# Basicity of Isostructural Porous Ionic Crystals Composed of Nb/Ta-Substituted Keggin-Type Polyoxotungstates

Zhewei Weng,<sup>a</sup> Naoki Ogiwara,<sup>a</sup> Daisuke Yokogawa,<sup>a</sup> Takashi Kitao,<sup>b,c</sup> Yuji Kikukawa,<sup>d</sup> Sayaka Uchida\*<sup>a</sup>

a. Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.

b. Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

c. Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.

d. Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.

#### **Experimental details**

Table S1 Crystallographic data of 1 POMs Table S2 Catalytic results in Knoevenagel condensation reaction Table S3 Natural population analysis of 1 BW<sub>12</sub> Table S4 Natural population analysis of 1 SiW<sub>11</sub>Nb Table S5 Natural population analysis of 1 SiW<sub>11</sub>Ta Fig. S1 IR spectra of 1\_BW<sub>12</sub> and the ionic components Fig. S2 IR spectra of 1\_SiW<sub>11</sub>Nb and the ionic components Fig. S3 IR spectra of 1 Si $W_{11}$ Ta and the ionic components Fig. S4 TG-DTA analysis of 1\_BW<sub>12</sub> Fig. S5 TG-DTA analysis of 1 SiW<sub>11</sub>Nb Fig. S6 TG-DTA analysis of 1 SiW<sub>11</sub>Ta Fig. S7 ORTEP drawing of 1 SiW<sub>11</sub>Nb Fig. S8 ORTEP drawing of 1\_SiW<sub>11</sub>Ta Fig. S9 PXRD patterns of 1 BW<sub>12</sub> Fig. S10 Cell parameter refinement of as-synthesized 1\_BW<sub>12</sub> Fig. S11 PXRD patterns of 1 SiW<sub>11</sub>Nb Fig. S12 Cell parameter refinement of as-synthesized 1 SiW<sub>11</sub>Nb Fig. S13 PXRD patterns of 1\_SiW<sub>11</sub>Ta Fig. S14 Cell parameter refinement of as-synthesized 1 SiW<sub>11</sub>Ta Fig. S15 Cell parameter refinement of 1\_BW<sub>12</sub> after reaction Fig. S16 Cell parameter refinement of 1 SiW<sub>11</sub>Nb after reaction Fig. S17 Cell parameter refinement of 1 SiW<sub>11</sub>Ta after reaction Fig. S18 Sorption isotherms of 1 BW<sub>12</sub> Fig. S19 Sorption isotherms of 1 SiW<sub>11</sub>Nb Fig. S20 Sorption isotherms of 1 SiW<sub>11</sub>Ta Fig. S21 Time courses of Knoevenagel condensation catalyzed by 1 POMs in ethanol

## Experimental details Materials

Cr(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O, KOH, KCl, H<sub>3</sub>BO<sub>3</sub>, Na<sub>2</sub>SiO<sub>3</sub>·*n*H<sub>2</sub>O, Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O, Nb<sub>2</sub>O<sub>5</sub>, conc. HCl, conc. HNO<sub>3</sub>, hydrogen peroxide, distilled water (H<sub>2</sub>O), ethanol, acetonitrile (CH<sub>3</sub>CN), methanol (CH<sub>3</sub>OH), formic acid, and diethyl ether were purchased from Kanto Chemical Co. Inc. Biphenyl, malononitrile, and benzalmalononitrile were purchased from TCI Co. Ltd. Ta<sub>2</sub>O<sub>5</sub> was purchased from FUJIFILM Wako Pure Chemical Corporation. All chemicals were used without further purification.  $[Cr_3O(OOCH)_6(H_2O)_3](OOCH) \cdot nH_2O$ ,<sup>1</sup>  $[Cr_3O(OOCH)_6(H_2O)_3](NO_3)$ ,<sup>2</sup> K<sub>5</sub>[BW<sub>12</sub>O<sub>40</sub>]·*n*H<sub>2</sub>O,<sup>3</sup> K<sub>5</sub>[SiW<sub>11</sub>Nb(O<sub>2</sub>)O<sub>39</sub>],<sup>4</sup> and K<sub>5</sub>[SiW<sub>11</sub>Ta(O<sub>2</sub>)O<sub>39</sub>]·18H<sub>2</sub>O<sup>5</sup> were synthesized according to literature methods.

