Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Titel...

Table of Contents

1. Mass spectra

Figure S1.1: Mass spectrum of Ph ₂ BiNMe ₂ (1)	6
Figure S1.2: Mass spectrum of Mes ₂ BiNMe ₂ (2)	7
Figure S1.3: Mass spectrum of Mes ₂ BiNH <i>t</i> Bu (3)	8
Figure S1.4: Mass spectrum of Ph ₂ BiP <i>t</i> Bu ₂ (4)	9
Figure S1.5: Mass spectrum of Mes ₂ BiP <i>t</i> Bu ₂ (5)	10
Figure S1.6: Mass spectrum of Ph2BiPtBu(SiMe3) (6)	11
Figure S1.7: Mass spectrum of Mes ₂ BiP <i>t</i> Bu(SiMe ₃) (7)	12
Figure S1.8: Mass spectrum of Ph ₂ BiAs <i>t</i> Bu ₂ (8)	13
Figure S1.9: Mass spectrum of Mes ₂ BiAs <i>t</i> Bu ₂ (9)	14
Figure S1.10: Mass spectrum of Ph ₂ BiAs <i>t</i> Bu(SiMe ₃) (10)	15
Figure S1.11: Mass spectrum of Mes2BiAstBu(SiMe3) (11)	16
Figure S1.12: Mass spectrum of Ph2BiSbMes2 (12)	17
Figure S1.13: Mass spectrum of Mes ₂ BiSbMes ₂ (13)	18

2. NMR spectra

Figure S2.1.1: ¹ H NMR Spectrum of Ph ₂ BiNMe ₂ (1) in C ₆ D ₆	19
Figure S2.1.2: ¹³ C NMR Spectrum of Ph ₂ BiNMe ₂ (1) in C ₆ D ₆	20
Figure S2.2.1: ¹ H NMR Spectrum of Mes ₂ BiNMe ₂ (2) in C ₆ D ₆	21
Figure S2.2.2: ¹³ C NMR Spectrum of Mes ₂ BiNMe ₂ (2) in C ₆ D ₆	22
Figure S2.3.1: ¹ H NMR Spectrum of Mes ₂ BiNH <i>t</i> Bu (3) in C ₆ D ₆	23
Figure S2.3.2: ¹³ C NMR Spectrum of Mes ₂ BiNH <i>t</i> Bu (3) in C ₆ D ₆	24
Figure S2.4.1: ¹ H NMR Spectrum of Ph ₂ BiP <i>t</i> Bu ₂ (4) in C ₆ D ₆	25
Figure S2.4.2: ¹³ C NMR Spectrum of Ph ₂ BiP <i>t</i> Bu ₂ (4) in C ₆ D ₆	26
Figure S2.4.3: ³¹ P NMR Spectrum of Ph ₂ BiP <i>t</i> Bu ₂ (4) in C ₆ D ₆	27
Figure S2.5.1: ¹ H NMR Spectrum of Mes ₂ BiP <i>t</i> Bu ₂ (5) in C ₆ D ₆	28
Figure S2.5.2: ¹³ C NMR Spectrum of Mes ₂ BiP <i>t</i> Bu ₂ (5) in C ₆ D ₆	29
Figure S2.5.3: ³¹ P NMR Spectrum of Mes ₂ BiP <i>t</i> Bu ₂ (5) in C ₆ D ₆	30
Figure S2.6.1: ¹ H NMR Spectrum of Ph ₂ BiP <i>t</i> Bu(SiMe ₃) (6) in C ₆ D ₆	31
Figure S2.6.2: ¹³ C NMR Spectrum of Ph ₂ BiP <i>t</i> Bu(SiMe ₃) (6) in C ₆ D ₆	32
Figure S2.6.3: ³¹ P NMR Spectrum of Ph ₂ BiP <i>t</i> Bu(SiMe ₃) (6) in C ₆ D ₆	33
Figure S2.6.4: ²⁹ Si NMR Spectrum of Ph ₂ BiP <i>t</i> Bu(SiMe ₃) (6) in C ₆ D ₆	34

