Supporting Information

Reversible on-off switching of Dy(III) single-molecule magnets

via single-crystal-to-single-crystal transformation

Jing Xi,^{a#} Peipei Cen,^{b#} Yan Guo,^{a#} Yuzhu Li,^a Yuanyuan Qin,^a Yi-Quan Zhang,^{*,c}

Weiming Song,^a and Xiangyu Liu*,a,d

- ^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- ^b College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China
- ^c Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
- ^d State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China

These authors contributed equally to this work.

*Corresponding author Dr. Xiangyu Liu E-mail: xiangyuliu432@126.com

Prof. Yi-Quan Zhang zhangyiquan@njnu.edu.cn

Contents

Table S1. Crystal Data and Structure Refinement Details for 1, 2, 2 CH₃CN, 2-re and 2 CH₃CN-re.

Table S2. Selected bond lengths (Å) and bond angles (°) for 1, 2, 2 · CH₃CN, 2-re and 2 · CH₃CN-re.

Table S3. Dy (III) ions geometry analysis of 1, 2 and 2 CH₃CN by SHAPE 2.1 software.

Table S4. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 500 Oe dc field of 1.

Table S5. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1000 Oe de field of 2.

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of $2 \cdot CH_3CN$.

Table S7. Wave functions with definite projection of the total moment $|m_I\rangle$ for the lowest two KDs of individual

Dy^{III} fragments for complexes 1, 2 and 2·CH₃CN using CASSCF/RASSI with MOLCAS 8.4.

Table S8. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight

Kramers doublets (KDs) of complexes 1, 2 and 2 · CH₃CN using CASSCF/RASSI-SO with MOLCAS 8.4.

Fig. S1 Crystal packing diagram for complex 1.

Fig. S2 Crystal packing diagram for complex 2.

Fig. S3 Crystal packing diagram for complex 2·CH₃CN.

Fig. S4 Powder XRD patterns for complex 1.

Fig. S5 M vs H curves for 1 (a), 2 (b) and 2 \cdot CH₃CN (c) at different temperatures.

Fig. S6 Temperature dependence of χ' and χ'' susceptibilities for 1 without static field.

Fig. S7 The χ'' products for 1 and 2 at 2.0 K under different static fields.

Fig. S8 Frequency dependence of χ' susceptibilities for 1 at applied dc fields of 500 Oe.

Fig. S9 Cole-Cole plots for 1 at applied dc fields of 500 Oe.

Fig. S10 Frequency dependence of χ' susceptibilities for 2 at applied dc fields of 1000 Oe.

Fig. S11 Cole-Cole plots for 2 at applied dc fields of 1000 Oe.

Fig. S12 Temperature dependence of χ' and χ'' susceptibilities for 2-re without static field.

Fig. S13 Magnetic hysteresis loops for 1 (a) and 2 (b).

Fig. S14 Temperature dependence of χ' susceptibilities for 2·CH₃CN without static field.

Fig. S15 Frequency dependence of χ' susceptibilities for 2·CH₃CN without static field.

	1	2	2·CH ₃ CN	2-re	2·CH ₃ CN-re
Empirical formula	$C_{14}H_{12}Cl_5DyN_4$	$C_{32}H_{18}Cl_8DyN_7O_9$	C33H19.5Cl8DyN7.5O9	$C_{32}H_{18}Cl_8DyN_7O_9$	C ₃₃ H _{19.5} Cl ₈ DyN _{7.5} O ₉
Formula weight	576.03	1090.63	1111.16	1090.63	1111.16
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	triclinic
Space group	Сс	$P2_1/n$	P-1	$P2_1/n$	P-1
<i>a</i> (Å)	7.1296(4)	12.0086(5)	11.2759(7)	12.212(14)	11.511(2)
<i>b</i> (Å)	21.1133(15)	16.5773(7)	13.1435(9)	17.002(19)	13.220(3)
<i>c</i> (Å)	13.1118(9)	20.2262(10)	15.0492(9)	20.87(3)	15.127(3)
α (°)	90	90	85.319(5)	90	81.914(7)
β (°)	91.917(6)	95.797(4)	68.224(6)	95.14(4)	68.257(6)
γ (°)	90	90	73.146(6)	90	72.685(6)
$V(Å^3)$	1972.6(2)	4005.8(3)	1981.4(2)	4315(9)	2040.2(8)
Ζ	4	4	2	4	2
μ (mm ⁻¹)	4.469	15.423	2.489	2.283	2.417
Unique reflections	2713	7881	9276	9589	9194
Observed reflections	4168	15315	18723	58946	70045
R _{int}	0.0386	0.0654	0.0430	0.0601	0.0350
Final R indices [I	$R_1 = 0.0376$	$R_1 = 0.0905$	$R_1 = 0.0475$	$R_1 = 0.0602$	$R_1 = 0.0256$
>2o(I)]					
	$wR_2 = 0.0783$	$wR_2 = 0.1821$	$wR_2 = 0.0842$	$wR_2 = 0.1097$	$wR_2 = 0.0594$
R indices (all data)	$R_1 = 0.0415$	$R_1 = 0.1127$	$R_1 = 0.0621$	$R_1 = 0.0963$	$R_1 = 0.0298$
	$wR_2 = 0.0822$	$wR_2 = 0.1925$	$wR_2 = 0.0915$	$wR_2 = 0.1262$	$wR_2 = 0.0619$