#### Characterization

Elemental analysis was performed by combustion analysis (vario MICRO cube, Elementar) for C and N, inductively coupled plasma optical emission spectrometry (ICP-OES) (ICP-OES720, Agilent Technologies) for P and W, X-ray fluorescence (XRF) analysis (EDXL300, Rigaku) for Nb and Ta, and atomic absorption spectrometry (AAS) (Hitachi, ZA3000) for K and Cr. Prior to the ICP-OES and AAS measurements, conc. HNO<sub>3</sub> (3 mL) was added to ca. 10 mg (accurately weighed) of the compounds to dissolve the solid completely into water (50 mL). FT-IR spectra were recorded by the KBr pellet method with a JASCO FT-IR 4100 spectrometer (JASCO) equipped with a TGS detector. Thermogravimetry-differential thermal analysis (TG-DTA) was conducted with a Thermo Plus 2 thermogravimetric analyzer (Rigaku) with  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> as a reference under a dry N<sub>2</sub> flow (100 mL min<sup>-1</sup>) in the temperature range of 298–773 K and an increasing rate of 10 K min<sup>-1</sup>. Powder XRD (PXRD) patterns were measured with a D8 advance X-ray diffractometer (Bruker) by using Cu K $\alpha$  radiation ( $\lambda = 1.54056$  Å, 40 kV–40 mA) in the range of 3-50°. Cell parameter refinement was performed by the Pawley method.<sup>6</sup> H<sub>2</sub>O, CH<sub>3</sub>OH, and CH<sub>3</sub>CN (298 K) sorption isotherms were measured using a volumetric gas sorption apparatus Belsorp-max (MicrotracBEL Corp.). N<sub>2</sub> (77 K) adsorption isotherms were measured using a volumetric gas sorption apparatus Belsorp-mini II (MicrotracBEL Corp.). Prior to the measurements, about 0.1 g of the compounds (accurately weighed) were treated under vacuum at 298 K for > 3 h to remove the water of crystallization. (Ad)sorption equilibrium was judged by the following criteria: ±0.3% of pressure changes in 500 s. Time courses of CH<sub>3</sub>OH sorption were measured with a Thermo Plus 2 thermogravimetric analyzer (Rigaku Corporation) with  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> as a reference at 303 K under a N<sub>2</sub> flow (30 mL min<sup>-1</sup>) saturated with CH<sub>3</sub>OH vapor. Prior to the measurements, about 10 mg of the compound was treated under a dry  $N_2$  gas flow at 303 K to remove the water of crystallization. No significant changes were observed among the rates and equilibrium amounts of different runs. In situ IR spectra under CH<sub>3</sub>OH vapor were recorded on a FT/IR-6600 (JASCO) by transmission method with a sample-coated Si disk. On one side of the Si disk (20 mm $\phi \times 0.5$  mmt), samples suspended in diethyl ether were dropped and air dried. Prior to the measurements, the Si disks were treated under vacuum for 10 min and exposed to CH<sub>3</sub>OH vapor (10 kPa) at 298 K. Then, the pressure was reduced to 50 Pa to remove the physisorbed CH<sub>3</sub>OH molecules. Note that the signal-to-ratio of each spectrum in Fig. 4b varied among the three samples because the background may change depending on the sample dispersion and how the Si disk is set in the IR cell holder. The absolute intensity of the y-axis in Fig.4b (absorbance) semi-quantitatively reflects the amount of CH<sub>3</sub>OH sorbed on the sample.

## **Computational details**

Electronic structure calculations were performed with the density functional theory (DFT) with CAM-B3LYP functional.<sup>7</sup> The employed basis sets were jun-cc-pV(D+d)Z for O, cc-pVDZ for B and Si, and SBKJC-VDZ effective core potential for Nb, Ta, and W. The geometries were taken from the crystal structures. All calculations were performed with the Gaussian16 program<sup>8</sup> and the natural charges were computed using the NBO 7.0 program.<sup>9</sup>