Figure S2.7.1: ¹ H NMR Spectrum of Mes ₂ BiP <i>t</i> Bu(SiMe ₃) (7) in C ₆ D ₆	35
Figure S2.7.2: ¹³ C NMR Spectrum of Mes ₂ BiP <i>t</i> Bu(SiMe ₃) (7) in C ₆ D ₆	36
Figure S2.7.3: ³¹ P NMR Spectrum of Mes ₂ BiP <i>t</i> Bu(SiMe ₃) (7) in C ₆ D ₆	37
Figure S2.7.4: ²⁹ Si NMR Spectrum of Mes ₂ BiP <i>t</i> Bu(SiMe ₃) (7) in C ₆ D ₆	38
Figure S2.8.1: ¹ H NMR Spectrum of Ph ₂ BiAs <i>t</i> Bu ₂ (8) in C ₆ D ₆	39
Figure S2.8.2: ¹³ C NMR Spectrum of Ph ₂ BiAs <i>t</i> Bu ₂ (8) in C ₆ D ₆	40
Figure S2.9.1: ¹ H NMR Spectrum of Mes ₂ BiAs <i>t</i> Bu ₂ (9) in C ₆ D ₆	41
Figure S2.9.2: ¹³ C NMR Spectrum of Mes ₂ BiAs <i>t</i> Bu ₂ (9) in C ₆ D ₆	42
Figure S2.10.1: ¹ H NMR Spectrum of Ph ₂ BiAs <i>t</i> Bu(SiMe ₃) (10) in C ₆ D ₆	43
Figure S2.10.2: ¹³ C NMR Spectrum of Ph ₂ BiAs <i>t</i> Bu(SiMe ₃) (10) in C ₆ D ₆	44
Figure S2.10.3: ²⁹ Si NMR Spectrum of Ph ₂ BiAs <i>t</i> Bu(SiMe ₃) (10) in C ₆ D ₆	45
Figure S2.11.1: ¹ H NMR Spectrum of Mes ₂ BiAs <i>t</i> Bu(SiMe ₃) (11) in C ₆ D ₆	46
Figure S2.11.2: ¹³ C NMR Spectrum of Mes ₂ BiAs <i>t</i> Bu(SiMe ₃) (11) in C ₆ D ₆	47
Figure S2.11.3: ²⁹ Si NMR Spectrum of Mes ₂ BiAs <i>t</i> Bu(SiMe ₃) (11) in C ₆ D ₆	48
Figure S2.12.1: ¹ H NMR Spectrum of Ph ₂ BiSbMes ₂ (12) in toluene-d ₈	49
Figure S2.12.2: Temperature dependent ¹ H NMR Spectra of Ph ₂ BiSbMes ₂	50
(12) in toluene-d ₈	

Figure S2.12.3: ¹³ C NMR Spectrum of Ph ₂ BiSbMes ₂ (12) in toluene-d ₈	51
Figure S2.13.1: ¹ H NMR Spectrum of Ph ₂ BiSbMes ₂ (13) in toluene-d ₈	52
Figure S2.13.2: Temperature dependent ¹ H NMR Spectra of Mes ₂ BiSbMes ₂	53
(13) in toluene-d ₈	
Figure S2.13.3: ¹³ C NMR Spectrum of Ph ₂ BiSbMes ₂ (13) in toluene-d ₈	54
3. Calculation of ΔH , ΔS and ΔG (20 °C) for the equilibria of 12 and 13	
Table S1: Equilibrium constants for the dismutation of 12 and 13 at different temperatures	55
Figure S3.1: <i>van't Hoff</i> plot for the equilibrium of 12 and Mes ₄ Sb ₂ and Ph ₄ Bi ₂	00
with a fitted linear regression f(x)	55
Figure S3.1: <i>van't Hoff</i> plot for the equilibrium of 12 and Mes ₄ Sb ₂ and Ph ₄ Bi ₂	
with a fitted linear regression g(x)	56
4. Crystallographic Data	
Table S2: Crystallographic data of Ph2BiNMe2 (1), Mes2BiNMe2 (2) and Mes2BiNHtBu (3)	57
Table S3: Crystallographic data of Ph2BiPtBu2 (4), Mes2BiPtBu2 (5) andPh2BiPtBu(SiMe3) (6)	58
Table S4: Crystallographic data of Mes2BiPtBu(SiMe3) (7), Ph2BiAstBu2 (8) Mes2BiAstBu2 (9)	59
Table S5: Crystallographic data of Ph2BiAstBu(SiMe3) (10),Mes2BiAstBu(SiMe3) (11) and Mes2BiSbMes2 (12)	60

