7(2), N7-N8-Sm 114.12(14), N10-N9-Sm 103.90(13), N9-N10-C3 119.3(2), N12-N11-C3 121.9(2), N11-N12-Sm 100.85(13), N2-C1-N3 129.0(2), N6-C2-N7 125.4(2), N10-C3-N11 126.9(2).



**Fig. S22** Molecular structure of **3** in the solid state with thermal ellipsoids at the 30% probability level (left: front view; right: side view). All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Dy-N1 2.443(4), Dy-N4 2.327(5), Dy-N5 2.382(4), Dy-N8 2.385(4), Dy-N9 2.368(4), Dy-N12 2.379(4), N1-N2 1.305(6), N2-C1 1.355(6), N3-N4 1.313(6), N3-C1 1.335(7), N5-N6 1.307(6), N6-C2 1.356(7), N7-N8 1.309(6), N7-C2 1.351(6), N9-N10 1.315(6), N10-C3 1.365(6), N11-N12 1.316(6), N11-C3 1.355(6); N1-Dy-N4 70.46(14), N5-Dy-N8 66.29(14), N9-Dy-N12 70.44(14), N2-N1-Dy 130.4(3), N1-N2-C1 122.1(4), N4-N3-C1 120.1(4), N3-N4-Dy 133.4(3), N6-N5-Dy 117.1(3), N5-N6-C2 119.6(4), N8-N7-C2 120.7(4), N7-N8-Dy 115.2(3), N10-N9-Dy 104.9(3), N9-N10-C3 119.0(4), N12-N11-C3 120.8(4), N11-N12-Dy 102.9(3), N2-C1-N3 129.6(5), N6-C2-N7 124.0(5), N10-C3-N11 127.0(4).



**Fig. S23** Molecular structure of **4** in the solid state with thermal ellipsoids at the 30% probability level (left-front view; right-side view). All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Sm-N1 2.489(4), Sm-N4 2.475(5), N1-N2 1.306(6), N2-C1 1.335(7), N3-N4 1.290(6), N3-C1 1.349(7); N1-Sm-N4 72.15(15), N2-N1-Sm 133.3(4), N1-N2-C1 122.7(5), N4-N3-C1 122.3(5), N3-N4-Sm 134.3(4), N2-C1-N3 134.6(5).



**Fig. S24** Molecular structure of **5** in the solid state with thermal ellipsoids at the 25% probability level (left-front view; right-side view). All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Dy-N1 2.370(8), Dy-N4 2.366(7), N3-N4 1.309(10), N3-C1 1.329(10), N1-N2 1.286(11), N2-C1 1.346(10); N1-Dy-N4 74.0(3), N2-N1-Dy 131.1(6), N1-N2-C1 123.0(8), N4-N3-C1 122.8(7), N3-N4-Dy 130.5(5), N2-C1-N3 131.0(8).



**Fig. S25** Molecular structure of **6** in the solid state with thermal ellipsoids at the 25% probability level (left-front view; right-side view). All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Yb-N1 2.37(2), Yb-N4 2.335(15), N1-N2 1.26(3), C1-N2 1.39(3), N3-C1 1.31(3), N3-N4 1.29(2); N1-Yb-N4 73.8(7), N2-N1-Yb 130.4(15), N1-N2-C1 122(2), N4-N3-C1 124(2), N3-N4-Yb 129.5(13), N3-C1-N2 130(2).



**Fig. S26** Molecular structure of **7** in the solid state with thermal ellipsoids at the 25% probability level (left-front view; right-side view). All hydrogen atoms and solvent molecules are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Yb-N1 2.324(2), Yb-N4 2.344(2), Yb-N5 2.372(2), Yb-N8 2.287(2), Yb-N9 2.311(2), Yb-N12 2.345(2), N1-N2 1.322(3), C1-N2 1.347(4), N3-C1 1.346(4), N3-N4 1.307(3), N5-N6 1.321(3), N6-C2 1.345(4), N7-C2 1.350(4), N7-N8 1.312(3), N9-N10 1.317(3), C3-N10 1.351(3), C3-N11 1.347(4); N1-Yb-N4 69.38(8), N5-Yb-N8 71.70(8), N9-Yb-N12 68.39(8), N2-N1-Yb 110.0(2), N1-N2-C1 119.3(2), N4-N3-C1 120.3(2), N3-N4-Yb 111.5(2), N6-N5-Yb 122.8(2), N5-N6-C2 122.1(2), N8-N7-C2 119.8(2), N7-N8-Yb 125.8(2), N10-N9-Yb 120.3(2), N9-N10-C3 119.6(2), N12-N11-C3 120.1(2), N11-N12-Yb 120.2(2), N2-C1-N3 125.1(3), N6-C2-N7 127.9(3), N10-C3-N11 125.2(3).



Fig. S27 Molecular structure of L<sup>2</sup>Na(thf) in the solid state. All hydrogen atoms are omitted for clarity.

# **VI.** References

[1] G. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.

[2] G. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3-8.

[3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.