Table S1. Crystal Data and Structure Refinement Details for 1, 2, 2 · CH₃CN, 2-re and 2 · CH₃CN-re.

Complex 1			
Dy(1)-Cl(3)	2.618(4)	N(3)-Dy(1)-Cl(4)	85.7(3)
Dy(1)-Cl(4)	2.629(3)	N(3)-Dy(1)-Cl(5)	84.3(3)
Dy(1)-Cl(5)	2.603(3)	N(3)-Dy(1)-N(1)	127.7(4)
Dy(1)-N(1)	2.609(11)	N(3)-Dy(1)-N(2)	65.6(3)
Dy(1)-N(2)	2.480(10)	N(3)-Dy(1)-N(4)	64.9(4)
Dy(1)-N(3)	2.464(11)	N(4)-Dy(1)-Cl(3)	83.8(3)
Dy(1)-N(4)	2.552(12)	N(4)-Dy(1)-Cl(4)	87.6(2)
Cl(3)-Dy(1)-Cl(4)	92.53(10)	N(4)-Dy(1)-Cl(5)	89.9(2)
Cl(5)-Dy(1)-Cl(3)	97.08(10)	N(4)-Dy(1)- N(1)	166.7(4)
Cl(5)-Dy(1)-Cl(4)	169.75(11)	C(1)-N(1)- Dy(1)	125.0(9)
Cl(1)-Dy(1)- N(1)	87.3(2)	C(5)-N(1)- Dy(1)	117.6(9)
N(1)-Dy(1)-Cl(3)	83.7(3)	C(6)-N(2)- Dy(1)	122.1(9)
N(1)-Dy(1)-Cl(4)	97.3(2)	C(7)-N(2)- Dy(1)	118.2(7)
N(2)-Dy(1)-Cl(3)	144.6(2)	C(8)-N(3)- Dy(1)	119.0(8)
N(2)-Dy(1)-Cl(4)	79.1(2)	C(9)-N(3)- Dy(1)	121.2(9)
N(2)-Dy(1)-Cl(5)	94.9(2)	C(10)-N(4)- Dy(1)	117.8(9)
N(2)-Dy(1)-N(1)	63.8(3)	C(14)-N(4)- Dy(1)	126.7(9)
N(2)-Dy(1)- N(4)	129.5(4)	C(48)-N(2)- Dy(1)	122.1(4)
N(3)-Dy(1)-Cl(3)	148.6(3)	C(52)-N(2)- Dy(1)	120.3(3)
Complex 2			
Dy(1)-O(1)	2.171(7)	O(4)-Dy(1)-N(2)	150.2(3)
Dy(1)-O(4)	2.175(7)	O(4)-Dy(1)-N(3)	144.2(3)
Dy(1)-O(7)	2.180(8)	O(4)-Dy(1)-N(4)	80.9(3)
Dy(1)-N(1)	2.531(9)	O(7)-Dy(1)-N(1)	86.8(3)
Dy(1)-N(2)	2.486(9)	O(7)-Dy(1)-N(2)	86.2(4)
Dy(1)-N(3)	2.479(9)	O(7)-Dy(1)-N(3)	81.9(3)
Dy(1)-N(4)	2.558(9)	O(7)-Dy(1)-N(4)	99.4(3)
O(1)-Dy(1)- O(4)	98.0(3)	N(1)-Dy(1)-N(4)	165.2(3)
O(1)-Dy(1)- O(7)	164.6(3)	N(2)-Dy(1)-N(1)	65.0(3)
O(1)-Dy(1)- N(1)	86.3(3)	N(2)-Dy(1)-N(4)	128.4(3)
O(1)-Dy(1)- N(2)	78.4(3)	N(3)-Dy(1)-N(1)	129.8(3)
O(1)-Dy(1)- N(3)	92.1(3)	N(3)-Dy(1)-N(2)	65.5(3)
O(1)-Dy(1)- N(4)	90.6(3)	N(3)-Dy(1)-N(4)	64.7(3)
O(4)-Dy(1)- O(7)	95.1(3)	C(15)-O(1)-Dy(1)	178.2(7)
O(4)-Dy(1)- N(1)	85.3(3)	C(21)-O(4)-Dy(1)	164.1(15)