1. Mass spectra

1.1 Ph₂BiNMe₂ (1)

Figure S1.1. HR-CI(+) Mass spectrum of Ph₂BiNMe₂ (1) as [M + H]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.2 Mes₂BiNMe₂ (2)

Figure S1.2. HR-CI(+) Mass spectrum of Mes₂BiNMe₂ (**2**) as [M + H]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.3 Mes₂BiNHtBu (3)

Figure S1.3. HR-CI(+) Mass spectrum of Mes₂BiNH*t*Bu (**3**) as [M - H]⁺. Top: Whole spectrum. Middle: High resolution extract.

1.4 Ph₂BiPtBu₂ (4)

Figure S1.4. HR-CI(+) Mass spectrum of Ph₂BiP*t*Bu₂ (**4**) as $[M + H]^+$. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.5 Mes₂BiPtBu₂ (5)

Figure S1.5. HR-CI(+) Mass spectrum of Mes₂BiP*t*Bu₂ (**5**) as [M]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.6 Ph2BiPtBu(SiMe3)3 (6)

Figure S1.6. HR-CI(+) Mass spectrum of Ph₂BiP*t*Bu(SiMe₃) (**6**) as [M + H]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.7 Mes₂P*t*Bu(SiMe₃)₃ (7)

Figure S1.7. HR-CI(+) Mass spectrum of Mes₂BiP*t*Bu(SiMe₃) (**7**) as [M + H]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.8 Ph₂BiAstBu₂ (8)

Figure S1.8. HR-CI(+) Mass spectrum of Ph₂BiAs*t*Bu₂ (**8**) as [M]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.9 Mes₂BiAstBu₂ (9)

Figure S1.9. HR-LIFDI(+) Mass spectrum of Mes₂BiAs*t*Bu₂ (**9**) as [M]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.10 Ph2BiAstBu(SiMe3)3 (10)

Figure S1.10. HR-LIFDI(+) Mass spectrum of Mes₂BiAs*t*Bu(SiMe₃) (**10**) as [M]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.11 Mes₂BiAs*t*Bu(SiMe₃)₃ (11)

Figure S1.11. HR-CI(+) Mass spectrum of Mes₂BiAs*t*Bu(SiMe₃) (**11**) as [M]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.12 Ph₂BiSbMes₂

Figure S1.12. HR-Cl(+) Mass spectrum of Ph₂BiSbMes₂ (**12**) as [M + H]⁺. Top: Whole spectrum. Middle: High resolution extract. Bottom: Calculated isotope pattern.

1.13 Mes₂BiSbMes₂

Figure S1.13. HR-LIFDI(+) Mass spectrum of a mixture of Mes₂BiSbMes₂ (**13**) as [M]⁺, Mes₄Bi₂ as [M]⁺ (m/z = 894.30507) and Mes₄Sb₂ as [M]⁺ (m/z = 718.15194).Top: Whole spectrum. Middle: High resolution extract of Mes₂BiSbMes₂ (**13**). Bottom: Calculated isotope pattern for Mes₂BiSbMes₂ (**13**).

2. NMR spectra

2.1 Ph₂BiNMe₂

Figure S2.1.1: ¹H NMR spectrum (300 MHz) of **1** in C_6D_6 at room temperature (* = Unknown impurity, § = Silicon grease).

Figure S2.1.2: ¹³C NMR spectrum (75 MHz) of 1 in C₆D₆ at room temperature.

