Electronic Supporting Information (ESI) for Synthesis, Structure, and Electrochemical Properties of [LNi(Rf)(C4F8)]⁻ and [LNi(Rf)3]⁻ Complexes

Scott T. Shreiber,^{#a} Fatema Amin,^{#a} Sascha A. Schäfer,^b Roger E. Cramer,^c Axel Klein ^{b*} and David A. Vicic^{a*}

^a Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA 18015, USA. Email: sts217@lehigh.edu; ORCID: 0000-0002-4224-7461 (S.T.S); E-mail: fab319@lehigh.edu; ORCID: 0000-0002-8420-1912 (F.A.).

^b University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, 50939 Koeln, Germany. E-mail: sascha.schaefer@uni-koeln.de; ORCID: 0000-0003-0093-9619 (S.A.S.).

^c Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, HI, 96822, USA. E-mail: rcramer@hawaii.edu ORCID: 0000-0002-3934-3401 (R.E.C.).

[#]These authors contributed equally to this work.

* Corresponding authors: E-mail: axel.klein@uni-koeln.de, ORCID: 0000-0003-0093-9619; Tel.: +49-221-470-4006 (A.K.). E-mail: vicic@lehigh.edu; fax, 1-610-758-6536, ORCID: 0000-0002-4990-0355 (D.A.V.)

Contents:

Fig. S1 Views on the crystals structure of 2.

Fig. S2. Views on the crystal structure of 3.

Fig. S3 Preliminary X-ray data for compound 4 pentane 2benzene.

Fig. S4. Views on the crystal structure of 6.

Fig. S5 ORTEP diagram of **6' MeCN =** [PPh4][Ni(IMes)(CF3)3] MeCN.

Fig. S6 ORTEP diagrams of 6' MeCN = [PPh4][Ni(IMes)(CF3)3] MeCN.

Fig. S7 ORTEP diagrams of 7 and 7'.

Fig. S8 Views on the crystal structure of 7.

Fig. S9 ORTEP diagrams of 9 and 9'.

Fig. S10 ORTEP diagram of 9".

Fig. S11 Views on the crystal structure of 9.

Fig. S12 Views on the crystal structure of [PNP]₂[Ni₂(CF₃)₄(μ-F)₂] and ORTEP diagram.

Fig. S13 400 MHz ¹H NMR spectrum of 2 in CD₃CN.

Fig. S14 376 MHz ¹⁹F NMR spectrum of 2 in CD₃CN.

Fig. S15 400 MHz ¹H NMR spectrum of 3 in CD₃CN.

Fig. S16 376 MHz ¹⁹F NMR spectrum of 3 in CD₃CN.

Fig. S17 400 MHz ¹H NMR spectrum of 4 in CD₃CN.

Fig. S18 376 MHz ¹⁹F NMR spectrum of 4 in CD₃CN.

Fig. S19 400 MHz ¹H NMR spectrum of 6 in CD₃CN.

Fig. S20 376 MHz ¹⁹F NMR spectrum of 6 in CD₃CN.

Fig. S21 400 MHz ¹H NMR and 470.6 MHz ¹⁹F NMR spectra of 7 and 7' in CD₃CN.

Fig. S22 400 MHz ¹H NMR and 470.6 MHz ¹⁹F NMR spectra of 8 and 8' in CD₃CN.

Fig. S23 400 MHz ¹H NMR and 470.6 MHz ¹⁹F NMR spectra of 9 and 9' in CD₃CN.

Fig. S24 Cyclic voltammograms of 1, 2, and 4 in MeCN/n-Bu₄NPF₆.

Fig. S25 Cyclic voltammograms of 5 and 6 in MeCN/n-Bu4NPF6.

Fig. S26 Cyclic voltammograms of [NEt₄][(IMes)Ni(CF₃)₃] (**6**) and [NEt₄][(2,4-F₂Ph-NHC)Ni(CF₃)₃] (**7**). **Fig. S27** Cyclic voltammograms of [NEt₄][(2,4,6-F₃Ph-NHC)Ni(CF₃)₃] (**8**) and [NEt₄][(3,4,5-F₃Ph-NHC)Ni(CF₃)₃] (**9**).

Table S1. Selected structure solution and refinement data for nickel complexes 6', 7, 9, and 9'. **Table S2** Selected structure solution and refinement data for [PNP]₂[Ni₂(CF₃)₄(μ-F)₂]·2THF.

Supporting Figures

Fig. S1 Views on the crystals structure of 2.

Fig. S2. Views on the crystal structure of 3.

Fig. S3 Preliminary X-ray data for compound **4-pentane2benzene**. Only a poorly refined data set with two co-crystallized benzene molecules and one co-crystallized pentane could been obtained for compound **4**. The preliminary structure shown here is only provided as additional support of the connectivity assignment in the text.

Fig. S4. Views on the crystal structure of 6.