 Table S2. Selected bond lengths (Å) and bond angles (°) for 1, 2, 2·CH₃CN, 2-re and 2·CH₃CN-re.

Complex 2·CH ₃ CN			
Dy(1)-O(1)	2.201(3)	O(7)-Dy(1)-N(3)	89.25(12)
Dy(1)-O(4)	2.210(3)	O(7)-Dy(1)-N(4)	90.87(12)
Dy(1)-O(7)	2.180(3)	N(2)-Dy(1)-N(1)	65.15(12)
Dy(1)-N(1)	2.549(4)	N(2)-Dy(1)-N(3)	65.11(13)
Dy(1)-N(2)	2.494(4)	N(2)-Dy(1)-N(4)	128.74(13)
Dy(1)-N(3)	2.496(4)	N(3)-Dy(1)-N(1)	127.28(12)
Dy(1)-N(4)	2.548(4)	N(3)-Dy(1)-N(4)	64.74(12)
O(1)-Dy(1)-O(4)	97.51(11)	N(4)-Dy(1)-N(1)	165.41(12)
O(1)-Dy(1)- N(1)	85.50(12)	C(15)-O(1)-Dy(1)	168.2(3)
O(1)-Dy(1)- N(2)	148.84(13)	C(21)-O(4)-Dy(1)	151.4(3)
O(1)-Dy(1)- N(3)	145.98(13)	C(27)-O(7)-Dy(1)	168.2(3)
O(1)-Dy(1)-N(4)	81.54(12)	C(1)-N(1)-Dy(1)	125.5(3)
O(4)-Dy(1)-N(1)	85.31(11)	C(5)-N(1)-Dy(1)	117.0(3)
O(4)-Dy(1) N(2)	90.56(11)	C(6)-N(2)-Dy(1)	120.5(3)
O(4)-Dy(1)-N(3)	78.81(12)	C(7)-N(2)-Dy(1)	119.0(3)
O(4)-Dy(1)-N(4)	89.76(12)	C(8)-N(3)-Dy(1)	119.2(3)
O(7)-Dy(1)-O(1)	95.95(12)	C(9)-N(3)-Dy(1)	121.6(3)
O(7)-Dy(1)-O(4)	166.47(12)	C(10)-N(4)-Dy(1)	118.2(3)
O(7)-Dy(1)-N(1)	97.13(12)	C(14)-N(4)-Dy(1)	124.8(3)
O(7)-Dy(1)-N(2)	78.53(11)	C(14)-N(4)-C(10)	116.8(4)