Figure S2.2.1: ¹H NMR spectrum (300 MHz) of **2** in C_6D_6 at room temperature (* = Unknown impurity, § = Silicon grease).

Figure S2.2.2: ¹³C NMR spectrum (75 MHz) of **2** in C₆D₆ at room temperature.

2.3 Mes₂BiNH*t*Bu

Figure S2.3.1: ¹H NMR spectrum (300 MHz) of **3** in C_6D_6 at room temperature (* = Mes₂BiNMe₂ (**2**), § = Silicon grease).

Figure S2.3.2: ¹³C NMR spectrum (75 MHz) of **3** in C_6D_6 at room temperature (* = Mes₂BiNMe₂ (2)).

Figure S2.4.1: ¹H NMR spectrum (500 MHz) of 4 in C_6D_6 at room temperature (* = Unknown impurity, # = pentane, § = Silicon grease).

Figure S2.4.2: ¹³C NMR spectrum (125 MHz) of **4** in C_6D_6 at room temperature (* = Unknown impurity).

Figure S2.4.3: ${}^{13}P{}^{1}H$ NMR spectrum (200 MHz) of 4 in C₆D₆ at room temperature.

2.5 Mes₂BiPtBu₂ (5)

Figure S2.5.1: ¹H NMR spectrum (500 MHz) of **5** in C₆D₆ at room temperature (* = Unknown impurity, § = Silicon grease).

Figure S2.5.2: ¹³C NMR spectrum (125 MHz) of **5** in C_6D_6 at room temperature (* = Unknown impurity).

Figure S2.5.3: ${}^{31}P{}^{1}H$ NMR spectrum (125 MHz) of 5 in C₆D₆ at room temperature.

Figure S2.6.1: ¹H NMR spectrum (500 MHz) of 6 in C₆D₆ at room temperature.

Figure S2.6.2: ¹³C NMR spectrum (125 MHz) of 6 in C₆D₆ at room temperature.

Figure S2.6.3: ${}^{31}P{}^{1}H$ NMR spectrum (200 MHz) of 6 in C₆D₆ at room temperature.

Figure S2.6.4: ²⁹Si-DEPT NMR spectrum (99 MHz) of 6 in C₆D₆ at room temperature.

Figure S2.7.1: ¹H NMR spectrum (500 MHz) of 7 in C₆D₆ at room temperature.

Figure S2.7.2: ¹³C NMR spectrum (125 MHz) of 7 in C₆D₆ at room temperature.

Figure S2.7.3: ³¹P NMR spectrum (200 MHz) of 7 in C₆D₆ at room temperature.

Figure S2.7.4: ²⁹Si NMR spectrum (99 MHz) of 7 in C₆D₆ at room temperature.

Figure S2.8.1: ¹H NMR spectrum (300 MHz) of **8** in C_6D_6 at room temperature (§ = Silicon grease).

Figure S2.8.2: ¹³C NMR spectrum (75 MHz) of **8** in C_6D_6 at room temperature (§ = Silicon grease).

Figure S2.9.1: ¹H NMR spectrum (500 MHz) of 9 in C₆D₆ at room temperature.

Figure S2.8.2: ¹³C NMR spectrum (125 MHz) of 9 in C₆D₆ at room temperature.

Figure S2.10.1: ¹H NMR spectrum (500 MHz) of **10** in C_6D_6 at room temperature (§ = Silicon grease).

Figure S2.10.2: ¹³C NMR spectrum (125 MHz) of 10 in C₆D₆ at room temperature.

Figure S2.10.3: ²⁹Si NMR spectrum (99 MHz) of 10 in C₆D₆ at room temperature.

Figure S2.11.1: ¹H NMR spectrum (500 MHz) of 11 in C_6D_6 at room temperature (* = Unknown impurity).

Figure S2.11.2: ¹³C NMR spectrum (125 MHz) of **11** in C_6D_6 at room temperature (* = Unknown impurity, § = Silicon grease).

