Electronic Supporting Information (ESI) for
 Synthesis, Structure, and Electrochemical Properties of $\left[\mathrm{LNi}\left(\mathrm{R}_{f}\right)\left(\mathrm{C}_{4} \mathrm{~F}_{8}\right)\right]^{-}$and $\left[\mathrm{LNi}\left(\mathrm{R}_{\mathrm{f}}\right)_{3}\right]^{-}$Complexes

Scott T. Shreiber, ${ }^{\# a}$ Fatema Amin, ${ }^{\# a}$ Sascha A. Schäfer, ${ }^{\text {b }}$ Roger E. Cramer, ${ }^{c}$ Axel Klein ${ }^{\text {b* }}$ and David A. Vicica*
${ }^{\text {a }}$ Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA 18015, USA. Email: sts217@lehigh.edu; ORCID: 0000-0002-4224-7461 (S.T.S); E-mail: fab319@lehigh.edu; ORCID: 0000-0002-8420-1912 (F.A.).
b University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, 50939 Koeln, Germany. E-mail: sascha.schaefer@unikoeln.de; ORCID: 0000-0003-0093-9619 (S.A.S.).
c Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, HI, 96822, USA. Email: rcramer@hawaii.edu ORCID: 0000-0002-3934-3401 (R.E.C.).
\#These authors contributed equally to this work.

* Corresponding authors: E-mail: axel.klein@uni-koeln.de, ORCID: 0000-0003-0093-9619; Tel.: +49-221-470-4006 (A.K.). E-mail: vicic@lehigh.edu; fax, 1-610-758-6536, ORCID: 0000-0002-4990-0355 (D.A.V.)

Contents:

Fig. S1 Views on the crystals structure of 2.
Fig. S2. Views on the crystal structure of 3.
Fig. S3 Preliminary X-ray data for compound 4.pentane-2benzene.
Fig. S4. Views on the crystal structure of 6 .
Fig. S5 ORTEP diagram of $\mathbf{6}^{\prime} \cdot \mathbf{M e C N}=\left[\mathrm{PPh}_{4}\right]\left[\mathrm{Ni}(\mathrm{IMes})\left(\mathrm{CF}_{3}\right)_{3}\right] \cdot \mathrm{MeCN}$.
Fig. S6 ORTEP diagrams of $\mathbf{6}^{\prime} \cdot \mathbf{M e C N}=\left[\mathrm{PPh}_{4}\right]\left[\mathrm{Ni}(\mathrm{IMes})\left(\mathrm{CF}_{3}\right)_{3}\right] \cdot \mathrm{MeCN}$.
Fig. S7 ORTEP diagrams of 7 and 7^{\prime}.
Fig. S8 Views on the crystal structure of 7.
Fig. S9 ORTEP diagrams of 9 and $\mathbf{9}^{\prime}$.
Fig. S10 ORTEP diagram of $\mathbf{9}^{\prime \prime}$.
Fig. S11 Views on the crystal structure of 9.
Fig. S12 Views on the crystal structure of $\left[\mathrm{PNP}_{2}\left[\mathrm{Ni}_{2}\left(\mathrm{CF}_{3}\right)_{4}(\mu-\mathrm{F})_{2}\right]\right.$ and ORTEP diagram.
Fig. S13 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2 in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S14 $376 \mathrm{MHz}^{19} \mathrm{~F}$ NMR spectrum of 2 in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S15 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3 in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S16 $376 \mathrm{MHz}^{19} \mathrm{~F}$ NMR spectrum of 3 in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S17 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4 in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S18 $376 \mathrm{MHz}^{19} \mathrm{~F}$ NMR spectrum of 4 in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S19 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S20 $376 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectrum of 6 in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S21 $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of 7 and 7^{\prime} in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S22 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of 8 and $\mathbf{8}^{\prime}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S23 $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of 9 and $\mathbf{9}^{\prime}$ in $\mathrm{CD}_{3} \mathrm{CN}$.
Fig. S24 Cyclic voltammograms of 1, 2, and 4 in MeCN/n-Bu4NPF6.
Fig. S25 Cyclic voltammograms of 5 and $\mathbf{6}$ in $\mathrm{MeCN} / n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$.
Fig. S26 Cyclic voltammograms of $\left[\mathrm{NEt}_{4}\right]\left[(\mathrm{IMes}) \mathrm{Ni}_{\left.\left(\mathrm{CF}_{3}\right)_{3}\right]}\right]$ (6) and $\left[\mathrm{NEt}_{4}\right]\left[\left(2,4-\mathrm{F}_{2} \mathrm{Ph}-\mathrm{NHC}\right) \mathrm{Ni}^{\left.\left(\mathrm{CF}_{3}\right)_{3}\right]}\right.$ (7).
Fig. S27 Cyclic voltammograms of $\left[\mathrm{NEt}_{4}\right]\left[\left(2,4,6-\mathrm{F}_{3} \mathrm{Ph}-\mathrm{NHC}\right) \mathrm{Ni}_{\left.\left(\mathrm{CF}_{3}\right)_{3}\right]}(8)\right.$ and $\left[\mathrm{NEt}_{4}\right]\left[\left(3,4,5-\mathrm{F}_{3} \mathrm{Ph}-\right.\right.$
$\left.\mathrm{NHC}) \mathrm{Ni}\left(\mathrm{CF}_{3}\right)_{3}\right]$ (9).