| Compound                                                                                                    | $1_{BW_{12}}$                   | 1_SiW <sub>11</sub> Nb                                                            | 1_SiW <sub>11</sub> Ta                                                            |
|-------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Empirical formula                                                                                           | $C_6H_{38}BK_4Cr_3W_{12}O_{69}$ | C <sub>6</sub> H <sub>34</sub> SiK <sub>4</sub> Cr <sub>3</sub> NbW <sub>11</sub> | C <sub>6</sub> H <sub>38</sub> SiK <sub>4</sub> Cr <sub>3</sub> TaW <sub>11</sub> |
|                                                                                                             |                                 | $O_{67}$                                                                          | O <sub>69</sub>                                                                   |
| Formula weight                                                                                              | 3743.60                         | 3633.91                                                                           | 3757.98                                                                           |
| Temperature (K)                                                                                             | 153                             | 153                                                                               | 153                                                                               |
| Wavelength (Å)                                                                                              | 0.71073                         | 0.71073                                                                           | 0.71073                                                                           |
| Crystal system                                                                                              | Orthorhombic                    | Orthorhombic                                                                      | Orthorhombic                                                                      |
| Space group                                                                                                 | Pnma                            | Pnma                                                                              | Pnma                                                                              |
| a (Å)                                                                                                       | 24.3679(4)                      | 24.4216(4)                                                                        | 24.4565(4)                                                                        |
| $b(\mathbf{A})$                                                                                             | 15.9691(2)                      | 16.0494(2)                                                                        | 16.0527(4)                                                                        |
| <i>c</i> (Å)                                                                                                | 16.9507(2)                      | 17.0259(2)                                                                        | 17.0555(4)                                                                        |
| α (°)                                                                                                       | 90                              | 90                                                                                | 90                                                                                |
| $\beta$ (°)                                                                                                 | 90                              | 90                                                                                | 90                                                                                |
| γ (°)                                                                                                       | 90                              | 90                                                                                | 90                                                                                |
| Volume (Å <sup>3</sup> )                                                                                    | 6596.11(16)                     | 6673.31(17)                                                                       | 6695.9(3)                                                                         |
| Ζ                                                                                                           | 4                               | 4                                                                                 | 4                                                                                 |
| <i>F</i> (000)                                                                                              | 6444                            | 6348                                                                              | 6476                                                                              |
| $\theta$ range (°)                                                                                          | 4.844 to 60.864                 | 4.784 to 60.962                                                                   | 4.776 to 60.908                                                                   |
| Reflections collected                                                                                       | 39997                           | 44291                                                                             | 41684                                                                             |
| GoF on $F^2$                                                                                                | 1.175                           | 1.055                                                                             | 1.069                                                                             |
| $R_1^a [I > 2\sigma(I)]$                                                                                    | 0.0637                          | 0.0658                                                                            | 0.1052                                                                            |
| $wR_2^{b}[I > 2\sigma(I)]$                                                                                  | 0.1684                          | 0.1732                                                                            | 0.2644                                                                            |
| $ R_1 = \sum   F_o  -  F_c   / \sum  F_o ; \ b \ wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}.$ |                                 |                                                                                   |                                                                                   |

 Table S1 Crystallographic data of 1\_POM

| Entry          | Catalysts                                                  | Conversion / % | Yield <sup>b</sup> / % | Selectivity <sup>c</sup> / % |
|----------------|------------------------------------------------------------|----------------|------------------------|------------------------------|
| 1 <sup>d</sup> | Cr-H + SiW <sub>11</sub> Ta                                | 49             | 32                     | 65                           |
| 2 <sup>d</sup> | Cr-H + SiW <sub>11</sub> Nb                                | 29             | 18                     | 51                           |
| 3 <sup>d</sup> | $Cr-H + BW_{12}$                                           | 16             | 12                     | 73                           |
| 4              | 1_SiW <sub>11</sub> Ta (2 <sup>nd</sup> run)               | 35             | 22                     | 63                           |
| 5              | $1$ SiW <sub>11</sub> Nb ( $2^{nd}$ run)                   | 29             | 16                     | 55                           |
| 6              | <b>1_BW</b> <sub>12</sub> ( $2^{nd}$ run)                  | 19             | 11                     | 57                           |
| 7              | 1_SiW <sub>11</sub> Ta (3 <sup>rd</sup> run)               | 40             | 25                     | 63                           |
| 8              | <b>1_SiW</b> <sub>11</sub> <b>Nb</b> (3 <sup>rd</sup> run) | 32             | 21                     | 65                           |
| 9              | <b>1 BW</b> <sub>12</sub> ( $3^{rd}$ run)                  | 22             | 10                     | 43                           |