Complex 2-re			
Dy(1)-O(1)	2.218(5)	O(7)-Dy(1)-N(3)	78.59(7)
Dy(1)-O(4)	2.218(5)	O(7)-Dy(1)-N(6)	79.1(2)
Dy(1)-O(7)	2.206(5)	O(7)-Dy(1)-N(7)	88.24(19)
Dy(1)-N(4)	2.596(6)	N(5)-Dy(1)-N(4)	64.0(2)
Dy(1)-N(5)	2.548(6)	N(5)-Dy(1)-N(7)	129.6(2)
Dy(1)-N(6)	2.529(6)	N(6)-Dy(1)-N(4)	127.6(2)
Dy(1)-N(7)	2.577(6)	N(6)-Dy(1)-N(5)	65.0(2)
O(1)-Dy(1)-O(4)	95.4(2)	N(6)-Dy(1)-N(7)	65.4(2)
O(1)-Dy(1)- N(4)	97.7(2)	N(7)-Dy(1)-N(4)	166.37(19)
O(1)-Dy(1)- N(5)	82.25(19)	C(1)-O(1)-Dy(1)	162.0(8)
O(1)-Dy(1)- N(6)	86.7(2)	C(7)-O(4)-Dy(1)	177.3(9)
O(1)-Dy(1)-N(7)	86.62(19)	C(13)-O(7)-Dy(1)	177.8(5)
O(4)-Dy(1)-N(4)	81.9(2)	C(19)-N(4)-Dy(1)	124.3(5)
O(4)-Dy(1) N(5)	145.0(2)	C(23)-N(4)-Dy(1)	117.9(5)
O(4)-Dy(1)-N(6)	150.0(2)	C(24)-N(5)-Dy(1)	121.8(5)
O(4)-Dy(1)-N(7)	84.8(2)	C(26)-N(6)-Dy(1)	118.0(5)
O(7)-Dy(1)-O(1)	165.80(19)	C(27)-N(6)-Dy(1)	119.5(5)
O(7)-Dy(1)-O(4)	97.3(2)	C(28)-N(7)-Dy(1)	117.7(4)
O(7)-Dy(1)-N(4)	90.3(2)	C(32)-N(7)-Dy(1)	125.2(5)
O(7)-Dy(1)-N(5)	90.9(2)	C(32)-N(7)-C(28)	117.1(6)

Complex 2·CH ₃ CN-re				
Dy(1)-O(1)	2.181(2)	O(7)-Dy(1)-N(3)	78.59(7)	
Dy(1)-O(4)	2.1910(18)	O(7)-Dy(1)-N(4)	89.84(8)	
Dy(1)-O(7)	2.2135(18)	N(1)-Dy(1)-N(2)	64.44(7)	
Dy(1)-N(1)	2.564(2)	N(2)-Dy(1)-N(3)	65.41(7)	
Dy(1)-N(2)	2.501(2)	N(2)-Dy(1)-N(4)	129.00(7)	
Dy(1)-N(3)	2.505(2)	N(3)-Dy(1)-N(1)	126.75(7)	
Dy(1)-N(4)	2.553(2)	N(3)-Dy(1)-N(4)	64.56(7)	
O(1)-Dy(1)-O(4)	96.67(8)	N(4)-Dy(1)-N(1)	165.47(7)	
O(1)-Dy(1)- O(7)	164.85(7)	C(15)-O(1)-Dy(1)	166.9(2)	
O(1)-Dy(1)- N(1)	98.69(8)	C(21)-O(4)-Dy(1)	171.02(18)	
O(1)-Dy(1)- N(2)	78.47(8)	C(27)-O(7)-Dy(1)	157.2(4)	
O(1)-Dy(1)-N(3)	87.83(8)	C(1)-N(1)-Dy(1)	125.12(18)	
O(1)-Dy(1)-N(4)	90.37(8)	C(5)-N(1)-Dy(1)	117.54(17)	
O(4)-Dy(1) O(7)	98.36(7)	C(6)-N(1)-Dy(1)	121.48(18)	
O(4)-Dy(1)-N(1)	85.78(7)	C(7)-N(2)-Dy(1)	118.07(17)	
O(4)-Dy(1)-N(2)	148.30(7)	C(8)-N(3)-Dy(1)	118.85(17)	
O(4)-Dy(1)-N(3)	146.21(8)	C(9)-N(3)-Dy(1)	121.18(18)	
O(4)-Dy(1)-N(4)	81.89(7)	C(10)-N(4)-Dy(1)	118.10(18)	
O(7)-Dy(1)-N(1)	84.37(7)	C(14)-N(4)-Dy(1)	124.75(18)	
O(7)-Dy(1)-N(2)	89.67(7)	C(14)-N(4)-C(10)	117.0(2)	

Table S3. Dy (III) ions geometry analysis of 1, 2 and 2 · CH₃CN by SHAPE 2.1 software.

