Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

Synthesis and temperature–dependent NMR studies of monomeric and dimeric tris(dialkylamino)alanes

Erik Schumann, Uwe Böhme, Erica Brendler and Florian Mertens

Electronic Supplementary Information

DOI: 0.0000/xxxxxxxxx

	bond
A	Al1A–N3A
	Al1A–N4A
	Al1A–N1A
	Al1A–N2A
N6B N6B	Al2A–N5A
	Al2A–N6A
	Al2A–N1A
	Al2A–N2A
N2B Al2B	Al1A–Al2A
AIIB	Al1B–N4B
	Al1B–N3B
N5B V	Al1B–N1B
N3B N3B	Al1B–N2B
	Al2B–N6B
	Al2B–N5B
	Al2B–N1B
	Al2B–N2B
	AllB-Al2B
	angle
	N6A Alia-Nia-A
	Al1A–N2A–A
	N1A-Al1A-N
AllA	Al2A N1A–Al2A–N
	N3A–Al1A–N
NIA NIA	N5A–Al2A–N
	N5A Al1B–N1B–A
	Al1B–N2B–A
	N1B-Al1B-N
	N1B–Al2B–N
	N4B-Al1B-N

Al2A–N2A	1.9926(10)
Al1A–Al2A	2.8311(5)
Al1B–N4B	1.8225(12)
Al1B–N3B	1.8227(12)
Al1B–N1B	1.9854(11)
Al1B–N2B	1.9894(11)
Al2B-N6B	1.8121(12)
Al2B–N5B	1.8222(11)
Al2B–N1B	1.9781(11)
Al2B-N2B	1.9802(11)
Al1B–Al2B	2.8300(5)
angle	value, °
Al1A-N1A-Al2	2A 91.28(4)
Al1A-N2A-Al2	2A 90.91(4)
N1A-Al1A-N2	A 88.74(4)
N1A-Al2A-N2	A 88.17(4)
N3A-Al1A-N4	A 113.68(5)
N5A-Al2A-N6	A 113.82(5)
Al1B-N1B-Al2	2B 91.13(4)
Al1B-N2B-Al2	2B 90.95(4)
N1B-Al1B-N2	B 88.16(4)
N1B-Al2B-N2	B 88.62(4)
N4B-Al1B-N3	B 112.85(6)
N6B-Al2B-N5	B 113.48(5)

value, Å

1.8134(11)

1.8213(11)

1.9763(10) 1.9797(10)

1.8232(12)

1.8238(12)

1.9836(10)

Fig. ESI.1 Asymmetric unit of tris(diethylamino)alane (left); selected bond lengths and angles (right).

Fig. ESI.2 Asymmetric unit of tris(*N*-methylpiperazino)alane (left); selected bond lengths and angles (right).

Synthetic procedures

Fig. ESI.3 Example of a powder diffractogram of the separated lithium chloride.

Aluminum titration

 $AlH_3 \cdot \frac{1}{5}Et_2O_{(s)}$ is carefully deactivated by diffusion of water vapor. The substance is then transferred to a 100 mL beaker containing 20 mL of distilled water and 10 mL of hydrochloric acid (2 mol L^{-1}) . The suspension is heated to boiling and the resulting clear solution is transferred to a 100 mL volumetric flask. To 25 mL of the solution, 30 mL of an EDTA solution $(0.025 \text{ mol L}^{-1})$ and 1 mL of hydrochloric acid (2 mol L^{-1}) . The suspension is heated to boiling and the resulting clear solution is transferred to a 100 mL volumetric flask. To 25 mL of the solution, 30 mL of an EDTA solution $(0.025 \text{ mol L}^{-1})$ and 1 mL of hydrochloric acid (2 mol L^{-1}) are added. The solution is boiled for 10 min and then cooled to room temperature. A pH value of 7 is adjusted with CH₃COONa. By adding a spatula tip of a xylenol orange/KNO₃ trituration (1:100), the solution takes on an intense yellow color. Using a ZnSO₄ solution (0.2 mol L^{-1}) , the yellow solution is titrated until an orange color is apparent.

Temperature-dependent NMR spectra

Fig. ESI.4 Temperature-dependent ¹H NMR spectra of tris(diisopropylamino)alane.

Fig. ESI.5 Temperature-dependent ¹³C NMR spectra of tris(diisopropylamino)alane.

Fig. ESI.6 Temperature-dependent ¹H NMR spectra of tris(dimethylamino)alane.

Fig. ESI.7 Temperature-dependent ¹³C NMR spectra of tris(dimethylamino)alane.

Fig. ESI.8 Temperature-dependent ¹H NMR spectra of tris(pyrrolidino)alane.

Fig. ESI.9 Temperature-dependent ¹³C NMR spectra of tris(pyrrolidino)alane.

Fig. ESI.10 Temperature-dependent ¹H NMR spectra of tris(piperidino)alane.

Fig. ESI.11 Temperature-dependent ¹³C NMR spectra of tris(piperidino)alane.