Table S1. Selected structure solution and refinement data for nickel complexes $\mathbf{6}^{\prime}, 7,9$ and $\mathbf{9}^{\prime}$. Table S2 Selected structure solution and refinement data for $\left[\mathrm{PNP}_{2}\left[\mathrm{Ni}_{2}\left(\mathrm{CF}_{3}\right)_{4}(\mu-\mathrm{F})_{2}\right] \cdot 2 \mathrm{THF}\right.$.

Supporting Figures

Fig. S1 Views on the crystals structure of 2.

Fig. S2. Views on the crystal structure of 3.

Fig. S3 Preliminary X-ray data for compound 4 pentane 2 benzene. Only a poorly refined data set with two co-crystallized benzene molecules and one co-crystallized pentane could been obtained for compound 4. The preliminary structure shown here is only provided as additional support of the connectivity assignment in the text.

Fig. S4. Views on the crystal structure of $\mathbf{6}$.

Fig. S5 ORTEP diagram of $\mathbf{6}^{\prime} \cdot \mathbf{M e C N}=\left[\mathrm{PPh}_{4}\right]\left[\mathrm{Ni}(\mathrm{IMes})\left(\mathrm{CF}_{3}\right)_{3}\right] \cdot \mathrm{MeCN}$. Ellipsoids shown at the 40% level. Hydrogen atoms as well as a positional disorder of C2 are omitted for clarity.

Fig. S6 ORTEP diagrams of $\mathbf{6}^{\prime} \cdot \mathbf{M e C N}=\left[\mathrm{PPh}_{4}\right]\left[\mathrm{Ni}(\mathrm{IMes})\left(\mathrm{CF}_{3}\right)_{3}\right] \cdot \mathrm{MeCN}$. Ellipsoids shown at the 40% level. Hydrogen atoms, co-crystallized solvent and counter cations are omitted for clarity. The left structure shows the major species with a chemical occupancy of 83.2% and a $\mathrm{C} 4-\mathrm{Ni} 1-\mathrm{C} 2 \mathrm{~A}$ bond angle of 174.23°. The right structure is the minor species with a chemical occupancy of 16.8% and $\mathrm{C} 4-\mathrm{Ni} 1-\mathrm{C} 2 \mathrm{~B}$ bond angle of 169.0°.