Fig. S5 ORTEP diagram of 6'·MeCN = [PPh₄][Ni(IMes)(CF₃)₃]·MeCN. Ellipsoids shown at the 40% level. Hydrogen atoms as well as a positional disorder of C2 are omitted for clarity.

Fig. S6 ORTEP diagrams of **6'MeCN =** [PPh₄][Ni(IMes)(CF₃)₃]·MeCN. Ellipsoids shown at the 40% level. Hydrogen atoms, co-crystallized solvent and counter cations are omitted for clarity. The left structure shows the major species with a chemical occupancy of 83.2% and a C4–Ni1–C2A bond angle of 174.23°. The right structure is the minor species with a chemical occupancy of 16.8% and C4–Ni1–C2B bond angle of 169.0°.

Fig. S7 ORTEP diagrams of 7 (left) and 7' (right). Ellipsoids shown at the 40% level. Hydrogen atoms and counter cations are omitted for clarity. Both structures were generated from the same XRD measurement. Compound 7' is present with a chemical occupancy of 12.5%. The right diagram additionally shows the split position of carbon C2A/C2B, with the respective bond angles for C2A–Ni1–C4 176.33(15)° and C2B–Ni1–C4 173.8(9)°. C2B shows a chemical occupancy of 26.3(6)%. Besides the shown partial placement of a C₂F₅ along C1 a rotational disorder of the CF₃ function centered on C1 is observed with a chemical occupancy of 22.9(6)%, and is omitted from the diagrams for clarity.

Fig. S8 View on the crystal structure of 7, shown along the crystallographic b and c axis.

Fig. S9 ORTEP diagrams of **9** (left) and **9'** (right). Ellipsoids shown at the 40% level. Hydrogen atoms are omitted for clarity. In the structure of **9'** 2 equivalents of THF are omitted for clarity. In contrast to compound 7 / 7' these two compounds crystallized separately and were measured independently. Both structures show rotational disorder of CF₃ functions. Compound **9'** additionally shows a C4–CF₃/–C₂F₅ disorder on C4, where one F atom is exchanged for an additional CF₃ function with a chemical occupancy of 20%.

Fig. S10 ORTEP diagram of **9**", the minor species (20%) found in a crystal of **9**, showing both the rotational and chemical disorder. Ellipsoids shown at the 40% level. Hydrogen atoms, co-crystallized THF and counter cation are omitted for clarity.

Fig. S11 Views on the crystal structure of 9 along the crystallographic *b* and *c* axis.

Fig. S12 View on the crystal structure of $[PNP]_2[Ni_2(CF_3)_4(\mu-F)_2]_2THF$ along the crystallographic *a* axis (right) and ORTEP diagram of $[Ni_2(CF_3)_4(\mu-F)_2]$ (right). Ellipsoids shown at the 40% level. Hydrogen atoms, as well as one molecule each of $[PNP]^+$ and THF molecules are omitted for clarity.

Fig. S16 376 MHz ¹⁹F NMR spectra of 3 in CD₃CN.

Fig. S19 400 MHz ¹H NMR spectrum of 6 in CD₃CN.

Fig. S20 376 MHz ¹⁹F NMR spectrum of 6 in CD₃CN.

Fig. S21A 400 MHz ¹H NMR and 470.6 MHz ¹⁹F NMR spectra of 7 and 7' in CD₃CN.

Fig. S21B 400 MHz ¹H NMR and 470.6 MHz ¹⁹F NMR spectra of 7 and 7' in CD₃CN.

CF₃ -Ni-CF₃ C₂F₅

Fig. S21C 400 MHz ¹H NMR and 470.6 MHz ¹⁹F NMR spectra of 7 and 7' in CD₃CN.

Fig. S22B 400 MHz ¹H NMR and 470.6 MHz ¹⁹F NMR spectra of 8 and 8' in CD₃CN.

Fig. S23A 400 MHz ¹H NMR and 470.6 MHz ¹⁹F NMR spectra of 9 and 9' in CD₃CN.

CF₃ -Ni-CF₃ CF₃

Fig. S24 Cyclic voltammograms of 1 (black), 2 (red), and 4 (orange) in MeCN/n-Bu₄NPF₆.

Fig. S25 Cyclic voltammograms of 5 (black) and 6 (blue) in MeCN/n-Bu4NPF6.

Fig. S26 Cyclic voltammograms of [NEt₄][(IMes)Ni(CF₃)₃] (6) (left) and [NEt₄][(2,4-F₂Ph-NHC)Ni(CF₃)₃] (7) (right) in MeCN/*n*-Bu₄NPF₆.