Table S2 Catalytic results in Knoevenagel condensation reaction<sup>a</sup>

 Table S3 Natural population analysis of  $1\_BW_{12}$ 



| Atomic Number | Natural Charge | Atomic Number | Natural Charge |
|---------------|----------------|---------------|----------------|
| W1            | 2.16758        | O28           | -0.83136       |
| W2            | 2.17225        | O29           | -0.83382       |
| W3            | 2.1643         | B30           | 1.48173        |
| W4            | 2.16093        | W31           | 2.16758        |
| W5            | 2.16787        | W32           | 2.1643         |
| W6            | 2.18454        | W33           | 2.16093        |
| W7            | 2.17287        | W34           | 2.16788        |
| O8            | -0.83449       | W35           | 2.18454        |
| O9            | -0.83106       | O36           | -0.83449       |
| O10           | -0.6724        | O37           | -0.66499       |
| O11           | -0.67293       | O38           | -0.83106       |
| O12           | -1.14089       | O39           | -0.6724        |
| O13           | -0.8378        | O40           | -0.67293       |
| O14           | -0.65843       | O41           | -0.8378        |
| O15           | -1.147         | O42           | -0.65843       |
| O16           | -0.82315       | O43           | -0.83064       |
| O17           | -0.83064       | O44           | -0.65738       |
| O18           | -0.65738       | O45           | -0.83618       |
| O19           | -0.83618       | O46           | -0.82495       |
| O20           | -0.65725       | O47           | -0.83465       |
| O21           | -0.82495       | O48           | -0.8344        |
| O22           | -0.83589       | O49           | -1.13899       |
| O23           | -0.83465       | O50           | -0.83136       |
| O24           | -0.84254       | O51           | -0.83382       |
| O25           | -0.8344        | O52           | -0.66499       |
| O26           | -1.13899       | O53           | -0.65965       |
| O27           | -0.82197       |               |                |

Table S4 Natural population analysis of  $1\_SiW_{11}Nb$ 



| Atomic Number | Natural Charge | Atomic Number | Natural Charge |
|---------------|----------------|---------------|----------------|
| Nb1           | 2.09449        | O28           | -0.85481       |
| O2            | -1.28671       | O29           | -0.86014       |
| O3            | -1.27594       | O30           | -0.84092       |
| O4            | -0.86907       | O31           | -0.66765       |
| O5            | -0.83863       | O32           | -0.65381       |
| O6            | -0.84427       | O33           | -0.67892       |
| O7            | -0.84415       | O34           | -1.27837       |
| O8            | -0.83686       | O35           | -1.27324       |
| O9            | -0.84897       | O36           | -0.66261       |
| O10           | -0.8811        | O37           | -0.65613       |
| 011           | -0.85162       | O38           | -0.65832       |
| O12           | -0.64968       | O39           | -0.84196       |
| O13           | -0.64257       | Si40          | 2.60442        |
| O14           | -0.85167       | W41           | 2.17337        |
| O15           | -0.84503       | W42           | 2.16578        |
| O16           | -0.85718       | W43           | 2.17761        |
| O17           | -0.87551       | W44           | 2.17708        |
| O18           | -0.84543       | W45           | 2.1579         |
| O19           | -0.8365        | W46           | 2.17002        |
| O20           | -0.84326       | W47           | 2.17203        |
| O21           | -0.83872       | W48           | 2.1633         |
| O22           | -0.84813       | W49           | 2.1738         |
| O23           | -0.86381       | W50           | 2.17913        |
| O24           | -0.84149       | W51           | 2.18878        |
| O25           | -0.8452        | 052           | -0.82135       |
| O26           | -0.67611       | O53           | -0.65059       |
| O27           | -0.6613        |               |                |