Figure S2.11.1: ²⁹Si NMR spectrum (99 MHz) of 11 in C_6D_6 at room temperature (* = Unknown impurity).

2.12 Ph₂BiSbMes₂ (12)

Figure S2.12.1: ¹H NMR spectrum (500 MHz) of 12 in toluene-d₈ at room temperature (* = Mes₄Sb₂).

Figure S2.12.2: Excerpts of the temperature dependent ¹H NMR spectra (500 MHz) of 12 in toluene-d₈ (+ = 12, $* = Mes_4Sb_2$).

Figure S2.12.3: ¹³C NMR spectrum (125 MHz) of 12 in toluene-d₈ at room temperature (* = Mes₄Sb₂, # = Ph₄Bi₂).

Figure S2.13.1: ¹H NMR spectrum (500 MHz) of 13 in toluene-d₈ at room temperature (* = Mes₄Sb₂, # = Mes₄Bi₂).

Figure S2.13.2: Excerpts of the temperature dependent ¹H NMR spectra (500 MHz) of 13 in toluene-d₈ at room temperature (+ = 13, * = Mes₄Sb₂, # = Mes₄Bi₂).

53

Figure S2.13.3: ¹³C NMR spectrum (125 MHz) of 13 in toluene-d₈ at room temperature (* = Mes₄Sb₂, # = Mes₄Bi₂).

3. Calculation of ΔH_r^0 , ΔS_r^0 and ΔG_r (20 °C) for the equilibria of 12 and 13

Table S1. Equilibrium constants for the dismutation of **12** and **13** two Mes₄Sb₂ and the corresponding disbimuthine at different temperatures. Equilibrium constants were obtained *via* integration of NMR signals using the *dcon* implementation in *TopSpin 4.0.7*.

		12		1	3
T (K ⁻¹)	T ⁻¹ (K ⁻¹)	K	In <i>K</i>	K	In K
193	0.00518	64.811	4.1285	1.154	0,1291
213	0.00469	64.811	4.1715	1.154	0,1432
233	0.00429	68.117	4.2212	1.077	0,0744
253	0.00395	67.864	4.2175	1.039	0,0386
273	0.00366	72.382	4.2820	0.987	-0,0132
293	0.00341	76.357	4.3354	1.049	0,0476

Figure S3.1: *van't Hoff* plot of the natural logarithmic of the equilibrium constant in the equilibrium of **12** and Mes₄Sb₂ and Ph₄Bi₂ against the reciprocal temperature with a fitted linear regression f(x).

Figure S3.2: *van't Hoff* plot of the natural logarithmic of the equilibrium constant in the equilibrium of **13** and Mes₄Sb₂ and Mes₄Bi₂ against the reciprocal temperature with a fitted linear regression g(x).

Calculation of reaction entropy, reaction enthalpy and free reaction energy at 20 °C:

 $= 72.6 \text{ K} \cdot 8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1} = 603 \text{ J} \cdot \text{mol}^{-1} = 0.603 \text{ KJ} \cdot \text{mol}^{-1}$ 12: ΔH_r^0 $= \pm 26.0 \text{ K} \cdot 8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1} = 216 \text{ J} \cdot \text{mol}^{-1} = \pm 0.216 \text{ KJ} \cdot \text{mol}^{-1}$ $\Delta(\Delta H_r^0)$ ΔS_r^0 $= 4.54 \cdot 8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1}$ = 37.78 J·mol⁻¹K⁻¹ $= \pm 0.11 \text{ K} \cdot 8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1} = \pm 0.92 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1}$ $\Delta(\Delta S_r^0)$ ΔG_{ℓ} (20 °C) = 603 J·mol⁻¹ - 293 K · 37.78 J·mol⁻¹K⁻¹ = -10.47 KJ·mol⁻¹ $\Delta(\Delta G_r (20 \ ^{\circ}C)) = \pm 216 \ \text{J} \cdot \text{mol}^{-1} - 293 \ \text{K} \cdot 0.92 \ \text{J} \cdot \text{mol}^{-1} \text{K}^{-1} = \pm 0.05 \ \text{KJ} \cdot \text{mol}^{-1}$ ΔH_r^0 $= -75.3 \text{ K} \cdot 8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1} = -626 \text{ J} \cdot \text{mol}^{-1} = -0.626 \text{ KJ} \cdot \text{mol}^{-1}$ 13: $= \pm 23.6 \text{ K} \cdot 8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1} = 196 \text{ J} \cdot \text{mol}^{-1} = \pm 0.196 \text{ K} \text{J} \cdot \text{mol}^{-1}$ $\Delta(\Delta H_r^0)$ ΔSr^0 $= -0.25 \cdot 8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1} = -2.05 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1}$ $= \pm 0.10 \text{ K} \cdot 8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1} = \pm 0.83 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1}$ $\Delta(\Delta S_r^0)$ ΔG_{ℓ} (20 °C) = -626 J·mol⁻¹ - 293 K · -2.05 J·mol⁻¹K⁻¹ = -0.03 KJ·mol⁻¹ $\Delta(\Delta G_r (20 \ ^{\circ}C)) = \pm (196 \ \text{J} \cdot \text{mol}^{-1} - 293 \ \text{K} \cdot 0.92 \ \text{J} \cdot \text{mol}^{-1} \text{K}^{-1}) = \pm 0.05 \ \text{KJ} \cdot \text{mol}^{-1}$

4. Crystallographic data

 Table S2. Selected crystal structure data of the structure determinations of compounds

1, 2 and 3

Compound	1	2	3
Empirical formula	C14H16Bi1N1	- C ₂₀ H ₂₈ Bi ₁ N ₁	C22H32Bi1N1
Formula weight	407 26	491 41	519 46
Crystal color habit	colorless needle	vellow needle	colorless block
Temperature/K	100.0	100.0	100.0
Crystal system	triclinic	monoclinic	triclinic
Space group	$P\overline{1}$	$P2_1/c$	$P\overline{1}$
a/Å	9 3621(3)	8 075(3)	9 5236(5)
h/Å	9 725(3)	8 710(3)	9 9232(5)
c/Å	14 8523(6)	26 474(12)	13 0242(6)
	80 019(3)	Q()	96 380(4)
G/°	78 242(3)	93 97 <i>(</i> <u>/</u>)	104 891 <i>(</i> 4)
ν/°	88 274(3)	90.07 (4) 90	115 201(4)
Y/olume/Å ³	1307 51(9)	1857 7(13)	1040 56(10)
7	4	4	2
\sim	2 069	1 757	1 658
μ/mm^{-1}	13 458	9 488	8 475
F(000)	760.0	952.0	508.0
Crystal size/mm ³	-	-	-
Crystal radius(equiv)/mm	0.0569	0.0669	0 0701
Diffractometer	Stoe IPDS 2T	Stoe IPDS 2	Stoe IPDS 2
Radiation	$M_0K_{\alpha}(\lambda =$	$M_0K_{\alpha}(\lambda =$	$M_0K_{\alpha}(\lambda =$
	0 71073)	0 71073)	0 71073)
2Θ range for data	4.240 to 58.358	3.084 to 58.342	3.344 to 58.302
collection/°			
Reflections collected	15578	22828	16312
Independent reflections	7042 [R _{int} =	4997 [Rint =	5617 [Rint =
	0.0220. Rsigma =	0.0357. Rsigma =	0.0236. Rsigma =
	0.0269]	0.0317]	0.02911
Data/restraint/parameters	7042/0/293	4997/0/207	5617/1/230
Goodness-of-fit on <i>F</i> ²	1.029	0.971	1.004
Final R indexes [all data]	R1 = 0.0407. wR2	R1 = 0.0389, wR2	R1 = 0.0312, wR2
· · · · · · · · · · · · · · · · · · ·	= 0.0639	= 0.0665	= 0.0568
Final R indexes [l≥2σ(l)]	R1 = 0.0270, wR2	R1 = 0.0268, wR2	R1 = 0.0245, wR2
	= 0.0591	= 0.0640	= 0.0554
Largest diff. peak/hole/ e	1.83/-1.55	1.99/-0.81	1.29/-0.83
Å-3			-
CCDC	2151498	2151502	2151499

Table S3. Selected crystal structure data of the structure determinations of compounds

4, 5 and 6.