Dy (III) ion geometry analysis of 1

PBPY-7	3 D5	h Pentag	onal bipy	ramid			
COC-7	4 C3	v Capped	octahed	ron			
CTPR-7	5 C2	v Capped	l trigonal	prism			
JPBPY-7	6 D 5	h Johnso	n pentag	onal bipyr	amid J13		
JETPY-7	7 C3	v Johnson	n elongate	ed triangu	lar pyrami	d J7	
Structure [N	/L7]	PBPY-7	COC	7 CTP	R-7 JPE	3PY-7	JETPY-7
ABOXIY		1.407.	6.082.	4.636.	5,560.	22.8	19

Dy (III) ion geometry analysis of ${\bf 2}$

ABOXIY , 1.401,

PBPY-7	3 D5h	Pentagor	nal bipyram	id			
COC-7	4 C3v	Capped o	Capped octahedron				
CTPR-7	5 C2v	Capped t	Capped trigonal prism				
JPBPY-7	6 D5h	Johnson	Johnson pentagonal bipyramid J13				
JETPY-7	7 C3v	Johnson	elongated t	riangular py	ramid J7		
Structure [N	VL7]	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7	

4.720,

3.075, 22.753

6.090,

Dy (III) ion geometry analysis of $2 \cdot CH_3 CN$

PBPY-7	3 D5h	Pentagor	nal bipyram	id		
COC-7	4 C3v	Capped o	octahedron			
CTPR-7	5 C2v	Capped t	rigonal pris	m		
JPBPY-7	6 D5h	Johnson	pentagonal	bipyramid	J13	
JETPY-7	7 C3v	Johnson	elongated to	riangular py	ramid J7	
-				0.000		

Structure [ML7]	PBPY-7	COC-7	CTPR-	-7 JPE	3PY-7	JETPY-7
ABOXIY ,	1.431,	6.046,	4.848,	3.238,	22.40	05

Configuration	ABOXIY, 1	ABOXIY, 2	ABOXIY, 2∙CH₃CN
Pentagonal bipyramid (D _{5h})	1.407	1.401	1.431
Capped octahedron (C_{3v})	6.082	6.096	6.046
Capped trigonal prism $(C_{2\nu})$	4.636	4.720	4.848
Johnson pentagonal bipyramid J13 (D _{5h})	5.560	3.075	3.238
Johnson elongated triangular pyramid J7 (C_{3v})	22.819	22.753	22.405

<i>T</i> (K)	χ _T	χs	α
2.0	2.775	1.278	0.135
2.2	2.596	1.177	0.130
2.4	2.439	1.093	0.121
2.6	2.293	1.002	0.120
2.8	2.161	0.845	0.134
3.0	2.045	0.112	0.187
3.2	1.934	0.020	0.157
3.4	1.836	0.035	0.163
3.6	1.746	0.051	0.159

Table S4. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 500 Oe dc field of 1.

Table S5. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1000 Oe dc field of **2**.

<i>T</i> (K)	χ _T	χs	α
2.0	5.599	0.127	0.625
2.5	3.486	0.252	0.489
3.0	2.794	0.293	0.436
3.5	2.269	0.383	0.313
4.0	1.937	0.403	0.213
4.5	1.709	0.383	0.154
5.0	1.539	0.355	0.118
5.5	1.400	0.332	0.088
6.0	1.283	0.312	0.069
6.5	1.186	0.293	0.058
7.0	1.102	0.280	0.046
7.5	1.029	0.267	0.039
8.0	0.966	0.256	0.034
8.5	0.909	0.247	0.027
9.0	0.859	0.235	0.023
9.5	0.816	0.208	0.032

<i>T</i> (K)	χ _T	χs	α
3.0	2.294	0.129	0.184
4.0	1.715	0.104	0.182
5.0	1.370	0.087	0.181
6.0	1.140	0.076	0.178
6.5	1.051	0.072	0.175
7.0	0.976	0.069	0.171
7.5	0.910	0.066	0.165
8.0	0.853	0.064	0.159
8.5	0.802	0.062	0.151
9.0	0.757	0.061	0.142
9.5	0.716	0.060	0.132
10.0	0.680	0.059	0.121
10.5	0.647	0.058	0.110
11.0	0.618	0.057	0.100
11.5	0.590	0.056	0.089
12.0	0.565	0.055	0.079
12.5	0.542	0.054	0.070
13.0	0.521	0.053	0.061
13.5	0.502	0.053	0.053
14.0	0.484	0.052	0.046
15.0	0.452	0.051	0.034
16.5	0.425	0.051	0.025
17.0	0.400	0.050	0.019
18.0	0.378	0.049	0.015

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 2·CH₃CN.