| Atomic Number | Natural Charge | Atomic Number | Natural Charge |
|---------------|----------------|---------------|----------------|
| 01            | -0.65605       | O28           | -0.67423       |
| O2            | -0.65204       | O29           | -0.66062       |
| Ta3           | 2.14444        | O30           | -0.85485       |
| O4            | -1.27746       | O31           | -0.86495       |
| O5            | -1.27668       | O32           | -0.8416        |
| O6            | -0.87799       | O33           | -0.66629       |
| O7            | -0.83942       | O34           | -0.65347       |
| O8            | -0.84516       | O35           | -0.67841       |
| O9            | -0.84403       | O36           | -1.27819       |
| O10           | -0.83646       | O37           | -1.27356       |
| O11           | -0.84822       | O38           | -0.66054       |
| O12           | -0.88673       | O39           | -0.65599       |
| O13           | -0.85248       | O40           | -0.88194       |
| O14           | -0.64758       | O41           | -0.84229       |
| O15           | -0.64222       | Si42          | 2.60484        |
| O16           | -0.85216       | W43           | 2.17314        |
| O17           | -0.84505       | W44           | 2.16959        |
| O18           | -0.85694       | W45           | 2.17765        |
| O19           | -0.88118       | W46           | 2.1775         |
| O20           | -0.84624       | W47           | 2.1629         |
| O21           | -0.83624       | W48           | 2.16992        |
| O22           | -0.84321       | W49           | 2.17215        |
| O23           | -0.83909       | W50           | 2.1669         |
| O24           | -0.84822       | W51           | 2.17372        |
| O25           | -0.86355       | W52           | 2.18441        |
| O26           | -0.84028       | W53           | 2.18873        |
| O27           | -0.84429       |               |                |



**Fig. S1** IR spectra of (a)  $[Cr_3O(OOCH)_6(H_2O)_3](OOCH) \cdot nH_2O$ , (b)  $K_5[BW_{12}O_{40}] \cdot nH_2O$ , (c) **1\_BW**<sub>12</sub>, and (d) **1\_BW**<sub>12</sub> after reaction.



**Fig. S2** IR spectra of (a)  $[Cr_3O(OOCH)_6(H_2O)_3](OOCH) \cdot nH_2O$ , (b)  $K_5[SiW_{11}Nb(O_2)O_{39}]$ , (c) **1\_SiW\_{11}Nb**, and (d) **1\_SiW\_{11}Nb** after reaction.



**Fig. S3** IR spectra of (a)  $[Cr_3O(OOCH)_6(H_2O)_3](OOCH) \cdot nH_2O$ , (b)  $K_5[SiW_{11}Ta(O_2)O_{39}] \cdot 18H_2O$ , (c) **1\_SiW<sub>11</sub>Ta**, and (d) **1\_SiW<sub>11</sub>Ta** after reaction.



Fig. S4 TG-DTA analysis of 1\_BW<sub>12</sub>.



Fig. S5 TG-DTA analysis of  $1_SiW_{11}Nb$ .



Fig. S6 TG-DTA analysis of  $1_SiW_{11}Ta$ .



Fig. S7 ORTEP drawing of  $1_BW_{12}$  showing thermal ellipsoids at the 50% probability level. Color codes: W: blue; B: pink; O: red; Cr: violet; K: purple; C: grey; H: light grey.



**Fig. S8** ORTEP drawing of  $1_SiW_{11}Ta$  showing thermal ellipsoids at the 50% probability level. Color codes: W/Ta: blue; Si: light green; O: red; Cr: violet; K: purple; C: grey; H: light grey.



Fig. S9 PXRD patterns of  $1_BW_{12}$ . (a) Calculated, (b) experimental, and (c) after catalytic reaction.



Fig. S10 Experimental (open circles) and calculated (solid line) PXRD patterns of as-synthesized  $1_BW_{12}$  by the Pawley method. The difference between the experimental and calculated data was shown under the patterns.



Fig. S11 PXRD patterns of  $1_{SiW_{11}Nb}$ . (a) Calculated, (b) experimental, and (c) after catalytic reaction.



Fig. S12 Experimental (open circles) and calculated (solid line) PXRD patterns of as-synthesized  $1_{SiW_{11}Nb}$  by the Pawley method. The difference between the experimental and calculated data was shown under the patterns.



Fig. S13 PXRD patterns of  $1_{SiW_{11}Ta}$ . (a) Calculated, (b) experimental, and (c) after catalytic reaction.



Fig. S14 Experimental (open circles) and calculated (solid line) PXRD patterns of as-synthesized  $1_{SiW_{11}Ta}$  by the Pawley method. The difference between the experimental and calculated data was shown under the patterns.



Fig. S15 Experimental (open circles) and calculated (solid line) PXRD patterns of  $1_BW_{12}$  after catalytic reaction by the Pawley method. The difference between the experimental and calculated data was shown under the patterns.