Compound	4	5	6
Empirical formula	C ₂₀ H ₂₈ Bi ₁ P ₁	C ₂₆ H ₄₀ Bi ₁ P ₁	C19H28Bi1P1Si1
Formula weight	508.37	592.53	524.45
Crystal color, habit	colorless, block	yellow, needle	colorless, needle
Temperature/K	100.0	100.0	100.0
Crystal system	monoclinic	monoclinic	triclinic
Space group	P21/n	P21/c	PĪ
a/Å	6.3994(3)	17.2923(13)	6.2419(3)
b/Å	18.2817(10)	9.4485(5)	8.9902(4)
c/Å	16.9616(9)	31.273(2)	19.3583(10)
α/°	90	90	77.940(4)
β/°	95.753(4)	96.938(6)	88.394(4)
γ/°	90	90	75.687(4)
Volume/Å ³	1974.38(18)	5072.1(6)	1029.04(9)
Z	4	8	2
ρ _{calc} g/cm ³	1.710	1.552	1.693
µ/mm ⁻¹	9.007	7.024	8.699
F(000)	984.0	2352.0	508.0
Crystal size/mm ³	-	-	0.0853
Crystal radius(equiv)/mm	0.0705	0.0492	
Diffractometer	Stoe IPDS 2T	Stoe IPDS 2T	Stoe IPDS 2
Radiation	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =
	0.71073)	0.71073)	0.71073)
20 range for data collection/°	4.456 to 57.00	3.318 to 55.828	4.304 to 52.00
Reflections collected	24622	33120	15780
Independent reflections	5012 [R _{int} =	12063 [R _{int} =	4036 [Rint =
	0.0277, R _{sigma} =	0.0309, R _{sigma} =	0.0246, R _{sigma} =
	0.0158]	0.0370]	0.0264]
Data/restraint/parameters	5012/0/205	12063/0/529	4036/0/205
Goodness-of-fit on F ²	1.047	1.012	1.011
Final R indexes [all data]	$R_1 = 0.0284, WR_2$ = 0.0475	$R_1 = 0.0521, WR_2$ = 0.0695	$R_1 = 0.0267, wR_2$ = 0.0523
Final R indexes [I≥2σ(I)]	$R_1 = 0.0214$. wR ₂	$R_1 = 0.0300$. wR ₂	$R_1 = 0.0215$, wR ₂
	= 0.0475	= 0.0630	= 0.0523
Largest diff. peak/hole/ e Å ⁻³	0.95/-0.75	1.65/-1.13	3.17/-0.37
CCDC	2151505	2151506	2151500

Table S4. Selected crystal structure data of the structure determinations of compounds