Fig. S7 ORTEP diagrams of 7 (left) and 7^{\prime} (right). Ellipsoids shown at the 40% level. Hydrogen atoms and counter cations are omitted for clarity. Both structures were generated from the same XRD measurement. Compound 7^{\prime} is present with a chemical occupancy of 12.5%. The right diagram additionally shows the split position of carbon C2A/C2B, with the respective bond angles for C2A-Ni1-C4 176.33(15) ${ }^{\circ}$ and C2B-Ni1-C4 173.8(9) ${ }^{\circ}$. C2B shows a chemical occupancy of 26.3(6)\%. Besides the shown partial placement of a $\mathrm{C}_{2} \mathrm{~F}_{5}$ along C 1 a rotational disorder of the CF_{3} function centered on C_{1} is observed with a chemical occupancy of $22.9(6) \%$, and is omitted from the diagrams for clarity.

Fig. S8 View on the crystal structure of 7, shown along the crystallographic band caxis.

Fig. S9 ORTEP diagrams of 9 (left) and $\mathbf{9}^{\prime}$ (right). Ellipsoids shown at the 40% level. Hydrogen atoms are omitted for clarity. In the structure of $9^{\prime} 2$ equivalents of THF are omitted for clarity. In contrast to compound $7 / 7^{\prime}$ these two compounds crystallized separately and were measured independently. Both structures show rotational disorder of CF_{3} functions. Compound $\mathbf{9}^{\prime}$ additionally shows a $\mathrm{C}_{4}-\mathrm{CF}_{3} /-\mathrm{C}_{2} \mathrm{~F}_{5}$ disorder on C 4 , where one F atom is exchanged for an additional CF_{3} function with a chemical occupancy of 20%.

Fig. S10 ORTEP diagram of $\mathbf{9}^{\prime \prime}$, the minor species (20\%) found in a crystal of $\mathbf{9}^{\prime}$, showing both the rotational and chemical disorder. Ellipsoids shown at the 40% level. Hydrogen atoms, co-crystallized THF and counter cation are omitted for clarity.

Fig. S11 Views on the crystal structure of $\mathbf{9}$ along the crystallographic b and c axis.

Fig. S12 View on the crystal structure of $\left[\mathrm{PNP}_{2}\left[\mathrm{Ni}_{2}\left(\mathrm{CF}_{3}\right)_{4}(\mu-\mathrm{F})_{2}\right] \cdot 2 \mathrm{THF}\right.$ along the crystallographic a axis (right) and ORTEP diagram of $\left[\mathrm{Ni}_{2}\left(\mathrm{CF}_{3}\right)_{4}(\mu-\mathrm{F})_{2}\right]$ (right). Ellipsoids shown at the 40% level. Hydrogen atoms, as well as one molecule each of $[\mathrm{PNP}]^{+}$and THF molecules are omitted for clarity.

Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{NMe}_{4}\right]\left[(\mathrm{MeCN})\left(\mathrm{CF}_{3}\right) \mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{~F}_{8}\right)\right]$ (2) in $\mathrm{CD}_{3} \mathrm{CN}$

Fig. S14 $376 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectrum of 2 in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S15 ${ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{NMe}_{4}\right]\left[(\mathrm{MeCN})\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right) \mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{~F}_{8}\right)\right](3)$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S16 $376 \mathrm{MHz}^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S17 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4 in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. $\mathbf{S 1 8} 376 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectrum of 4 in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S19 $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S20 $376 \mathrm{MHz}^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S21A $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of 7 and 7^{\prime} in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S21B $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}^{19} \mathrm{~F}$ NMR spectra of 7 and 7^{\prime} in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S21C $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of 7 and 7 ' in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S22A $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}^{19} \mathrm{~F}$ NMR spectra of $\mathbf{8}$ and $\mathbf{8}^{\prime}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S22B $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of 8 and 8^{\prime} in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S22C $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of 8 and 8^{\prime} in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S23A $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{9}$ and $\mathbf{9}^{\prime}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S23B $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{9}$ and $\mathbf{9}^{\prime}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S23C $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $470.6 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{9}$ and $\mathbf{9}^{\prime}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S24 Cyclic voltammograms of $\mathbf{1}$ (black), 2 (red), and $\mathbf{4}$ (orange) in MeCN/ n-Bu4NPF6.

Fig. S25 Cyclic voltammograms of 5 (black) and 6 (blue) in MeCN/n-Bu4NPF6.