Fig. S16 Experimental (open circles) and calculated (solid line) PXRD patterns of  $1_SiW_{11}Nb$  after catalytic reaction by the Pawley method. The difference between the experimental and calculated data was shown under the patterns.



Fig. S17 Experimental (open circles) and calculated (solid line) PXRD patterns of  $1_SiW_{11}Ta$  after catalytic reaction by the Pawley method. The difference between the experimental and calculated data was shown under the patterns.



**Fig. S18** H<sub>2</sub>O (square, 298 K), CH<sub>3</sub>OH (circle, 298 K), CH<sub>3</sub>CN (triangle, 298 K), and N<sub>2</sub> (diamond, 77 K) sorption isotherms of **1\_BW**<sub>12</sub>. Solid and open symbols indicate the sorption and desorption branches, respectively. The  $P_0$  values are 3.169 kPa,<sup>10</sup> 16.958 kPa,<sup>11</sup> and 12.186 kPa<sup>12</sup> for H<sub>2</sub>O, CH<sub>3</sub>OH, and CH<sub>3</sub>CN, respectively, and actually measured for N<sub>2</sub>.



**Fig. S19** H<sub>2</sub>O (square, 298 K), CH<sub>3</sub>OH (circle, 298 K), CH<sub>3</sub>CN (triangle, 298 K), and N<sub>2</sub> (diamond, 77 K) sorption isotherms of **1\_SiW**<sub>11</sub>Nb. Solid and open symbols indicate the sorption and desorption branches, respectively. The  $P_0$  values are 3.169 kPa,<sup>10</sup> 16.958 kPa,<sup>11</sup> and 12.186 kPa<sup>12</sup> for H<sub>2</sub>O, CH<sub>3</sub>OH, and CH<sub>3</sub>CN, respectively, and actually measured for N<sub>2</sub>.



**Fig. S20** H<sub>2</sub>O (square, 298 K), CH<sub>3</sub>OH (circle, 298 K), CH<sub>3</sub>CN (triangle, 298 K), and N<sub>2</sub> (diamond, 77 K) sorption isotherms of **1\_SiW<sub>11</sub>Ta**. Solid and open symbols indicate the sorption and desorption branches, respectively. The  $P_0$  values are 3.169 kPa,<sup>10</sup> 16.958 kPa,<sup>11</sup> and 12.186 kPa<sup>12</sup> for H<sub>2</sub>O, CH<sub>3</sub>OH, and MeCN, respectively, and actually measured for N<sub>2</sub>.



Fig. S21 Time courses of Knoevenagel condensation catalyzed by  $1_SiW_{11}Ta$  (green),  $1_SiW_{11}Nb$  (purple),  $1_BW_{12}$  (brown), and blank test (gray) at 298 K. Reaction conditions: 0.01 mmol catalyst, 1.0 mmol benzaldehyde, 1.0 mmol malononitrile, 10 mg biphenyl, and 3 mL ethanol.

#### Reference

- 1. M. K. Johnson, D. B. Powell and R. D. Cannon, *Spectrochim. Acta*, 1981, **37**, 995–1006.
- T. Fujihara, J. Aonahata, S. Kumakura, A. Nagasawa, K. Murakami and T. Ito, *Inorg. Chem.*, 1998, 37, 3779–3784.
- 3. C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck and R. Thouvenot, *Inorg. Chem.*, 1983, 22, 207–216.
- 4. G.-S. Kim, D. A. Judd, C. L. Hill and R. F. Schinazi, J. Med. Chem., 1994, 37, 816–820.
- 5. S. Shi, Y. Chen, J. Gong, Z. Dai and L. Qu, *Transition Met. Chem.*, 2005, **30**, 136–140.
- 6. G. S. Pawley, J. Appl. Crystallogr., 1981, 14, 357–361.
- 7. T. Yanai, D. Tew and N. Handy, *Chem. Phys. Lett.*, 2004, **393**, 51–57.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison WI, 2018.
- 10. D. R. Lide, CRC Handbook of Chemistry and Physics, 85th Edition, CRC Press, 2004.
- 11. H. F. Gibbard and J. L. Creek, J. Chem. Eng. Data, 1974, 19, 308–310.
- 12. G. Heim, Bull. Soc. Chim. Belg., 1933, 42, 467–482.