Fig. S27 Cyclic voltammograms of $[NEt_4][(2,4,6-F_3Ph-NHC)Ni(CF_3)_3]$ (8) (left) and $[NEt_4][(3,4,5-F_3Ph-NHC)Ni(CF_3)_3]$ (9) (right) in MeCN/*n*-Bu₄NPF₆.

compound	[PPh4][(IMes)Ni(C	[NMe4][(2,4-F2Ph-	[NMe4][(3,4,5-F3Ph-	[NMe4][(3,4,5-F3Ph-
	F3)3] (6')	NHC)Ni(CF3)3] (7)	NHC)Ni(CF3)3] (9)	NHC)Ni(CF3)2(C2F5](9')
Formula	C50H47F9N3NiP	C22.14H20F13.03N3Ni	C22H18F15N3Ni	C31.2H33.31F16.92N3NiO2
F.W. (g/mol)	950.58	634.48	668.10	862.57
T (K)	100.0	293(2)	100.0	100.0
crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
space group	C2/c	<i>P</i> –1	P21/c	<i>P</i> –1
cell a (Å)	19.9610(11)	9.9583(3)	15.9285(11)	8.5261(3)
b (Å)	11.2347(6)	10.3755(5)	9.6940(6)	13.2144(5)
c (Å)	40.329(2)	12.8434(6)	16.2880(9)	16.9930(6)
α (°)	90	69.438(4)	90	104.8370(10)
β (°)	97.043(2)	87.104(3)	95.067(2)	91.5500(10)
γ (°)	90	82.992(3)	90	105.7390(10)
Volume (Å ³)	8975.8(9)	1233.15(10)	2505.2(3)	1771.72(11)
Z	8	2	4	2
dens. calc. (g/cm ³)	1.407	1.709	1.771	1.617
ab. coeff. (cm ⁻¹)	5.42	3.52	9.05	6.71
F(000)	3936.0	638.0	1336.0	876.0
θ range (°)	4.07 to 59.198	2.968 to 63.002	4.894 to 52.836	4.674 to 52.77
Index ranges	–27 ≤ h ≤ 27, –15 ≤	-17 ≤ h ≤ 17, -20 ≤	–19 ≤ h ≤ 19, –12 ≤	$-10 \le h \le 10, -16 \le k \le 16,$
	$k \le 15, -56 \le l \le 55$	$k \le 20, -26 \le l \le 26$	$k \le 12, -20 \le l \le 20$	–21 ≤ l ≤ 21
Refl. coll.	137625	27658	42484	78752
Indep. refl.	12599	15287	5140	7250
Comp. to θ	0.999	0.648	0.998	0.999
Data/rest./param.	12599/24/621	15287/73/461	5140/0/402	7250/207/640
G-o-f on F ²	0.984	0.805	1.044	1.031
Final R indices	$R_1 = 0.0490, wR_2 =$	$R_1 = 0.0577, wR_2 =$	$R_1 = 0.0665, wR_2 =$	$R_1 = 0.0439$, $wR_2 = 0.1177$

Table S1. Selected structure solution and refinement data for nickel complexes

[I>2sigma(I)]	0.1038	0.1497	0.1861	
R indices (all	$R_1 = 0.0596, wR_2 =$	$R_1 = 0.1216, wR_2 =$	$R_1 = 0.0831$, $wR_2 =$	$R_1 = 0.0498$, $wR_2 = 0.1223$
data)	0.1091	0.1617	0.2004	
Ext. coeff.	None	0.009832	0.1109	None
Largest diff. peak	0.49/-0.43	1.48/-0.83	1.64/-0.71	0.97/-0.55
and hole				
CCDC	2095551	2103215	2118416	2126925

 $\label{eq:construction} \mbox{Table S2} \mbox{ Selected structure solution and refinement data for $$[PNP]_2[Ni_2(CF_3)_4(\mu-F)_2]$-2THF. $$$

compound	[PNP]2[Ni2(CF3)4(µ-F)2]2THF		
Formula	C84H76F14N2Ni2O2P4		
formula weigth (g/mol)	1652.76		
T (K)	120.0		
crystal system	Monoclinic		
space group	P21/c		
cell a (Å)	11.807(2)		
b (Å)	20.672(4)		
c (Å)	15.556(3)		
α (°)	90		
β (°)	94.953(7)		
γ (°)	90		
Volume (Å ³)	3782.6(11)		
Ζ	2		
density calculated (g/cm ³)	1.451		
absorption coefficient (cm ⁻¹)	6.67		
F(000)	1704.0		
Theta range for data collection (°)	3.94 to 52.836		
Index ranges	$-14 \le h \le 14$, $-25 \le k \le 25$, $-18 \le l \le 19$		
Reflections collected	83345		
Independent reflections	7749		
Completeness to theta	0.997		
Data / restraints / parameters	7749/0/487		
Goodness-of-fit on F ²	1.041		
Final R indices [I>2sigma(I)]	$R_1 = 0.0401$, $wR_2 = 0.0979$		
R indices (all data)	$R_1 = 0.0530, wR_2 = 0.1056$		
Extinction coefficient	0.0511		
Largest diff. peak and hole	0.69/-0.52		
CCDC	2126925		