Table S7. Wave functions with definite projection of the total moment $|m_J\rangle$ for the lowest two KDs of individual Dy^{III} fragments for complexes **1**, **2** and **2**·CH₃CN using CASSCF/RASSI with MOLCAS 8.4.

	Ε	wave functions	
1	0.0	95.4% ±15/2>	
	71.5	34.3% ±1/2>+24.3% ±3/2>+16.7% ±5/2>+8.6% ±7/2>+5.7% ±9/2>	
2	0.0	98.7% ±15/2>	
	163.1	37.5% ±1/2>+25.5% ±3/2>+15.8% ±5/2>+7.4% ±7/2>+5.4% ±13/2>	
2∙CH ₃ CN	0.0	98.8% ±15/2>	
	224.7	$27.1\% \pm 1/2 > + 21\% \pm 13/2 > + 18.4\% \pm 3/2 > + 14.1\% \pm 5/2 > + 7.6\% \pm 7/2 > + 6.9\% \pm 9/2 > + 14.1\% \pm 1/2 > + 14.1\% $	

KDs	1		2		2·CH₃CN				
	E	g	m_J	Ε	g	m_J	Ε	g	m_J
		0.268			0.082			0.051	
1	0.0	0.810	±15/2	0.0	0.180	±15/2	0.0	0.097	±15/2
		19.233			19.725			19.759	
		0.256			0.772			1.355	
2	71.5	0.956	$\pm 1/2$	163.1	0.872	±1/2	224.7	2.941	±9/2
		18.186			18.756			16.613	
		3.579			1.852			0.279	
3	205.3	4.515	±13/2	306.6	2.767	±13/2	318.4	3.290	±13/2
		11.867			13.965			11.813	
		9.311			1.355			9.083	
4	271.2	6.632	±7/2	422.4	5.369	±5/2	467.2	6.522	±11/2
		0.762			11.546			3.550	
		2.303			3.073			0.946	
5	303.2	5.119	±9/2	479.0	5.028	±11/2	527.2	4.249	±5/2
		12.719			12.667			14.000	
		0.215			0.542			0.703	
6	322.8	1.118	±11/2	513.6	1.547	±9/2	574.1	2.763	±3/2
		14.030			15.155			14.387	
		0.449			0.843			0.874	
7	379.9	0.732	±5/2	567.4	1.444	±3/2	632.4	1.400	±1/2
		14.587			14.647			15.849	
		0.118			0.499			0.271	
8	453.1	0.271	±3/2	641.9	0.772	±7/2	708.9	0.625	±7/2
		18.258			17.910			18.048	

Table S8. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight Kramers doublets (KDs) of complexes 1, 2 and 2·CH₃CN using CASSCF/RASSI-SO with MOLCAS 8.4.

Fig. S1 Crystal packing diagram for complex 1.

Fig. S2 Crystal packing diagram for complex 2.

Fig. S3 Crystal packing diagram for complex $2 \cdot CH_3CN$.

Fig. S4 Powder XRD patterns for complex 1.

Fig. S5 M vs H curves for 1 (a), 2 (b) and 2·CH₃CN (c) at different temperatures. Solid lines represent the simulation from *ab initio* calculation.

Fig. S6 Temperature dependence of χ' and χ'' susceptibilities for 1 without static field.

Fig. S7 The χ'' products for 1 and 2 at 2.0 K under different static fields

Fig. S8 Frequency dependence of χ' susceptibilities for 1 at applied dc fields of 500 Oe.

Fig. S9 Cole-Cole plots for 1 at applied dc fields of 500 Oe. The solid lines represent the best fit to the measured results.

Fig. S10 Frequency dependence of χ' susceptibilities for 2 at applied dc fields of 1000 Oe.

Fig. S11 Cole-Cole plots for 2 at applied dc fields of 1000 Oe. The solid lines represent the best fit to the measured results

Fig. S12 Temperature dependence of χ' and χ'' susceptibilities for 2-re without static field.

Fig. S13 Magnetic hysteresis loops for 1 (a) and 2 (b).

Fig. S14 Temperature dependence of χ' susceptibilities for 2·CH₃CN without static field.

Fig. S15 Frequency dependence of χ' susceptibilities for $2 \cdot CH_3CN$ without static field.