Fig. S26 Cyclic voltammograms of $\left[\mathrm{NEt}_{4}\right]\left[(\mathrm{IMes}) \mathrm{Ni}_{(}\left(\mathrm{CF}_{3}\right)_{3}\right]$ (6) (left) and $\left[\mathrm{NEt}_{4}\right]\left[\left(2,4-\mathrm{F}_{2} \mathrm{Ph}-\mathrm{NHC}\right) \mathrm{Ni}_{\mathrm{i}}\left(\mathrm{CF}_{3}\right)_{3}\right](7)$ (right) in MeCN / n-Bu4 NPF_{6}.

Fig. S27 Cyclic voltammograms of [NEt4] [(2,4,6-F3Ph-NHC)Ni(CF $\left.\left.{ }_{3}\right)_{3}\right]$ (8) (left) and [$\left.\mathrm{NEt}_{4}\right]\left[\left(3,4,5-\mathrm{F}_{3} \mathrm{Ph}-\right.\right.$ $\left.\mathrm{NHC}) \mathrm{Ni}\left(\mathrm{CF}_{3}\right)_{3}\right]$ (9) (right) in $\mathrm{MeCN} / n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

Table S1. Selected structure solution and refinement data for nickel complexes

compound	[PPh_{4}] $[$ (IMes) $\mathrm{Ni}(\mathrm{C}$ $\left.\left.\mathrm{F}_{3}\right)_{3}\right]\left(\mathbf{6}^{\prime}\right)$	[NMe4][(2,4-F2Ph$\left.\mathrm{NHC}) \mathrm{Ni}\left(\mathrm{CF}_{3}\right)_{3}\right](7)$	[NMe4][(3,4,5-F3Ph$\left.\mathrm{NHC}) \mathrm{Ni}\left(\mathrm{CF}_{3}\right)_{3}\right]$ (9)	[NMe4][(3,4,5-F3Ph- $\mathrm{NHC}) \mathrm{Ni}\left(\mathrm{CF}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right]\left(9^{\prime}\right)$
Formula	$\mathrm{C}_{50} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{NiP}$		$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{15} \mathrm{~N}_{3} \mathrm{Ni}$	$\mathrm{C}_{312} \mathrm{H}_{33.31 \mathrm{~F}}^{16.92} \mathrm{~N}_{3} \mathrm{NiO}_{2}$
F.W. (g/mol)	950.58	634.48	668.10	862.57
T (K)	100.0	293(2)	100.0	100.0
crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
space group	C2/c	P-1	P2 $1 / \mathrm{c}$	P-1
cell a (Å)	19.9610(11)	9.9583(3)	15.9285(11)	8.5261(3)
b (\AA)	11.2347(6)	10.3755(5)	9.6940(6)	13.2144(5)
c (\AA)	40.329(2)	12.8434(6)	16.2880(9)	16.9930(6)
$\left.\alpha{ }^{(}\right)$	90	69.438(4)	90	104.8370(10)
$\beta{ }^{(}{ }^{\circ}$	97.043(2)	87.104(3)	95.067(2)	91.5500(10)
$\gamma\left({ }^{\circ}\right)$	90	82.992(3)	90	105.7390(10)
Volume (\AA^{3})	8975.8(9)	1233.15(10)	2505.2(3)	1771.72(11)
Z	8	2	4	2
dens. calc. ($\mathrm{g} / \mathrm{cm}^{3}$)	1.407	1.709	1.771	1.617
ab. coeff. (cm^{-1})	5.42	3.52	9.05	6.71
$F(000)$	3936.0	638.0	1336.0	876.0
θ range (${ }^{\circ}$)	4.07 to 59.198	2.968 to 63.002	4.894 to 52.836	4.674 to 52.77
Index ranges	$\begin{aligned} & -27 \leq h \leq 27,-15 \leq \\ & k \leq 15,-56 \leq 1 \leq 55 \end{aligned}$	$\begin{aligned} & -17 \leq \mathrm{h} \leq 17,-20 \leq \\ & \mathrm{k} \leq 20,-26 \leq 1 \leq 26 \end{aligned}$	$\begin{aligned} & -19 \leq h \leq 19,-12 \leq \\ & k \leq 12,-20 \leq 1 \leq 20 \end{aligned}$	$\begin{aligned} & -10 \leq h \leq 10,-16 \leq k \leq 16, \\ & -21 \leq 1 \leq 21 \end{aligned}$
Refl. coll.	137625	27658	42484	78752
Indep. refl.	12599	15287	5140	7250
Comp. to θ	0.999	0.648	0.998	0.999
Data/rest./param.	12599/24/621	15287/73/461	5140/0/402	7250/207/640
G-o-f on F^{2}	0.984	0.805	1.044	1.031
Final R indices	$\mathrm{R}_{1}=0.0490, \mathrm{wR}_{2}=$	$\mathrm{R}_{1}=0.0577, \mathrm{wR}_{2}=$	$\mathrm{R}_{1}=0.0665, \mathrm{wR}_{2}=$	$\mathrm{R}_{1}=0.0439, \mathrm{wR}_{2}=0.1177$