7, 8 and 9

Compound	7	8	9
Empirical formula	$C_{25}H_{40}Bi_1P_1Si_1$	C ₂₀ H ₂₈ Bi ₁ As ₁	$C_{26}H_{40}Bi_1As_1$
Formula weight	608.61	552.32	638.48
Crystal color, habit	yellow, block	colorless, needle	yellow, block
Temperature/K	100.0	100.0	100.0
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P21/c	P21/n	P21/n
a/Å	10.1342(10)	6.3753(3)	10.010(2)
b/Å	8.4111(10)	18.4967(9)	8.3035(19)
c/Å	31.257(3)	17.0593(7)	30.855(6)
α/°	90	90	90
β/°	98.857(8)	95.766(3)	97.675(16)
γ/°	90	90	90
Volume/Å ³	2632.6(5)	2001.49(16)	2541.7(9)
Z	4	4	4
ρ _{calc} g/cm ³	1.536	1.833	1.663
µ/mm ⁻¹	6.812	10.446	8.238
F(000)	1208.0	1056.0	1248.0
Crystal radius(equiv)/mm	0.1573	-	-
		0.0293	0.0696
Diffractometer	Stoe IPDS 2T	Stoe IPDS 2	Stoe IPDS 2
Radiation	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =
	0.71073)	0.71073)	0.71073)
20 range for data collection/°	4.068 to 53.37	3.256 to 51.992	2.664 to 51.998
Reflections collected	31860	12090	23780
Independent reflections	5563 [Rint =	3927 [Rint =	4994 [Rint =
	$0.0265. R_{sigma} =$	$0.0354. R_{sigma} =$	0.0281. Rsigma =
	0.0176]	0.0412]	0.0182]
Data/restraint/parameter	5563/14/323	3927/0/205	4994/0/265
s Goodness-of-fit on F ²	0.993	0.999	1.071
Final R indexes [all data]	$R_1 = 0.0265, wR_2$	$R_1 = 0.0538$, w R_2	R1 = 0.0284, wR2
	= 0.0499	= 0.0717	= 0.0641
Final R indexes [I≥2σ(I)]	$R_1 = 0.0195$, w R_2	$R_1 = 0.0325$, w R_2	R1 = 0.0238, wR2
	= 0.0482	= 0.0671	= 0.0629
Largest diff. peak/hole/ e Å ⁻³	0.99/-0.28	1.47/-0.59	1.79/-0.50
CCDC	2151503	2151508	2151502

Table S5. Selected crystal structure data of the structure determinations of compounds

10, 11 and 12

Compound	10	11	12
Empirical formula	C ₁₉ H ₂₈ Bi ₁ As ₁ Si ₁	C ₂₅ H ₄₀ Bi ₁ As ₁ Si ₁	C ₃₀ H ₃₂ Bi ₁ Sb ₁
Formula weight	568.40	652.56	723.28
Crystal color, habit	colorless, needle	yellow, block	yellow, block
Temperature/K	100.0	100.0	100.0
Crystal system	monoclinic	monoclinic	triclinic
Space group	C2/c	P21/c	PĪ
a/Å	40.1899(18)	10.1538(3)	9.8036(4)
b/Å	6.1680(2)	8.4878(2)	11.5319(5)
c/Å	17.2741(7)	31.1727(10)	13.3134(5)
α/°	90	90	77.045(3)
β/°	103.327(3)	98.745(2)	76.373(3)
γ/°	90	90	65.976(3)
Volume/Å ³	4166.8(3)	2655.34(13)	1317.59(10)
Z	4	4	2
ρ _{calc} g/cm ³	1.812	1.632	1.823
µ/mm ⁻¹	10.092	7.930	7.709
F(000)	2176.0	1280.0	692.0
Crystal size/mm ³	-	-	-
Crystal radius(equiv)/mm	0.0972	0.1738	0.0453
Diffractometer	Stoe IPDS 2	Stoe IPDS 2T	Stoe IPDS 2T
Radiation	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =
	0.71073)	0.71073)	0.71073)
20 range for data collection/°	4.814 to 58.458	4.058 to 55.952	3.192 to 58.51
Reflections collected	19382	15324	16609
Independent reflections	5619 [Rint =	6248 [Rint =	7091 [Rint =
	0.0321, R _{sigma} =	0.0280, R _{sigma} =	0.0268, R _{sigma} =
	0.0249]	0.0300]	0.0367]
Data/restraint/parameters	5619/0/205	6248/25/304	7091/0/295
Goodness-of-fit on <i>F</i> ²	1.056	1.049	1.026
Final R indexes [all data]	R ₁ = 0.0402, wR ₂ = 0.0796	R1 = 0.0371, wR2 = 0.0668	R1 = 0.0456, wR2 = 0.0762
Final R indexes [I≥2σ(I)]	$R_1 = 0.0301$. wR ₂	R1 = 0.0282, wR2	R1 = 0.0318, wR2
[(-)]	= 0.0733	= 0.0641	= 0.0719
Largest diff. peak/hole/ e Å ⁻³	1.95/-2.14	1.02/-0.58	1.64/-1.68
CCDC	2151504	2151509	2151507