$[\mathrm{I}>2$ sigma(I) $]$	0.1038	0.1497	0.1861	
R indices (all	$\mathrm{R}_{1}=0.0596, \mathrm{wR}_{2}=$	$\mathrm{R}_{1}=0.1216, \mathrm{wR}_{2}=$	$\mathrm{R}_{1}=0.0831, \mathrm{wR}_{2}=$	$\mathrm{R}_{1}=0.0498, \mathrm{wR}_{2}=0.1223$
data $)$	0.1091	0.1617	0.2004	
Ext. coeff.	None	0.009832	0.1109	None
Largest diff. peak	$0.49 /-0.43$	$1.48 /-0.83$	$1.64 /-0.71$	$0.97 /-0.55$
and hole				
CCDC	2095551	2103215	2126925	

Table S2 Selected structure solution and refinement data for $\left[\mathrm{PNP}_{2}\left[\mathrm{Ni}_{2}\left(\mathrm{CF}_{3}\right)_{4}(\mu-\mathrm{F})_{2}\right] \cdot 2 \mathrm{THF}\right.$.

compound	$\left[\mathrm{PNP}_{2}\left[\mathrm{Ni}_{2}\left(\mathrm{CF}_{3}\right)_{4}(\mu-\mathrm{F})_{2}\right] \cdot 2 \mathrm{THF}\right.$
Formula	$\mathrm{C}_{84} \mathrm{H}_{76} \mathrm{~F}_{14} \mathrm{~N}_{2} \mathrm{Ni}_{2} \mathrm{O}_{2} \mathrm{P}_{4}$
formula weigth (g/mol)	1652.76
T (K)	120.0
crystal system	Monoclinic
space group	P21/c
cell a (\AA)	11.807(2)
b (A)	20.672(4)
c (\AA)	15.556(3)
$\alpha{ }^{\circ}{ }^{\circ}$	90
$\beta\left({ }^{\circ}\right)$	94.953(7)
$\gamma\left({ }^{\circ}\right)$	90
Volume (A^{3})	3782.6(11)
Z	2
density calculated (g/cm ${ }^{3}$)	1.451
absorption coefficient (cm^{-1})	6.67
$F(000)$	1704.0
Theta range for data collection (${ }^{\circ}$)	3.94 to 52.836
Index ranges	$-14 \leq \mathrm{h} \leq 14,-25 \leq \mathrm{k} \leq 25,-18 \leq 1 \leq 19$
Reflections collected	83345
Independent reflections	7749
Completeness to theta	0.997
Data / restraints / parameters	7749/0/487
Goodness-of-fit on F^{2}	1.041
Final R indices [I>2sigma(I)]	$\mathrm{R}_{1}=0.0401, \mathrm{wR}_{2}=0.0979$
R indices (all data)	$\mathrm{R}_{1}=0.0530, \mathrm{wR}_{2}=0.1056$
Extinction coefficient	0.0511
Largest diff. peak and hole	0.69/-0.52
CCDC	2126925

